精馏塔塔底温度控制方案

合集下载

精馏塔温度控制系统设计

精馏塔温度控制系统设计

精馏塔温度控制系统设计精馏塔是一种常见的化工设备,用于分离液体混合物中的成分。

精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。

下面将详细介绍精馏塔温度控制系统的设计原理和步骤。

精馏塔温度控制系统的设计原理是根据精馏塔内部的物料性质和工艺要求,通过控制介质的流量和温度来实现温度的稳定控制。

精馏塔内部通常分为多个段落,每个段落都有一个特定的温度要求。

温度的控制涉及到对塔釜的加热和冷却以及介质的流量调节。

1.确定控制目标:根据工艺要求和产品规格,确定需要控制的温度范围和偏差,以及控制精度要求。

2.确定控制方法:根据工艺特点和实际情况,选择适合的控制方法。

常见的控制方法包括比例控制、比例积分控制、比例积分微分控制等。

3.确定传感器:选择合适的温度传感器,用于测量精馏塔内部的温度。

常见的温度传感器包括热电偶、热敏电阻等。

4.确定执行器:根据控制目标和方法,选择合适的执行器。

常见的执行器包括电动调节阀、蒸汽控制阀等。

5.设计控制回路:根据控制方法和控制器的性能,设计控制回路。

控制回路包括传感器、控制器和执行器。

6.参数整定:根据实际情况和反馈调整,优化控制回路的参数。

参数整定通常包括比例增益、积分时间和微分时间等。

7.验证和优化:通过实际运行验证控制系统的性能,并根据实际情况进行反馈调整和优化。

总之,精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。

设计步骤包括确定控制目标、控制方法、传感器和执行器的选择、设计控制回路、参数整定以及验证和优化。

合理的设计能够使温度控制更加稳定和可靠。

精馏塔的温度控制

精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。

采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。

将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。

所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。

由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。

采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。

使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

关键词:提馏段;温度;串级控制;超驰控制目录第1章绪论 .................................................................................... 错误!未定义书签。

第2章课程设计的方案 ................................................................ 错误!未定义书签。

概述......................................................................................... 错误!未定义书签。

物料平衡关系 ................................................................. 错误!未定义书签。

精馏塔温度控制

精馏塔温度控制
为了提高精馏效率和保证产品纯度,我们采用灵敏 板温度调节器与再沸器加热蒸汽流量调节器串级控 制系统来对灵敏板温度进行控制。其中灵敏板温度 调节器是主调节器,再沸器加热蒸汽流量调节器是 副调节器。
❖ 主变量:塔釜温度 副变量:再沸腾蒸汽进 口流量 主控制器:温度控制器
副控制器:流量控制器
工艺对象:精馏塔
化工仪表自动化PPT
苯+甲苯精馏
串级控制系统就是两只调节器串联起来工作,其中 一个调节器的输出作为另一个调节器的给定值的系 统。整个系统包括两个控制回路,主回路和副回路。 副回路由副变量检测变送、副调节器、
调节阀和副过程构成;主回路由主变量检测变送、 主调节器、副调节器、调节阀、副过程和动。二次扰动:作用在副被控 过 程上的,即包括在副回路范围内的扰动。
工艺要求:控制塔内 温度.
控制规律的选择
主控制器:PID 副控制器:P
系统方框图
检测变送
❖ 精馏塔的主要干扰因素 为进料状态,即进料流 量、进料组分、进料温 度或热焓
执行器
▪ 气开式 ▪ 正作用 ▪ 主调节器:反作用 ▪ 副调节器:反作用
温度调节器
精馏段或提馏段的某些塔 板上,温度变化量最为显 著。或者说,这些塔板的 温度对外界干扰因素的反 映最灵敏,故将这些塔板 称之为灵敏板。将感温元 件安置在灵敏板上可以较 早觉察精馏操作所受到的 干扰;而且灵敏板比较靠 近进料口,可在塔顶馏出 液组成尚未产生 变化之前 先感受到进料参数的变动 并即使采取调节手段,以 稳定馏出液的组成。
谢谢观赏

