七年级数学有理数复习教案
关于初中数学有理数教案5篇
关于初中数学有理数教案5篇关于初中数学有理数教案5篇作为一名教学工作者,常常要根据教学需要编写教案,教案是教学蓝图,可以有效提高教学效率。
下面是小编为大家整理的初中数学有理数教案,如果大家喜欢可以分享给身边的朋友。
初中数学有理数教案(篇1)教学目标:1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。
(2)能熟练进行有理数的减法法则。
2、过程与方法通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。
重点、难点1、重点:有理数减法法则及其应用。
2、难点:有理数减法法则的应用符号的改变。
教学过程:一、创设情景,导入新课1、有理数加法运算是怎样做的(-5)+3= —3+(—5)=—3+(+5)=2、-(-2)= -[-(+23)]=,+[-(-2)]=3、20__的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。
(出示课题)二、合作交流,解读探究1(-2)-(-10)=8=(-2)+82:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米3、通过以上列式,你能发现减法运算与加法运算的关系吗(学生分组讨论,大胆发言,总结有理数的.减法法则)减去一个数等于加上这个数的相反数教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数“减去”两字怎样理解(2)法则中的“加上这个数的相反数”“加上”两字怎样理解“这个数的相反数”又怎样理解(3)你能用字母表示有理数减法法则吗三、应用迁移,巩固提高1、P.24例1 计算:(1) 0-(-3.18)(2)(-10)-(-6)(3)-解:(1)0-(-3.18)=0+3.18=3.18(2)(-10)-(-6)=(-10)+6=-4(3)-=+=12、课内练习:P.241、2、33、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。
七级数学教案有理数
七级数学教案有理数第一章:有理数的概念与分类1.1 学习目标了解有理数的定义与特点掌握有理数的分类及相互关系1.2 教学内容有理数的定义与特点有理数的分类:整数(正整数、负整数、零)、分数(正分数、负分数)有理数的大小比较1.3 教学步骤1. 引入话题:讨论日常生活中的数量,引导学生思考如何表示正负数和零。
2. 讲解有理数的定义与特点,通过实例加深理解。
3. 讲解有理数的分类,引导学生通过图形表示理解不同类型的有理数。
4. 练习有理数的大小比较,让学生通过实际操作来掌握规则。
1.4 作业布置完成课后练习题,巩固有理数的概念与分类。
第二章:有理数的运算2.1 学习目标掌握有理数的加法、减法、乘法、除法的运算规则能够正确进行有理数的混合运算2.2 教学内容有理数的加法与减法:同号相加、异号相加、零的加减法有理数的乘法:正数乘以正数、负数乘以正数、正数乘以负数、负数乘以负数有理数的除法:整数除以整数、分数除以整数、整数除以分数2.3 教学步骤1. 复习有理数的分类,引导学生回顾有理数的概念。
2. 讲解有理数的加法与减法运算规则,通过示例进行演示。
3. 讲解有理数的乘法运算规则,引导学生通过实际操作来理解。
4. 讲解有理数的除法运算规则,通过示例进行演示。
5. 练习有理数的混合运算,让学生通过实际操作来掌握规则。
2.4 作业布置完成课后练习题,巩固有理数的运算规则。
第三章:有理数的应用3.1 学习目标能够运用有理数解决实际问题掌握有理数在生活中的应用3.2 教学内容有理数在生活中的应用:购物、计算距离、温度转换等有理数的估算:整数与分数的估算方法3.3 教学步骤1. 引入话题:讨论日常生活中遇到的有理数问题,引导学生思考如何运用有理数解决实际问题。
2. 讲解有理数在生活中的应用,通过实例加深理解。
3. 讲解有理数的估算方法,引导学生通过实际操作来掌握。
3.4 作业布置完成课后练习题,巩固有理数在生活中的应用。
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
七年级数学上册有理数及其运算复习教案9篇
七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
七年级上册第一章有理数复习教案
第一章《有理数》复习一、基本概念 1.有理数生活中的一些具有相反意义的量: 1.飞机上升500米与下降500米; 2.向东走5米与向西走6米; 3.存入1000元和支出900元。
请你将右图连线:我们可以把一种意义的量规定为正.同时把另一种与它相反意义的量规定为负,分别称它们为 正数和负数。
0既不是正数,也不是负数。
〖练一练〗“一个数,如果不是负数,就是正数。
