数据挖掘 填空题

合集下载

《数据挖掘》模拟卷

《数据挖掘》模拟卷
答:面向属性归纳的基本思想是:首先使用关系数据库查询收集任务相关的数据;然后通过考察任务相关数据中每个属性的不同值的个数,进行概化(通过属性删除或者属性概化)。聚集通过合并相等的广义元组,并累计他们相应的计数值进行。这压缩了概化后的数据集合。结果广义关系可以映射到不同形式,如图表或规则,提供用户。(3分)
答:具有递减支持度的多层关联规则挖掘中使用的搜索策略包括:
逐层独立:完全的宽度搜索,没有频繁项集的背景知识用于剪枝。考察每一个节点,不管其父节点是否频繁。特点是条件很松,可能导致在低层考察大量非频繁的项,找出一些不重要的关联;(2分)
层交叉k-项集过滤:一个第i层的k-项集被考察,当且仅当它在第(i-1)层的对应父节点的k-项集是频繁的。特点是限制太强,有些有价值的模式可能被该方法过滤掉;(2分)
(a) 给定节点的所有样本属于同一类;
(b) 没有剩余属性可以用来进一步划分样本,在此情况下,使用多数表决所得的类编号将节点转化为树叶。
(c) 如果某个分枝没有样本,则以其划分前的训练样本的多数类创建一个树叶。
(2)判定树buys_PCGame如下所示:

请根据以上结果绘制出判定树buys_PCGame。(4分)
数据挖掘》模拟卷答案
一、填空题(每格1分,共20分)
1、划分方法、层次方法、基于密度的方法。
2、星型模式、雪花模式和事实星座模式。
3、描述性的数据挖掘和预测性的数据挖掘。
4、不物化、全物化和部分物化。
5、数据库技术、统计学、机器学习。
B、选择(select)
C、切片(slice)
D、转轴(pivot)
9.假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是( )

数据挖掘习题答案

数据挖掘习题答案

数据挖掘习题答案数据挖掘习题答案数据挖掘作为一门重要的技术和方法,广泛应用于各个领域。

在学习数据挖掘的过程中,习题是不可或缺的一部分。

通过解答习题,我们可以更好地理解和掌握数据挖掘的原理和应用。

以下是一些常见的数据挖掘习题及其答案,供大家参考。

一、选择题1. 数据挖掘的目标是什么?A. 发现隐藏在大数据中的模式和关联B. 提供数据存储和管理的解决方案C. 分析数据的趋势和变化D. 优化数据的存储和传输速度答案:A. 发现隐藏在大数据中的模式和关联2. 下列哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 回归D. 排序答案:D. 排序3. 数据挖掘的过程包括以下几个步骤,哪个是第一步?A. 数据清洗B. 数据集成C. 数据转换D. 数据选择答案:B. 数据集成4. 下列哪个不是数据挖掘中常用的算法?A. 决策树B. 支持向量机C. 朴素贝叶斯D. 深度学习答案:D. 深度学习5. 下列哪个不是数据挖掘的应用领域?A. 金融B. 医疗C. 娱乐D. 政治答案:D. 政治二、填空题1. 数据挖掘是从大量数据中发现________和________。

答案:模式,关联2. 数据挖掘的主要任务包括分类、聚类、回归和________。

答案:预测3. 数据挖掘的过程包括数据集成、数据清洗、数据转换和________。

答案:模式识别4. 决策树是一种常用的________算法。

答案:分类5. 数据挖掘可以应用于金融、医疗、娱乐等多个________。

答案:领域三、简答题1. 请简要介绍数据挖掘的主要任务和应用领域。

答:数据挖掘的主要任务包括分类、聚类、回归和预测。

分类是将数据集划分为不同的类别,聚类是将数据集中相似的样本归为一类,回归是根据已有的数据预测未知数据的值,预测是根据已有的数据预测未来的趋势和变化。

数据挖掘的应用领域非常广泛,包括金融、医疗、娱乐等。

在金融领域,数据挖掘可以用于信用评估、风险管理等方面;在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面;在娱乐领域,数据挖掘可以用于推荐系统、用户行为分析等方面。