化工精馏塔的PLC温度控制系统设计

化工精馏塔的PLC温度控制系统设计
Ab t a t Ai d a h i i a in t w rt mp r t r i a g ea lr e ie t i n i c l t o t l t i a e sr c : me tt e d s l t o e e e a u e w t a lr e d ly, g n ri t tl o h a a me a d d f u t o c n r ,h s p p r i o
0 引言
化工精馏塔是化工 过程装置的核 心组成部 分 , 而对于精 馏
塔控制来说温度 的控制 是重中之重 , 温度 的剧烈变化 会导致 分
离组分纯度降低 , 精馏 的效率 影 响极大 , 至导 致精 馏塔 无 对 甚 法正常运行 J 。而 P C的可靠性高 , L 编程简单 , 易于维护 , 以 可
d sg e mp r t r o t ls se b s d o L o h mia a t r . a c d o to s u e n te d si ain c lmn e in d a t e e au e c nr y tm a e n P C f ra c e c lfc o y C s a e c n rlwa s d i h it l t o u o l o tmp r t r o t ls se , tg a e a ai n P D wa s d i h i o t l r I i r v d t e d n mi c a a trsis o h e e au e c n r y tm i e r ls p r t I s u e n t e man c n r l . t mp o e h y a c h ce it ft e o n o oe r c p o e s te a a tb l y o e l a h n ewa lo s o g I a h e e tb e c n r l e o ma c n p a t e r c s ,h d pa i t ft o d c a g s as t n . t c iv d a s l o to r r n e i r ci . i h r a pf c Ke r s: L c s a e c n r l P D; i C y wo d P C; a c d o t ; I W n C o

精馏塔的控制要求

精馏塔的控制要求

精馏塔的控制要求2.1 质量指标混合物分离的纯度是精馏塔控制的主要指标。

在精馏塔的正常操作中,产品质量指标就必须符合预定的要求,即保证在塔底或塔顶产品中至少有一种组分的纯度达到规定的要求,其他组分也应保持在规定的范围内,因此,应当取塔底或塔顶产品的纯度作为被控变量。

但是,在线实时监测产品纯度有一定的困难,因此,大多数情况下是用精馏塔内的“温度和压力”来间接反应产品纯度。

对于二元精馏塔,当塔压恒定时,温度与成分之间有一一对应的关系,因此,常用温度作为被控变量。

对于多元精馏塔,由于石油化工过程中精馏产品大多数是碳氢化合物的同系物,在一定的塔压下,温度与成分之间仍有较好的对应关系,误差较小。

因此,绝大多数精馏塔当塔压恒定时采用温度作为间接质量指标。

2.2 平稳操作为了保证精馏塔的平稳操作,首先必须尽可能克服进塔之前的主要可控扰动,同时缓和一些不可控的主要扰动,例如,对塔进料温度进行控制、进料量的均匀控制、加热剂和冷却剂的压力控制等。