”这句话对吗,为什么?在小学学过的数(零除外)前面加一个“—”号表示负数! 在小学学过的数(零除外)前面加一个“+”号表示正数!(通常正号可以省略) 例1 如果温度上升8℃记作 +8,下降3℃记作 -3,那么下列各数分别表示什么?(1)+5 (2)―6.8 (3) 0正数 有理数 0负数1(口答)读出下列各数,它们各是哪一类数?7 ,-7.46 , 0 , +50/7, ―2/3,-2, -7, -8, +1.3, -0.82.填空:(1) 规定赢利为正,某公司去年亏损了 2.5万元,记做____万元,今年盈 利了3.2万元, 记做_____万元;(2)规定海平面以上的海拔高度为正.新疆乌鲁木齐市高于海平面918米,记做海拔____ 米;吐鲁番盆地最低点低于海平面155米,记做海拔____米.例2 下列给出的各数,哪些是正数?哪些是负数?哪些是整数? 哪些是分数?哪些是有理数?―8.4, 22, +17/6, 0.33, 0, ―3/5盈利 存入 增加 运进 上升 涨 输 进球 南失球 赢 支出 跌 亏损 减少 运出 下降 东【选一选】把”存入银行+50元”改成使用负数的说法是( )(A)取出+50元 (B)取出-50元 (C)存入+50元 (D)存入-50元你能解释”前进-50米”的意思吗?〖课内练习〗 1 填空:(1) 汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正. 汽车向北行驶75千米,记做____km,(或__km ),汽车向南行驶100km ,记做__km.(2)如果向银行存入50元记为50元,那么-30.50元表示________;(3)规定增加的百分比为正,增加25%记做__,-12 %表示__________.引进了负数之后,数的范围扩大了整数有理数分数小结①表示大小:②在实际中表示意义相反的量 上升5米记为:5, -8则表示下降8米。
七年级数学上册 第一章有理数复习教案 人教新课标版
第一章 有理数复习一、【课标要求】二、知识结构三、主要考点考点一:有理数的分类有理数概念有理数 相反数大小比较 绝对值 倒数 数轴运算加法减法 乘法 除法 乘方混合运算科学记数法用计算器进行简单的计算近似数与有效数字正有理数零负有理数正整数正分数负整数负分数有理数含正有限小数和无限循环小数有理数的另一种分类1、填空①_____________统称整数。
_____________统称分数。
_____________统称有理数。
0既不是 ,也不是 。
②增加-20%,实际的意思是 。
甲比乙大-3表示的意思是 。
③月球表面的白天平均温度为126℃,记作+126℃,夜间平均温度零下150°C, 记作 ℃. 白天比夜间高 ℃想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数 2、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590正整数集{ …} 负整数集{ …} 正分数集{ …}负分数集{ …} 正有理数集{ …} 负有理数集{ …} 自然数集{ …}有理数整数 分数正整数 负整数0 负分数正分数自然数含负有限小数和无限循环小数3、判断正误①不带“-”号的数都是正数 ( )②如果a是正数,那么-a一定是负数 ( )③不存在既不是正数,也不是负数的数 ( )④0℃表示没有温度 ( )考点二:数轴1、填空①规定了,和的直线叫做数轴。
②比-3大的负整数是_______;已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是____,最小的正整数是____。
最大的非正数是__。
④与原点的距离为三个单位的点有____个,他们分别表示的有理数是________。
2、选择题①下列数轴画法正确的是( )②在数轴上,原点及原点左边所表示的数是()A整数B负数C非负数D非正数③下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来考点三:相反数1、填空①-2的相反数是;它的倒数是;它的绝对值是。
苏科版数学七年级上册有理数有关概念复习教说课稿
苏科版数学七年级上册有理数有关概念复习教说课稿一. 教材分析苏科版数学七年级上册中,有理数是其中的重要内容。
本节课的主要目的是让学生掌握有理数的基本概念,包括有理数的定义、分类、运算等。
教材从实际情境出发,引导学生逐步理解和掌握有理数的概念,培养学生的逻辑思维能力。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对数学运算有一定的了解。
但是,对于有理数的概念,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从实际情境出发,逐步理解和掌握有理数的概念。
三. 说教学目标1.知识与技能目标:让学生掌握有理数的定义、分类和运算方法。
2.过程与方法目标:通过实际情境,引导学生自主探究有理数的概念,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:有理数的定义、分类和运算方法。
2.教学难点:有理数的运算,特别是混合运算的计算方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和数学软件辅助教学。
六. 说教学过程1.导入新课:通过实际情境,引导学生思考和讨论,引出有理数的概念。
2.自主探究:让学生通过小组合作学习,自主探究有理数的定义、分类和运算方法。
3.教师讲解:针对学生的探究结果,进行讲解和总结,强调重点和难点。
4.课堂练习:布置相关的练习题,让学生巩固所学知识。
5.总结反思:让学生总结本节课所学内容,反思自己的学习过程。
七. 说板书设计板书设计主要包括有理数的定义、分类和运算方法。