数据挖掘考试题库

数据挖掘考试题库

13. 预测型知识:是根据时间序列型数据,由历史的和当前的数据 去推测未来的数据,也可以认为是以时间为关键属性的关联知 识。
14. 偏差型知识:是对差异和极端特例的描述,用于揭示事物偏离 常规的异常现象,如标准类外的特例,数据聚类外的离群值 等。
15. 遗传算法:是一种优化搜索算法,它首先产生一个初始可行解 群体,然后对这个群体通过模拟生物进化的选择、交叉、变异 等遗传操作遗传到下一代群体,并最终达到全局最优。
作。 22. 传统的决策支持系统是以 和 驱动,而新决策支持系统
则是以 、建立在 和 技术之上。 23. OLAP的数据组织方式主要有 和 2种。 24. SQL Server2000的OLAP组件叫 ,OLAP操作窗口叫 。 25. BP神经网络由 、 以及一或多个 结点组成。 26. 遗传算法包括 、 、 3个基本算子。 27. 聚类分析的数据通常可分为区间标度变
等。 6. 评价关联规则的2个主要指标是 和 。 7. 多维数据集通常采用 或雪花型架构,以 表为中心,连
接多个 表 。 8. 决策树是用 作为结点,用 作为分支的树结构。 9. 关联可分为简单关联、 和 。 10. BP神经网络的作用函数通常为 区间的 。 11. 数据挖掘的过程主要包括确定业务对象、 、 、 及
和低层管理人员、对基本数据进行查询和增、删、改等的日常事务 处理。OLAP即联机分析处理,是在OLTP基础上发展起来的、以数据 仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支 持服务。
OLTP和OLAP的主要区别如下表:
OLTP
OLAP
数据库数据
数据库或数据仓库数据
细节性数据
综合性数据
知识同化等几个步骤。 12. 数据挖掘技术主要涉及 、 和 3个技术领域。 13. 数据挖掘的主要功能包括 、 、 、 、趋势分

数据挖掘考试题

数据挖掘考试题

数据挖掘考试题一.选择题1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( )2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。

“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。

A 分类B 预测 C关联规则分析 D聚类4.关于K均值和DBSCAN的比较,以下说法不正确的是( )A.K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。

B.K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。

C.K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇’s Method说法错误的是:( )C.对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差D.当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似6.下列关于层次聚类存在的问题说法正确的是:( )A.具有全局优化目标函数B.Group Average擅长处理球状的簇C.可以处理不同大小簇的能力D.Max对噪声点和离群点很敏感7.下列关于凝聚层次聚类的说法中,说法错误的事:( )A.一旦两个簇合并,该操作就不能撤销2m O8.规则{牛奶,尿布}→{啤酒}的支持度和置信度分别为:( )TID项 集 12345{面包,牛奶} {面包,尿布,啤酒,鸡蛋} {牛奶,尿布,啤酒,可乐} {面包,牛奶,尿布,啤酒} {面包,牛奶,尿布,可乐}9.下列( )是属于分裂层次聚类的方法。

10.对下图数据进行凝聚聚类操作,簇间相似度使用MAX 计算,第二步是哪两个簇合并:( )A.在{3}和{l,2}合并B.{3}和{4,5}合并C.{2,3}和{4,5}合并D. {2,3}和{4,5}形成簇和{3}合并二.填空题:1. 属性包括的四种类型: 、 、 、 。