此外,塔的进出物料必须维持平衡,即塔顶馏出物与塔底采出物之和应等于进料量,并且两个采出量的变化要缓慢,以保证塔的平稳操作。

另外,控制塔内的压力稳定,也是塔平衡操作的必要条件之一。

2.3 约束条件为了保证塔的正常、平稳操作,必须规定某些变量的约束条件。

例如,对塔内气体流速的限制,塔内气体流速过高易产生液泛,流速过低会降低塔板效率;再沸器的加热温差不能超过临界值的限制等。

3精馏塔的温度控制精馏塔控制最直接的质量指标是产品的组分,但产品组分分析周期长,滞后严重,因而温度参数成了最常用的控制指标,即通过灵敏板进行控制[3]。

3.1 精馏段温度控制精馏段温控灵敏板取在精馏段的某层塔板处,称为精馏段温控。

适用于对塔顶产品质量要求高或是气相进料的场合。

调节手段是根据灵敏板温度,适当调节回流比。

例如,灵敏板温度升高时,则反映塔顶产品组成XD下降,故此时发出信号适当增大回流比,使XD上升至合格值时,灵敏板温度降至规定值。

精馏塔控制系统设计

精馏塔控制系统设计

精馏塔控制系统设计精馏塔控制系统是指用于控制精馏装置运行的自动化系统。

精馏塔是化工过程中常用的一种分离设备,用于将混合物按照不同组分进行分离,并获得精馏产品。

精馏塔控制系统设计的目标是实现对塔内温度、压力、流量等参数的自动调节,以保持塔的稳定运行和达到设定的产品品质和产量要求。

1.系统的安全性:由于精馏塔操作涉及到高温高压的条件,系统的安全性是首要考虑因素。

安全系统应该能及时发现并处理可能的危险情况,如超压、超温等,确保塔内的操作条件始终处于安全范围内。

2.过程控制策略:根据塔的物料性质和操作要求,设计合理的控制策略。

常见的控制策略包括温度控制、压力控制、流量控制等。

需要根据塔内的反应动力学特性和传热传质特性来优化控制策略,比如采用多变量控制或者模型预测控制等。

3.仪表设备选型:根据控制策略选择合适的仪表设备,如温度传感器、压力传感器、流量计等。

仪表设备应具有高精度、稳定性好和耐高温高压等特点,以满足精馏塔操作的要求。

4.控制系统架构设计:根据控制策略和仪表设备的选择,设计控制系统的架构。

控制系统通常包括传感器、执行器、控制器和通信网络等部分。

传感器用于测量塔内的物理参数,执行器用于调节塔内的操作条件,控制器用于处理传感器的测量信号并确定下一步的控制策略,通信网络用于传输和共享数据。

5.监控系统设计:精馏塔的操作过程需要实时监控,及时发现和处理异常情况。

监控系统应能对塔内各项参数进行实时显示和记录,并提供报警、故障诊断和数据分析等功能。

监控系统可以采用人机界面、数据采集系统、故障诊断系统等多种形式。

在精馏塔控制系统的设计中,需要充分考虑各种可能的操作变量、工艺的稳定性、产量和能耗等方面的要求。

通过合理的控制系统设计,可以实现对精馏塔的准确控制,提高产品质量和产量,降低能耗和运行成本。

精馏塔操作规程

精馏塔操作规程

精馏塔操作规程
《精馏塔操作规程》
一、操作前准备
1. 确认精馏塔的设备完好,无渗漏问题。

2. 检查精馏塔的进料、出料管道是否畅通。

3. 检查控制系统的运行状态和设定参数。

二、启动操作
1. 按照操作流程依次启动加热炉、回收冷却器、冷凝器和冷却水。

2. 确认塔顶和塔底的温度、压力参数符合设定要求。

三、进料操作
1. 缓慢开启进料阀门,控制进料流量。

2. 注意观察塔内的液位和温度,及时调整进料流量和温度。

四、提馏操作
1. 逐渐提高加热炉温度,控制塔内温度逐渐升高。

2. 调整回收冷却器和冷凝器的冷却水流量,确保提馏物冷凝成液体。

五、出料操作
1. 根据产品规格和设定要求,调整塔顶压力和温度,逐步提高产品出料流量。

2. 注意观察出料液体的流速和颜色,确保产品质量。

六、停车操作
1. 逐步减小进料流量,调整加热炉温度,准备停车。

2. 关闭加热炉、回收冷却器、冷凝器和冷却水,停止进料。

七、安全措施
1. 在操作中,严格按照规程操作,保持设备和人员安全。

2. 注意观察精馏塔的运行状态,及时发现并解决问题。

八、清洁与维护
1. 停车后,对精馏塔进行清洁和检查,保持设备的良好状态。

2. 定期进行设备的维护保养,延长设备的使用寿命。

以上即为《精馏塔操作规程》,希望操作人员能严格按照规程操作,确保生产安全和产品质量。

精馏塔底温度影响因素及控制方法总结解读

精馏塔底温度影响因素及控制方法总结解读

精馏塔底温度影响因素及控制方法总结
1、影响因素:
1.1 进料及组分变化,如进料减少,重组分杂质增大,则塔底温度升高;
1.2 回流量级回流温度的的变化,如回流量增大,回流温度降低,则塔底温度降低;
1.3 塔液面过高或满,塔底温度提不起来;
1.4 塔底液面过低,引起温度不稳定或者升高;
1.5 塔压的波动,引起温度的变化,当塔压突然升高时,底温会随之升高又复而下降;
1.6 蒸汽压力的变化,蒸汽压力降低,塔底温度下降;
1.7 进换热器温度低,塔底温度下降;
1.8 再沸器管程堵或漏,塔底温度提不起来;
1.9 塔底温度控制失灵,引起塔底温度不稳。