可以用流程图、列表等形式进行展示。
八. 说教学评价教学评价主要通过课堂练习、课后作业和学生的学习表现来进行。
重点关注学生对有理数概念的理解和运算能力的提升。
九. 说教学反思教学反思主要从教学内容、教学方法和教学效果三个方面进行。
要根据学生的反馈和自己的教学经验,不断调整和改进教学方法,提高教学效果。
七年级数学有理数教案
七年级数学有理数教案第一章:有理数的概念与性质1.1 有理数的定义介绍有理数的概念,理解有理数的本质属性。
举例说明有理数的不同形式,如整数、分数等。
1.2 有理数的性质探讨有理数的加法、减法、乘法和除法的性质。
解释有理数的相反数、倒数和绝对值的概念。
第二章:有理数的运算2.1 有理数的加法与减法讲解有理数加法和减法的运算规则。
练习题:求解实际问题,应用有理数的加法和减法。
2.2 有理数的乘法与除法介绍有理数乘法和除法的运算规则。
练习题:求解实际问题,应用有理数的乘法和除法。
第三章:有理数的应用3.1 有理数在实际问题中的应用举例说明有理数在实际问题中的应用,如购物、长度和面积的计算等。
练习题:解决实际问题,运用有理数进行计算和估算。
3.2 有理数在不同情境下的应用探讨有理数在科学、工程和经济等领域的应用。
练习题:解决实际问题,运用有理数进行计算和分析。
第四章:有理数的综合练习4.1 有理数的混合运算讲解有理数的混合运算规则,如加减乘除的顺序。
练习题:求解实际问题,应用有理数的混合运算。
4.2 有理数的综合练习题提供综合练习题,巩固对有理数的概念和运算的理解。
学生独立完成练习题,教师进行讲解和解答。
第五章:有理数的拓展与应用5.1 有理数与无理数的比较介绍有理数和无理数的概念,探讨它们的区别和联系。
练习题:区分有理数和无理数,解决相关问题。
5.2 有理数在数学中的应用探讨有理数在数学其他领域中的应用,如代数、几何等。
练习题:解决与有理数相关的数学问题,展示有理数的重要性。
第六章:有理数的平方根与立方根6.1 平方根的概念与性质引入平方根的概念,解释平方根的性质。
举例说明平方根的计算方法,如求一个数的平方根。
6.2 立方根的概念与性质引入立方根的概念,解释立方根的性质。
举例说明立方根的计算方法,如求一个数的立方根。
第七章:有理数的乘方7.1 有理数的乘方的概念与性质引入有理数的乘方的概念,解释有理数的乘方的性质。
有理数 复习课 优秀教学设计(教案)
1. 知识梳理:
括到括号内的各项都要变号。
⑴有理数的加法法则:
⑻乘方:求 n 个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对
2. 例题选讲:
值减去较小的绝对值;
例 1 下列说法是否正确,请就错误的改正过来。
⑹有理数的运算顺序:
先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。
⑺运算律:
①加法的交换律;
②加法的结合律;
③乘法的交换律;
④乘法的结合律;
⑤乘法对加法的分配律;
注:除法没有分配律。
2. 例题选讲:
例 1 下列说法是否正确,请就错误的改正过来。
⑴0 除以任何数都得零;
(
)
⑵若 a、b 为有理数,且 ac,b≠0,则 a+b≠0;(
四、教学目标:
⑺去括号与添括号:
1. 使学生系统掌握有理数这一章的有关运算法则;
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不
2. 使学生提高有理数的计算能力。
变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
五、教学设计:
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,
4
2
15
⑶ 22 (2)2 (6 1 ) 4 | (4) (2) |; 2 13
⑷ (3 1 ) (3 1
7
1 )
7
21
浙教版数学七年级上册第二章《有理数的运算》复习教学设计
浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。
本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。
教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。
但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。
因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。
三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。
2.掌握混合运算的顺序和运算法则。
3.提高学生的运算能力和逻辑思维能力。
4.培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.重难点:有理数的混合运算。
2.难点:运算顺序和运算法则的运用。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。
2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。
3.运用合作学习法,分组讨论,培养学生的团队协作能力。