数据挖掘与分析考试试题

数据挖掘与分析考试试题

数据挖掘与分析考试试题一、选择题(每题 3 分,共 30 分)1、以下哪个不是数据挖掘的主要任务?()A 分类B 聚类C 数据清洗D 关联规则挖掘2、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以3、决策树算法中,用于选择最佳分裂特征的指标通常是()A 信息增益B 基尼系数C 准确率D 召回率4、以下哪个不是聚类算法?()A KMeans 算法B 层次聚类算法C 朴素贝叶斯算法D DBSCAN 算法5、数据挖掘中的关联规则挖掘,常用的算法是()A Apriori 算法B C45 算法C KNN 算法D SVM 算法6、以下哪种数据预处理方法可以用于将连续型特征转换为离散型特征?()A 标准化B 归一化C 分箱D 主成分分析7、在构建分类模型时,如果数据集存在类别不平衡问题,以下哪种方法可以解决?()A 过采样B 欠采样C 调整分类阈值D 以上方法都可以8、以下哪个指标常用于评估分类模型的性能?()A ROC 曲线下面积B 均方误差C 平均绝对误差D 决定系数9、对于高维数据,以下哪种方法可以进行降维?()A 因子分析B 线性判别分析C 主成分分析D 以上方法都可以10、以下关于数据挖掘的描述,错误的是()A 数据挖掘可以发现隐藏在数据中的模式和关系B 数据挖掘需要大量的数据C 数据挖掘的结果一定是准确无误的D 数据挖掘是一个反复迭代的过程二、填空题(每题 3 分,共 30 分)1、数据挖掘的一般流程包括:________、________、________、________、________和________。

2、分类算法中,常见的有________、________、________等。

3、聚类算法中,KMeans 算法的基本思想是:________。

4、关联规则挖掘中,常用的度量指标有________、________等。

数据挖掘原理与算法试卷

数据挖掘原理与算法试卷

数据挖掘原理与算法试卷数据挖掘原理与算法试卷一、选择题1.下列哪个不是数据挖掘任务?A.分类B.聚类C.关联规则D.排序2.下列哪种分类算法不属于监督学习?A.决策树B.朴素贝叶斯C.聚类D.KNN3.下列哪个不是评价分类器性能的指标?A.精确率B.召回率C.准确率D.光滑度4.下面哪种聚类算法不属于无监督学习?A.K-meansB.DBSCANC.GBDTD.层次聚类5.下面哪个不是数据挖掘的四个阶段之一?A.数据预处理B.模型构建C.数据挖掘D.数据可视化二、填空题1.聚类算法通过____来判断相似性,将对象划分为不同的组。

2.项集的支持度定义为____。

3.决策树的生成主要包括构造树的过程和____过程。

4.分类器性能的指标包括准确率、召回率、精确率和____。

5.交叉验证的目的是为了评估模型的____。

三、简答题1.数据挖掘的四个阶段分别是什么,各阶段的作用是什么?2.请简要介绍K-means算法的流程及其优缺点。

3.请简述决策树生成的过程。

4.请简述分类算法的评价指标。

5.请简述支持向量机(SVM)算法的原理。

四、论述题1.请探讨数据预处理的作用及其过程中常见的预处理方法。

2.请分析决策树算法的优缺点。

3.请讲述Random Forest算法的基本思想和特点。

4.请简述关联规则挖掘的流程及其应用场景。

5.请论述KNN算法的基本思想及其在分类任务中的应用。

五、编程题1.请用Python实现K-means算法,并用Iris数据集进行测试。

2.请用Python实现Apriori算法,并用Market Basket数据集进行测试。

3.请用Python实现决策树算法,并用Iris数据集进行测试。

4.请用Python实现SVM算法,并用Iris数据集进行测试。

5.请用Python实现KNN算法,并用Iris数据集进行测试。

文末总结本试卷涉及数据挖掘的基础理论、常见算法和编程实现,包括选择题、填空题、简答题、论述题和编程题等不同类型的题目。

(完整word版)数据挖掘填空题复习资料(word文档良心出品)