2、调节方法:
2.1 稳定进料,减少原料中重组分杂质的组分,或调整前塔的操作,减少下塔进料中重组分杂质的组分;
2.2 降低回流量,提高回流温度,稳定回流比;
2.3 增大塔底踩出,或减少进料量和回流量;
2.4 减少塔底采出,使塔底采出液面控制在工艺指标范围内;
2.5 稳定塔底压力;
2.6 联系调度提高蒸汽压力;
2.7 提高预热器进气温度,使之平稳;
2.8 待停工处理再沸器;
2.9 塔底温度改为手动控制,或用副线或现场指示控制,并联系仪表处理。

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制
精馏塔通过灵敏板进行温度控制的方法大致有以下几种。

(1)精馏段温控灵敏板取在精馏段的某层塔板处,称为精馏段温控。

适用于对塔顶产品质量要求高或是气相进料的场合。

调节手段是根据灵敏板温度,适当调节回流比。

例如,灵敏板温度升高时,则反映塔顶产品组成zn下降,故此时发出信号适当增大回流比,使XD上升至合格值时,灵敏板温度降至规定值。

(2)提馏段温控灵敏板取在提馏段的某层塔板处,称为提馏段温控。

适用于对塔底产品要求高的场合或是液相进料时,其采用的调节手段是根据灵敏板温度,适当调节再沸器加热量。

例如,当灵敏板温度下降时,则反映釜底液相组成Xw变大,釜底产品不合格,故发出信号适当增大再沸器的加热量,使釜温上升,以便保持工w的规定值。

(3)温差控制当原料液中各组成的沸点相近,而对产品的纯度要求又较高时不宜采用一般的温控方法,而应采用温差控制方法。

温差控制是根据两板的温度变化总是比单一板上的温度变化范围要相对大得多的原理来设计的,采用此法易于保证产品纯度,又利于仪表的选择和使用。

精馏塔温度控制

精馏塔温度控制

精馏塔温度控制
精馏塔是指在酒精通过以上两塔蒸馏后,酒精浓度还需要进一步的提高,杂质还需进一步的排除,精馏塔的目的就是通过加热蒸发、冷凝、回流这些程序后,起到上除头级杂质,中提杂醇油,下排尾级杂质的作用,最终获得符合质量标准的成品——酒精。

蒸馏塔的作用并不只局限于提纯酒精。

蒸馏塔主要是为了分离混合液体,利用不同液体在不同条件下,如温度不同,挥发性(沸点)不同的特性,对液体进行分离,从而达到液体提纯效果。

对精馏塔的塔顶温度一般应控制在79℃,塔底温度一般控制在105—107℃,塔中温度在取酒正常的情况下一般取在88—92℃之间。

精馏塔上的1*冷凝器水温应在60—65℃,2*冷凝器应在35—40℃,最后一个冷凝器温度应不低于25℃。

精馏塔的控制

精馏塔的控制

精馏塔的控制(一)掌握要点及要求1、掌握简单精馏塔的控制问题与分解方法;2、掌握精馏塔的静态特性;3、了解精馏塔对象中操作变量对主要被控变量的动态影响程度与速度;4、针对塔顶、塔底产品质量不同的要求,掌握基本控制系统的分析与设计方法;5、了解精馏塔的复杂控制与先进控制方法6.1概述6.1.1精馏塔控制要求及影响因素1.操作要求(1)产品质量指标塔顶或塔底产品之一保证合乎规定的纯度要求,而另一个产品维持在某一规定的范围内。

2.物料平衡(1)馏出液和备液的平均采出量之和应等于平均进料量,而且缓慢变化。

(2)塔内及塔顶、塔底容器的蓄热量应介于规定的上下限之间(3)保证高产优质,低消耗,如为保证塔顶产品纯度加大回流,但有消耗大量的蒸汽,物料平衡一般采用均匀、比值控制系统。

3.束条件:(1)塔内蒸汽速度既不能过高,也不能过低,过高引起液泛,过低塔板效率低。

(2)对再沸器的加热温差,加热蒸汽冷凝量和冷凝器冷却温差都有一定限制。

9不能超过临界温差)临界温差:由核状沸腾转为膜状沸腾时的温差,单位时间,单位面积内所传递热量称为临界热负荷液体在管外大容积内沸腾,膜系数与温差关系:随着温度差增加,汽化核数和气泡长大速率也增加,以致大量的气泡在加热表面层集合,形成蒸汽膜,热量必须通过此膜传递到液体当中去,由于蒸汽导热系数小,从而传热困难,以至膜系数下降。