4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。
六. 教学准备1.准备相关教案和教学PPT。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
4.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。
通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。
2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。
引导学生对比实数和有理数的区别,明确有理数运算的重要性。
3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。
七年级数学第2章有理数本章复习教案华东师大版
第2章有理数【基本目标】引导学生自己回顾本章内容,以独立思考和小组讨论的学习方式,以便学生自己梳理知识,形成知识的联系,使新旧知识成为一个有机的整体.【过程与方法】通过小结与复习加深对正负数、相反数、绝对值概念的理解,通过练习,进一步提高学生的计算能力和解决简单实际问题的能力.【情感态度】培养学生反思意识,进一步体会数学来源于生活,应用于生活.【教学重点】1。
相关概念、法则、运算律的理解与掌握;2。
有理数混合运算的法则的应用及有理数的混合运算技巧.【教学难点】1.应用有理数的运算解决实际问题.2。
解题技巧的灵活性和解题思路的全面性和多样性。
一、知识框图,整体把握【教学说明】以框图的形式对本章内容做一个形象的解读,便于学生对本章的知识脉络有一个形象的了解,对各知识点之间的关系有一个形象的把握.二、释疑解惑,加深理解通过提问的方式回顾本章的主要内容,采用独立思考与同伴讨论的学习方式,让学生通过思考回答问题,加深对本章知识的理解.根据学生实际情况,教师给予适当的引导、归纳.1。
为什么要引入负数?举出实例说明正数和负数在表示相反意义的量时的作用.现实生活中存在很多个有相反意义的量,如:向东5米与向西5米,零上2℃与零下2℃,收入100元与支出100元,低于海平面150米与高出海平面800米……用正数表示其中一种量,负数表示和它相反意义的量,这样既简单又明白.例如吐鲁番盆地的海拔高度为—155m,表示吐鲁番盆地的海拔高度是低于海平面155m.2。
数的范围从正整数、零和正分数扩充到有理数后,增加了哪些数?减法中哪些原来不能进行的运算可以进行了?增加了负整数、负分数,解决了原来“小数不能减去大数"的问题,现在任何有理数都可以进行减法运算.3.怎样用数轴表示有理数?数轴与普通直线有什么不同?怎样用数轴解释绝对值和相反数?任何一个有理数都可以用数轴上的一个点表示,但数轴上的点不是都表示有理数,这一点,以后我们将要学习.数轴是一条特殊的直线,是规定了正方向、原点和单位长度的直线.原点、正方向、单位长度也称数轴的三要素,缺一不可.数轴上与原点的距离相等的两个点所表示的数是互为相反数.4.怎样比较有理数的大小?有理数的大小比较方法有两种;一是利用数轴,在数轴上较左边的点比右边的点所表示的数小;二是用绝对值,两个负数,绝对值大的反而小.正数大于零,负数小于零.5。
2023-2024人教部编版初中数学七年级上册第一章有理数教案有理数全章复习课(2)+(面向平行班)
“有理数”的复习课(2)的教学设计:【课题】“有理数”的复习课(2)【设计与执教者】:【教学时间】:【学情分析】:本设计面向平行班学生,在学生学习有理数全章书后,对有理数的运算法则已有初步的了解,能进行有理数的加减、乘除、乘方的运算,但如何才能做到准确进行运算,并能正确运用运算律简化运算等方面还需加强,因此,希望通过本节课的复习,使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。
【学情目标】:系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。
【教学重点】:熟练进行有理数加减、乘除、乘方的混合运算【教学难点】:准确进行有理数加减、乘除、乘方的混合运算【教学突破点】:通过实例帮助学生掌握有理数加、减、乘、除、乘方的运算法则,会运用运算律进行有理数的简便运算,提高解题的速度和准确性,设计分层练习,让各层次的学生能在课堂上得到有效的训练。
【教法、学法设计】:分层教学,讲授、练习相结合。
【教学过程】:练习与测评: 一、基础题(1))6514()537()6155()5213(-+--+-- (2) )21()43()32(6)3(42+÷-+-⨯--⨯- (3)11136(2)4912⎛⎫-⨯--÷-⎪⎝⎭(4)2)6(1)]43(361)2411[(-÷-+++ 二、中等题:1、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)①本周六生产了多少辆?②产量最多的一天比产量最少的一天多生产了多少辆? ③本周平均每天实际生产多少辆? 解:①周六生产了241辆②34辆周五生产了259辆,周日生产了225辆产量最多的一天比产量最少的一天多生产了34辆 ③247辆 2473250725894375250=-=--++-+-+2、将-15、-12、-9、-6、-3、0、3、6、9,填入下列 小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。