(完整word版)数据挖掘填空题复习资料(word文档良心出品)
23.非监督离散化分为等宽,等频率,聚类方法
27数据集中任何两个对象之间的距离构成的矩阵称为距离矩阵
四、
1.区别分类与回归的关键特征是类标号必须是离散属性。
2.分类的两个主要目的是进行描述性建模和预测性建模。
3.分类模型的误差可分为训练误差和泛化误差。
4.训练误差也称再带入误差或表现误差,是在训练记录上误分类样本比例。泛化误差是模型在未知记录上的期望误差。
5.一个号的分类模型不仅要能够很好地拟合训练数据,而且对未知样本也要能准确地分类。即一个号的分类模型必须具有低训练误差和低泛化误差。
6.在分类模型评估的保持方法中,将被标记的原始数据划分成两个不相交的集合,分别称为训练集和检验集。在训练数据集归纳分类模型,在检验集上评估模型的性能。
7.在分类模型评估的K折交叉验证方法中,吧数据分为大小相同的K份,在每次运行,选择其中一份作检验集,而其余的全作为训练集。
5.提取分类规则的方法有直接方法和间接方法两大类。
6.提取分类规则的直接方法是指把属性空间分为较小的子空间以便于属于一个子空间的所有记录可以使用一个分类规则进行分类。
7.提取分类规则的间接方法是指使用分类规则较为复杂的分类模型提供简洁的描述。
8.规则的排序方案有基于规则的排序方案和基于类的排序方案两种。
提取分类规则的间接方法是指使用分类规则较为复杂的分类模型提供简洁的描述
关联规则挖掘问题可以划分为频繁项集产生和规则的产生两个子问题
可以降低生产频繁项集的计算复杂度两种方法为减少候选项集的数目和减少比较次数
K-候选集Ck产生的方法有:蛮力方法, 和
Apriori算法有两个致命的性能瓶颈。1.他们分别是0/1负载很大,需要多次扫描事物数据库,2.可能产生庞大的候选集

数据挖掘考试题库及答案

数据挖掘考试题库及答案

数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。

答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。

答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。

答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。

答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。

答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。

()答案:错误12. 数据挖掘是数据仓库的一部分。

()答案:正确13. 决策树算法适用于处理连续属性的分类问题。

()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。

()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。

()答案:错误四、简答题16. 简述数据挖掘的主要任务。

答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。

17. 简述决策树算法的基本原理。

答案:决策树算法是一种自顶向下的递归划分方法。

它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。

数据挖掘模拟题.

数据挖掘模拟题.

数据挖掘模拟题
一、名词解释
1.数据挖掘
2.数据仓库
3.概念分层
4.强规则
二、填空题
1. 是表的集合,每个表都赋予一个唯一的名字。

2.数据仓库用结构建模。

其中,每一维对应于模式中的一个或一组属性,每个单元存放某个聚集度量值。

3.类/概念描述可以用,,方法得到。

4. 通过一个维的概念分层向上攀升或者通过维规约,在数据立方体上进行聚集。

5.数据集成涉及4个问题:;;;。

6.兴趣度度量评估模式的、、、。

三、简答题
1.数据挖掘可以在何种数据上进行?
2.数据仓库和数据集市有什么区别?
3.简述怎样填充空缺值?
4.简述数据分类的两步过程?
5.简述有损压缩和无损压缩。

四、操作题
假定用于分析的数据包含属性age。

数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70,求:
1)使用按箱平均值平滑对以上数据进行平滑,箱的深度是3。

解释你的步骤。

2)对于数据平滑,还有哪些其他方法?。

数据挖掘与知识发现考试试题

数据挖掘与知识发现考试试题

数据挖掘与知识发现考试试题一、选择题1.数据挖掘的定义是什么?A.从海量数据中提取有用信息的过程B.对数据进行存储和管理的过程C.从数据库中提取有用信息的过程D.数据收集和整理的过程2.下面哪个不是数据挖掘的基本任务?A.分类B.聚类C.回归D.统计3.下面哪个不属于机器学习算法?A.决策树B.神经网络C.朴素贝叶斯D.SQL4.什么是关联规则挖掘?A.发现事物之间的相关性B.对数据进行分类C.预测未来的趋势D.对图像进行处理和分析5.哪种算法常用于异常检测?A.聚类算法B.决策树算法C.关联规则算法D.回归算法二、填空题1.数据挖掘的基本任务包括___和___。