工业生产一般维持在核状沸腾区操作,超过该区,进入膜状沸腾回烧坏传热管4、影响塔操作的干扰因素:(1)塔压波动(2)进料量F (3)进料成分Ef (4)进料温度Tf(5)进料状态①气相②液相③汽/液混合(6)热剂或蒸汽 Ps、Gs (7)汽剂或进口温度Gw、Tw(8)环境温度6.1.2精馏塔各干扰因素的分析及调节手段的确定1.塔压波动对操作影响及调节方法(1)塔压波动对操作影响(1)塔压波动影响汽液平衡(2)塔压波动影响物料平衡P↑→F↓ P↑→D↑(3)增加波动破坏X-T关系,压力低,沸点低(2)影响压力波动因素(3)控制塔压办法:塔压控制方法通常根据塔动作情况,可分为:常压塔、减压塔和加压塔分别控制。

精馏塔操作中常见的几大问题与控制办法

精馏塔操作中常见的几大问题与控制办法

精馏塔操作中常见的几大问题与控制办法精馏技术广泛应用于各类化学品的生产中,而精馏塔在化工厂也是较为常见的装置之一。

而在实际操作中,大家都会遇到各种各样问题,现与大家分享一下精馏操作中常见的几种问题与控制办法。

1精馏操作中怎样调节塔的压力?影响塔压变化的因素是什么?任何一个精馏塔的操作,都应把塔压控制在规定的指标内,以相应地调节其它参数。

塔压波动过大,就会破坏全塔的物料平衡和气液平衡,使产品达不到所要求的质量。

所以,许多精馏塔都有其具体的措施,确保塔压稳定在适宜范围内。

对于加压塔的塔压,主要有以下两种调节方法:1. 塔顶冷凝器为分凝器时,塔压一般是靠气相采出量来调节的。

在其它条件不变的情况下,气相采出量增大,塔压下降;气相采出量减小,塔压上升。

2. 塔顶冷凝器为全凝器时,塔压多是靠冷剂量的大小来调节,即相当于调节回流液温度。

在其它条件不变的前提下,加大冷剂量,则回流液的温度降低,塔压降低;若减少冷剂量,回流液温度上升,塔压上升。

对于减压精馏塔的压力控制,主要有以下两种方法:1. 当塔的真空借助于喷射泵获得时,可以用调节塔顶冷凝器之冷剂量或冷剂温度从而改变尾气量的方法来调节塔的真空度。

当被分离的物料允许与空气接触时,在此控制方案中,蒸汽喷射泵在最大的能力下工作,调节阀装在通大气的管线上,用调节阀开度的大小,调节系统的尾气抽气量,从而达到调节塔的真空度的目的。

2. 当采用电动真空泵抽真空时,调节阀装在真空泵的回流管线上,用调节阀开度的大小来调节系统的尾气抽出量,从而调节塔的真空度。

对于常压塔的压力控制,主要有以下三种方法:1. 对塔顶压力在稳定性要求不高的情况下,无需安装压力控制系统,应当在精馏设备(冷凝器或回流罐)上设置一个通大气的管道,以保证塔内压力接近于大气压。

2. 对塔顶压力的稳定性要求较高或被分离的物料不能和空气接触时,塔顶压力的控制可采用加压塔塔压的控制方法。

3. 用调节塔釜加热蒸汽量的方法来调节塔釜的气相压力。

精馏塔温度-流量控制

精馏塔温度-流量控制
0.1~25分(×10)
微分时间(D):断;0.04~10分
⑧负载阻抗:250Ω~750Ω
⑨手动切换特性:自动↔手动1↔手动2
⑩供电电压:24V±0.5%,DC
消耗功率:光柱不大于10W
表头不大于5W
工作条件:周围环境温度5~400C
空气相对湿度10~75%
无腐蚀气体
重量:约6.5公斤
接线端子图(见图2-5)
引言
精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。
主控制器的作用方向
主调节器的作用方向,应在副调节器的作用确定以后,再根据工艺要求来确定。因为副调节器直接控制执行器,要保证执行器正确动作。在主调节器输入偏差增大(或减小)时,要求主调节的输出信号增大(或减小),因此主调节的作用为正向作用。
3.3本精馏塔选择正作用主副调节器
要用到两个调节器,这两个调节器都选用DDZ—Ⅲ型电动调节器,具体型号为DTZ—2100
影响产品质量指标和平稳生产的主要干扰因素有:①进料流量( F)的波动;②进料成分( ZF)的变化;③进料温度( TF)和进料热焓值( QF)的变化;④再沸器加热剂输入热量的变化;⑤冷却剂在冷凝器内吸收热量的变化;⑥环境温度的变化。