七年级数学《有理数-复习课》教案
七年级数学《有理数-复习课》教案教学内容:复习P1-28教学重点:相反数、绝对值、有理数的大小比较和有理数的加减法运算教学难点:绝对值、有理数的混合运算一、板书课题,揭示目标1.今天,我们一起来复习1.1-1.4。
2.学习目标(1)在具体的情境中,理解有理数及其运算的意义。
(2)能用数轴上的点表示有理数,会表示有理数的大小。
(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
(4)经历探索有理数运算法则和运算律的过程,掌握有理数的加、减简单的混合运算;理解有理数的运算律,并能运用运算律简化运算。
(5)发展观察、猜想、验证等能力,初步形成数形结合的思想。
二、学生自学前的指导怎样才能达到这些目标呢?主要靠大家自学。
下面,请同学们按照指导(手指投影屏幕)自学。
自学指导看书1-28,填空:1、和统称整数;和统称分数;整数和分数统称。
有理数也可以分为和。
2、规定了的直线叫做数轴。
3、任何都可以用数轴上的一个点来表示。
4、数轴上原点表示的数是;原点右边的点表示的数都是;原点左边的点表示的数都是。
5、数轴上,表示相反数的两个点到的距离相等,我们说着两个点关于对称。
6、相反数等于它本身的数是,一个负数的相反数是。
7、一个正数的绝对值等于它;一个负数的绝对值等于它的;0的绝对值等于;互为相反数的两个数的绝对值。
8、正数 0;负数 0;正数一切负数;两个负数,大的反而小。
9、在以向右为正方向的数轴上的两点,右边的点表示的数比左边的点表示的数。
10、有理数的加法法则:。
11、如果两个数的和等于0,那么着两个数。
12、加法的运算律:。
13、减去一个数等于。
14、0减任何一个数等于。
15、加减混合运算可以统一为运算。
三、学生自学,教师巡视学生看书,教师巡视,确保人人紧张看书。
四、检验学生自学情况。
学生看完书后把书合上,举手回答。
五、引导更正,指导运用1.学生训练。
(1)布置任务:看完了的同学,请举手。
(学生举手)好!下面请XX做《基础训练》第16页练习第11(15)题,其余的同学在座位上练习……(2)学生练习,教师巡视,把数学练习中的典型错误写在黑板上(同一题下)。
人教版七年级数学上册第一章 《有理数》总复习教案
人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。
三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。
2.使学生提高区分概念的能力,正确运用概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。
三、教学难点:对绝对值概念的理解与应用。
四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。
初中数学有理数教案【精选5篇】
初中数学有理数教案【精选5篇】学校数学有理数教案【篇1】教学目标:学问力量:理解有理数的概念,把握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培育同学正确的分类争论观点和分类力量。
情感、态度、价值观:通过本节课的学习,体验胜利的喜悦,保持学好数学的信念。
教学重点:把握有理数的两种分类方法教学难点:给定的数字将被填入它所属的集合中教学方法:问题导向法学习方法:自主探究法一、形势归纳学校我们学了整数和分数,上节课我们学了正数和负数。
谁能快速提出以下问题?1.有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33(1)将以上数字填入以下两组:正整数集{}和负整数集{}。
你填完了吗?(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。
你填完了吗?称整数和分数为有理数。
(教导题,板书)二、自学指导同学自学课本,依据课本查找自学的机会提纲中问题的答案;老师先做必要的板书预备,再到同学中巡察指导,并了解把握同学自学状况,为展现归纳作预备。
附:自学提纲:1.___________、____、_______统称为整数,2._______和_________统称为分数3.____ ______统称为有理数,4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.三、展现归纳1、找有问题的同学逐题展现自学提纲中的问题答案,同学说,老师板书;2、发动同学进行评价、补充、完善,老师依据每个题目的展现状况进行必要的讲解和强调;3、全部展现完毕后,老师对本段学问做系统梳理,关键点予以强调。
四、变式练习逐题出示,先让同学独立完成,再请有问题的同学汇报结果,老师板书,并发动其他同学评价、补充并完善,最终老师依据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.2.推断下列说法是否正确,并说明理由。
初一数学有理数概念复习备课教案(很全)