精馏塔的操作规程

精馏塔的操作规程

精馏塔的操作规程一、操作要点:1、循环水流量不低于60m³/h。

2、真空压力控制在-0.07MPa—-0.09MPa。

3、蒸汽总压控制0.4MPa左右,实际使用压力在0.1-0.2MPa。

二、工艺流程:1、控制真空-0.08MPa,冷凝水正常开启。

2、中控室远程控制蒸汽阀,控制温度、压力、回流、进料。

缓慢开蒸汽阀,打开加热器放水阀放水后关闭,打开疏水器入口阀,疏水器正常使用,塔底液位开始下降,EDC开始汽化,关闭出料阀,进行全回流操作。

当塔顶温度在(45℃—52℃)左右时,逐渐减少回流,回流控制在(1.2m³/h),液位降低时,通过流量计进料,塔顶真空压力、温度稳定后,控制回流和进料流量,调整蒸汽压力,使塔中温度保持正常,取样分析,合格后开出料阀门,向干燥器放料,流入成品罐。

3、排液操作。

当塔底液位计接近满时(1500mm),缓慢开启残料罐阀门,向残料罐排液,当液位降至时(750mm)关闭阀门,控制塔底液位不能从平衡管道溢入残料罐。

三、工艺指标:1、蒸汽总压力:≥0.4MPa,压缩空气≥0.2MPa。

2、塔内液位:—之间(750mm—1500mm)。

3、真空压力:-0.07MPa—-0.09MPa。

4、温度:底温90℃—100℃(1#—2#塔),3#塔:85℃—95℃,4#—5#塔:80℃—90℃。

中温:1#—2#塔:60℃—80℃;3#塔:65℃—85℃;4#—5#塔:70℃—85℃。

顶温:1#—2#塔:55℃—63℃;3#塔:50℃—60℃;4#—5#塔:45℃—55℃。

5、蒸汽压力控制在0.1—0.2MPa。

四、开车前的准备工作1、检查各操作阀门和仪表开关状态是否正确灵敏,是否处于完好状态。

2、检查半成品储罐情况。

3、检查蒸汽供应是否正常。

4、循环水系统是否正常,真空压力是否正常。

五、正常开车1、中控室利用远程系统打开进料阀门,通过流量计进料,当液位达到时(1500mm),关闭进料阀。

精馏塔的温度控制

精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。

采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。

将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。

所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。

由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。

采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。

使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

关键词:提馏段;温度;串级控制;超驰控制目录第1章绪论 (1)第2章课程设计的方案 (2)2.1概述 (2)2.1.1 物料平衡关系 (2)2.1.2 能量平衡关系 (3)2.2设计方案 (3)2.2.1控制方案类型 (3)2.2.2控制方案的选择 (4)第3章系统各仪表选择 (9)3.1检测变送器的原理 (9)3.1.1 温度变送器的选择 (9)3.1.2 流量变送器的选择 (10)3.2执行器的选择 (11)3.3调节器的选择 (12)3.4调节器与执行器、检测变送器的选型 (14)电磁流量计 (14)第4章系统仿真 (15)4.1串级控制系统MATLAB仿真分析 (15)第5章课程设计总结 (18)第6章参考文献 (20)第1章绪论精馏塔是化工生产中分离互溶液体混合物的典型分离设备。

精馏塔提馏段温度控制方案

精馏塔提馏段温度控制方案

精馏塔提馏段温度控制方案
精馏塔的提馏段温度控制方案可以通过以下几个步骤实施:
1. 设置目标温度:根据产品的蒸汽化温度和沸点等物理性质,确定塔顶的目标温度。

这个温度应该足够高,使得目标组分能够从原料中蒸发出来。

2. 监测温度:在塔顶和其他关键位置安装温度传感器,监测塔内各个位置的温度变化,并将数据传输给温度控制系统。

3. 确定控制策略:根据温度传感器的监测数据,控制系统分析和计算,确定合适的控制策略。

常见的策略包括比例控制、比例积分控制和比例积分微分控制等。

4. 调节操作:根据控制策略的结果,控制系统会输出相应的控制信号,调节塔顶的加热或降温装置,以达到目标温度。

5. 反馈调整:监测实际温度和目标温度之间的偏差,并根据调整的结果进行反馈调整,进一步优化控制策略。

需要注意的是,精馏塔提馏段温度控制方案还需要考虑其他因素,如进料流量、冷却介质温度等。

此外,不同的塔设计和操作条件可能需要不同的控制策略,因此具体的温度控制方案应根据具体情况进行定制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精馏塔塔底温度控制方案
精馏塔是化工生产中常用的一种分离设备,主要用于将混合物中的各组分按照其沸点的不同进行分离。

在精馏过程中,塔底温度的控制是非常重要的,因为它直接影响到产品的纯度和收率。

本文将对精馏塔塔底温度控制方案进行详细的介绍。

一、精馏塔塔底温度控制的重要性
1. 保证产品质量:精馏塔塔底温度的稳定与否直接关系到产品的质量。

如果塔底温度过高,会导致产品中轻组分的损失,降低产品的纯度;反之,如果塔底温度过低,会导致产品中重组分的残留,影响产品的性能。

2. 提高生产效率:合理的塔底温度控制可以提高精馏过程的效率,减少能源消耗,降低生产成本。

3. 保证生产安全:精馏塔塔底温度的波动可能导致操作不稳定,甚至引发安全事故。

因此,对塔底温度进行有效的控制是非常必要的。

二、精馏塔塔底温度控制方案
1. 串级控制方案
串级控制是一种常见的温度控制方案,它通过将主控制器的输出作为副控制器的设定值,实现对温度的精确控制。

具体实施步骤如下:
(1)选择主控制器和副控制器:根据精馏塔的特点和工艺要
求,选择合适的控制器类型,如PID控制器、模糊控制器等。

(2)设定主控制器的参数:根据工艺要求和实际操作经验,设定主控制器的比例、积分和微分参数。

(3)设定副控制器的参数:根据主控制器的输出和塔底温度的变化趋势,设定副控制器的比例、积分和微分参数。

(4)实施串级控制:将主控制器的输出作为副控制器的设定值,实现对塔底温度的精确控制。

2. 前馈控制方案
前馈控制是一种基于模型的控制方案,它通过预测塔底温度的变化趋势,提前调整控制参数,以实现对塔底温度的快速响应。

具体实施步骤如下:
(1)建立精馏塔的温度模型:根据精馏塔的工作原理和操作条件,建立精馏塔的温度模型。

(2)设计前馈控制器:根据温度模型,设计前馈控制器,实现对塔底温度的预测和控制。

(3)实施前馈控制:将前馈控制器的输出与主控制器的输出相结合,实现对塔底温度的快速响应和精确控制。

3. 自适应控制方案
自适应控制是一种基于数据驱动的控制方案,它通过实时监测塔底温度的变化,自动调整控制参数,以实现对塔底温度的稳定控制。

具体实施步骤如下:
(1)收集历史数据:收集精馏塔的操作数据,包括塔底温度、操作条件等。

(2)建立模型:根据历史数据,建立精馏塔的温度模型和控制模型。

(3)设计自适应控制器:根据模型,设计自适应控制器,实现对塔底温度的实时监测和自动调整。

(4)实施自适应控制:将自适应控制器与主控制器相结合,实现对塔底温度的稳定控制。

三、精馏塔塔底温度控制的优化策略
1. 优化控制器参数:通过对控制器参数的实时调整,实现对塔底温度的精确控制。

2. 优化操作条件:根据精馏塔的特点和工艺要求,优化操作条件,如进料流量、回流比等。

3. 优化设备结构:通过改进精馏塔的结构设计,提高传热效率,降低能耗。

4. 引入先进控制技术:如模糊控制、神经网络控制等,提高控制系统的性能。

精馏塔塔底温度控制是精馏过程的关键,对产品质量、生产效率和生产安全具有重要意义。

本文介绍了三种常见的塔底温度控制方案:串级控制、前馈控制和自适应控制,并提出了优化策略。

实际应用中,可以根据精馏塔的特点和工艺要求,选择合适
的控制方案,并通过优化控制器参数、操作条件、设备结构和引入先进控制技术等手段,实现对塔底温度的精确控制和稳定控制。

相关文档
最新文档