有理数概念复习课教案宋学义中学吴爱菊复习目标1、理解有理数的重要概念2、能用这些概念解决实际问题教学重难点1、理解有理数的七个概念:负数有理数数轴互为相反数互为倒数有理数的绝对值有理数大小的比较2、概念的实际应用教学过程一自学提示1. 负数在正数前面加“—”的数; 0既不是正数,也不是负数2. 有理数分类:3. 数轴:规定了原点、正方向和单位长度的直线4. 互为相反数:互为相反数的两个数和为零5. 互为倒数:乘积是1的两个数互为倒数6. 有理数的绝对值:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
7. 有理数大小的比较二有理数的基本概念[基础练习]1 在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|,-4.5,1,02 选择题:(1)在数轴上,原点及原点左边所表示的数()A整数B负数C非负数D非正数(2)下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来3 在数轴上点A表示-4,距点A两个单位长度的点表示的数是 _______(四).相反数只有符号不同的两个数,其中一个是另一个的相反数。
互为相反数的两个数和为零A. –2a B .2b C. 0 D. 任意有理数∙ 3 (1)如果a=-13,那么-a=______;(2)如果-a=-5.4,那么a=______;∙ 4 已知a、b都是有理数,且|a|=a,|b|=-b,则ab是() A.负数; B.正数; C.负数或零; D.非负数(五)倒数乘积是1的两个数互为倒数.下列各数,哪两个数互为倒数?8,,-1,+(-8),1,(六)绝对值一个数a的绝对值就是数轴上表示数a的点与原点的距离。
1)数a的绝对值记作︱a︱;若a>0,则︱a︱= ;2)若a<0,则︱a︱= ;若a =0,则︱a︱= ;3) 对任何有理数a,总有︱a︱≥0∙例∙1、|-8|= ; -|-5|= ;绝对值等于4的数____。
七年级数学上册有理数及其运算复习教案二
七年级数学上册有理数及其运算复习教案二篇4:七年级数学上册《有理数的混合运算》教案七年级数学上册《有理数的混合运算》教案教学目标1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力.教学重点和难点重点:有理数的混合运算.难点:准确地掌握有理数的运算顺序和运算中的符号问题.课堂教学过程设计一、从学生原有认知结构提出问题1.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-100-27; (15)(-1)101;(16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5).2.说一说我们学过的.有理数的运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.二、讲授新课前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.审题:(1)运算顺序如何?(2)符号如何?说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.篇5:《有理数》七年级数学上册教案教学目标【知识与能力目标】掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力。
【过程与方法目标】体验分类是数学上的常用处理问题的方法。
【情感态度价值观目标】要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史。
初一数学有理数的教案
初一数学有理数的教案教学目标:1. 理解有理数的定义和性质;2. 掌握有理数的加、减、乘、除运算;3. 能够运用有理数解决实际生活问题。
教学重点:1. 有理数的定义和性质;2. 有理数的四则运算;3. 有理数在实际问题中的应用。
教学准备:1. 教具:黑板、白板、彩色粉笔/白板笔;2. 教材:初中数学教材《数学世界》/其他初中数学教材;3. 媒体资源:电子演示文稿、多媒体教学软件。
教学步骤:【导入】1. 导入学生已经学过的知识,例如,正负数的概念和性质。
【展示】2. 通过教材的引导,向学生介绍有理数的定义和性质。
可以通过实例、图形等形式进行讲解,使学生对有理数有更直观的认识。
【讲解】3. 详细讲解有理数的加、减、乘、除运算法则。
引导学生理解有理数之间的运算规律和特点。
【练习】4. 给学生一些简单的计算练习题,巩固他们对有理数四则运算的掌握。
【拓展】5. 引导学生运用有理数解决实际生活问题。
通过给出一些实际问题,让学生分析、计算并给出答案。
可以通过小组合作、讨论等方式进行。
【总结】6. 总结本节课所学内容,强调有理数的重要性和应用价值,并给予肯定。
【作业】7. 布置相应的课后作业,要求学生通过阅读教材,进一步巩固有理数的相关知识。
【拓展活动】8. 可以安排一些拓展活动,例如有理数游戏、竞赛等,增加学生对有理数的兴趣,提高他们的运算能力。
【板书设计】将本节课的重点内容写在黑板/白板上,例如:有理数的定义和性质- 有理数的表示形式- 有理数的大小比较有理数的四则运算- 加法- 减法- 乘法- 除法有理数在实际问题中的应用【教学反思】通过本节课的教学,可以激发学生对有理数的兴趣,提高他们的计算能力,并且让他们明白有理数在实际生活中的应用价值。
同时,教师需要注重学生的思维能力和合作意识的培养,注重教学过程中的引导和启发。
人教版七年级上册数学复习教案:有理数运算复习2(乘除乘方)
3.对于算式 ,正确的说法是().
(A)3是底数,4是指数(B)3是底数,4是幂
(C) 是底数,4是幂(D) 是底数,4是指数
4.下列算式,计算结果为负数的是
(A) (B)
(C) (D)
5.下列结论:①若 ,则 , ;②若 ,则 , ;③若 ,
,则 ;④若 , ,则 ,其中,正确的个数是().
(A)1(B)2(C)3(D)4
学
情
分
析
知识和能力的储备
学生已经学习了有理数的加法运算,减法运算,乘法运算、除法运算法则,掌握了有理数加减乘除法混合运算的方法,为进一步进行复杂的混合运算做好了准备。
教学难点
如何按有理数的运算顺序,正确而合理地进行有理数混合运算
教学目标
学科维度
在有理数的混合运算中合理使用运算律简化运算.
掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算(以三步为主).
在运算过程中能合理使用运算律简化运算.
人教版七年级上册数学有理数的运算复习教案
有理数的运算罗央央【教学内容】有理数的运算【教学目标】1.知识与技能:通过复习,帮助学生梳理有理数运算的知识要点及知识间的联系。
2.过程与方法:培养学生归纳、整理知识的能力,掌握整理和复习知识的方法。
3.情感态度与价值观:通过整理复习,使学生感受到学习的快乐,使每个学生得到不同的发展。
【教学重点】1.有理数运算的法则2.运算定律3.准确数和近似数4.科学计数法【教学难点】有理数运算的原理和规则【教学方法】讲授法,演示法,整理法,练习法。
【教学用具】ppt,练习纸【教学流程】一、知识点的框架问:这一章之中,我们都学习了哪些知识?二、知识点的巩固(一)乘方1.加减乘除都是我们之前已经接触过的知识,这里第一次接触的是乘方,我们刚刚也说n个a相乘就是a的n次。
用符号表示就是2.那乘方当中有什么是需要我们注意的地方吗?正数的任何次幂都是正数.负数的奇次幂是负数,偶次幂是正数.0的任何次幂都是03.练习(二)科学技术法与近似数1.学了这些运算之后,还学习了什么?科学记数法:用字母N表示数,则N=a×10 n (1≤|a|<10,n是整数)。
关键是熟练掌握a和n的确定。
2.近似数精确度的两种形式:精确到哪一位有效数字(前0不算后0算)3.练习(1)用科学记数法记出下列各数:①月球的质量约是 7 340 000 000 000 000万吨;②银河系中的恒星数约是160 000 000 000个;③地球绕太阳转的轨道半径约是149 000 000千米.(2)(三)运算1.运算律2.有理数混合运算的运算顺序先算乘方,再算乘除,最后算加减。
如果有括号就先算括号里面的。
同级运算从左到右进行。
3.快问快答4.定义新运算5.常用的一些运算的注意事项或简便方法例1 计算:16+(-25)+24+(-32)解:原式= (16+24)+[(-25)+(-32)]= 40+(-57)= -17把正数和负数分别结合在一起计算就比较简便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学有理数复习教案七年级数学有理数复习教案1一、有理数的意义1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。
2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数3. 相反数知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4. 绝对值知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0. 若a”或“b>0>c B.b>0>a>cC.b6.两个有理数的和是正数,积是负数,则这两个有理数( )A.都是正数;B.都是负数;C.一正一负,且正数的绝对值较大;D.一正一负,且负数的绝对值较大。
7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13B.13或-13C.3或-3D.-3或-138. 大于-1999而小于2000的所有整数的和是()A.-1999B.-1998C.1999D.20009. 当n为正整数时,的值是()A.0B.2C.D.2或10. 补充下列表格:31 32 33 34 35 36 373 9 27 81 243 ……根据表格中个位数的规律可知,325的个位数是( )A.1B.3C.7D.9二、填空题(8小题,每小题2分,共16分)11. 的相反数是 .12.若水位上升20cm记作+20cm,则-15cm表示__________________.13.4个-3相乘写成乘方的形式是__________________.14.比较大小: .15. 在数轴上距2.5有3.5个单位长度的点所表示的数是.16. 用“偶数”或“奇数”填:当为_________时,17. 一根2米长的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,第五次后剩下的长度为______米.18. 观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形共有个.三、解答题(6小题,每小题5分,共30分)19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)÷6- ×(-4)21. (- + - )×(-12) 22. 16÷(-2)3-(- )×(-4)223. (用简便方法) 24. - -【-5 + (0.2× -1)÷(-1 )】25. 若│a│=2,b=-3,c是的负整数,求a + b-c的值.(6分)26.某牛奶厂在一条南北走向的大街上设有O,A,B,C四家特约经销店. A店位于O店的南面3千米处;B店位于O店的北面1千米处,C店在O店的北面2千米处.(1)请以O为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴.在数轴上分别表示出O,A,B,C的位置吗?(4分)(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到A,B,C三家经销店,最后回到O店,那么走的最短路程是多少千米?(4分)27.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:星期一二三四五每股涨跌 +2.20 +1.42 -0.80 -2.52 +1.30(1)星期三收盘时,该股票涨或跌了多少元?(4分)(2)本周内该股票的价是每股多少元?最底价是每股多少元?(2分)(3)已知小杨买进股票时付了1.5‰的手续费,卖出时还需要付成交额的1.5‰的手续费和1‰的交易税,如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何? (4分)七年级数学有理数复习教案2教学目标1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;3.通过加法运算练习,培养学生的运算能力。
教学建议(一)重点、难点分析本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算.由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。
了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.(二)知识结构(三)教法建议1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.2.关于“去括号法则”,只要学生了解,并不要求追究所以然.3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。
这时,称这个和式为代数和。
再例如-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。
代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。
如12-5+7 应变成 12+7-5,而不能变成12-7+5。
七年级数学有理数复习教案3一、素质教育目标(一)知识教学点1.掌握的三要素,能正确画出.2.能将已知数在上表示出来,能说出上已知点所表示的数.(二)能力训练点1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.对学生渗透数形结合的思想方法.(三)德育渗透点(四)美育渗透点通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.二、学法引导1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.三、重点、难点、疑点及解决办法1.重点:正确掌握画法和用上的点表示有理数.2.难点:有理数和上的点的对应关系。
四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计师生同步画,学生概括三要素,师出示投影,生动手动脑练习七、教学步骤(一)创设情境,引入新课师:大家知识温度计的用途是什么?生:温度计可以测量温度(出示投影1)三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.师:三个温度计所表示的温度是多少?生:2℃,-5℃,0℃.我们能否用类似温度计的图形表示有理数呢?这种表示数的图形就是今天我们要学的内容—(板书课题).【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.(二)探索新知,讲授新课1.的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:第一步:画直线定原点原点表示0(相当于温度计上的0℃).第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.让学生观察画好的直线,思考以下问题:(出示投影1)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义.学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.教师根据学生回答给予肯定或否定,纠正后板书.2.的定义:规定了原点、正方向和单位长度的直线叫做.向学生提出问题:上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是的依据.学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.3.尝试反馈,巩固练习请大家回答下列问题:(出示投影2)(1)有人说一条直线是一条,对不对?为什么?(2)下列所画对不对?如果不对,指出错在哪里?学生活动:学生思考,不准讨论,想好后举手回答.让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.【教法说明】此组练习的目的是巩固的概念.答案:(2)①缺原点,②缺正方向,③不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是,同时⑦为学面直角坐标系打基础.4.有理数与上点的关系通过刚才的学习我们知道所有的有理数都可以用上的点来表示.例1 画一条,并画出表示下列各数的点:1,5,0,-2.5, .学生练习:同学们在练习本上画一条,然后在上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.【教法说明】让学生动手自己画,有助于培养学生实际操作能力.例1是把给定的有理数用上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对概念的理解.(出示投影4)例2 指出上 A、B、C、D、E各点分别表示什么数?先让学生思考一会,然后学生举手回答解:A表示-3;B表示 ; C表示3;D表示 ;E表 .【教法说明】例2是让学生说出上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.5.尝试反馈,巩固练习(出示投影5)①说出下面上A、B、C、D、O、M各点表示什么数?②将-3,,1.5,-6,,2.25,,-5,1各数用上的点表示出来.【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.(三)归纳小结师:①是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合进行的.②掌握三要素,正确地画出,提醒同学们,所有的有理数都可用上的各点来表示,但是反过来不成立,即上的各点,并不是都表示有理数.以后再研究.八、随堂练习1.判断题(1)直线就是( )(2)是直线( )(3)任何一个有理数都可以用上的点来表示()(4)上到原点距离等于3的点所表示的数是+3( )(5)上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.( )2.画一条数轮,并画出表示下列各数的点,-5,0,+3.2,-1.4九、布置作业(-)必做题:课本第56页1、2.(二)选做题:课本第56页及第57页B组l.(三)思考题:①在数轮上距原点3个单位长度的点表示的数是_____________②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.十、板书设计。