2.决策树算法中,节点是根据___进行分裂。

3.关联规则中的项集是指包含___个项目的集合。

4.异常检测算法常用的指标是___。

5.知识发现的目标是___和___。

三、简答题1.请简述数据预处理的过程。

2.什么是聚类分析?请举例说明。

3.数据挖掘的应用领域有哪些?4.简要介绍关联规则挖掘的步骤。

5.知识发现的挑战和难点是什么?四、应用题某电商平台想要通过数据挖掘和知识发现的方法,提高用户购买转化率。

请你构建一个可行的解决方案,并详细阐述其中的关键步骤和方法。

结束语:本文分别介绍了选择题、填空题、简答题和应用题,涵盖了数据挖掘和知识发现的基本概念、任务、算法以及应用。

希望通过这份试题,能够帮助读者对数据挖掘和知识发现有更深入的理解,并有效应用于实际问题解决中。

数据挖掘课程模拟考试题库

数据挖掘课程模拟考试题库

数据挖掘课程模拟考试题库一、选择题(每题 5 分,共 30 分)1、以下哪项不是数据挖掘的主要任务?()A 数据清洗B 分类C 聚类D 关联规则挖掘2、数据挖掘中的分类算法不包括()A 决策树B 朴素贝叶斯C 支持向量机D 主成分分析3、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以4、数据挖掘中的聚类算法中,KMeans 算法的基本思想是()A 基于密度的聚类B 基于层次的聚类C 基于划分的聚类D 基于模型的聚类5、以下哪项不是关联规则挖掘中的常用指标?()A 支持度B 置信度C 提升度D 准确率6、数据挖掘在以下哪个领域应用较少?()A 医疗保健B 市场营销C 天文学D 物理学二、填空题(每题 5 分,共 20 分)1、数据挖掘的流程通常包括、、、、和。

2、常见的数据预处理方法有、、、。

3、决策树算法在进行分裂时,通常依据来选择特征。

4、聚类分析中,评估聚类效果的指标通常有、。

三、简答题(每题 10 分,共 30 分)1、简述数据挖掘与数据分析的区别。

2、解释什么是过拟合,并说明如何避免过拟合。

3、请简要介绍 Apriori 算法的基本思想和步骤。

四、应用题(20 分)假设有一个电商网站的销售数据集,包含用户 ID、商品 ID、购买时间和购买金额等字段。

请使用关联规则挖掘算法,找出经常一起被购买的商品组合,并给出相应的支持度和置信度。

请详细描述你的分析过程和结果。

以下是对上述模拟考试题库的详细解析:选择题解析:1、数据清洗虽然是数据预处理的重要步骤,但不是数据挖掘的主要任务。

数据挖掘的主要任务包括分类、聚类、关联规则挖掘等。

所以选择 A 选项。

2、主成分分析主要用于数据降维,而不是分类算法。

决策树、朴素贝叶斯和支持向量机都是常见的分类算法。

所以选择 D 选项。

3、处理缺失值的方法有多种,直接删除包含缺失值的记录可能会导致数据量减少,影响分析结果;用平均值或中位数填充缺失值是常见的处理方式。

数据挖掘 填空题

数据挖掘 填空题

1.知识发现是一个完整的数据分析过程,主要包括以下几个步骤:确定知识发现的目标、数据采集、数据探索、数据预处理、__数据挖掘_、模式评估。

2._特征性描述_是指从某类对象关联的数据中提取这类对象的共同特征(属性)。

3.回归与分类的区别在于:___回归__可用于预测连续的目标变量,___分类__可用于预测离散的目标变量。

4.__数据仓库_是面向主题的、集成的、相对稳定的、随时间不断变化的数据集合,与传统数据库面向应用相对应。

5.Pandas的两种核心数据结构是:__Series__和__DataFrame__。

6.我们可以将机器学习处理的问题分为两大类:监督学习和_无监督学习__。

7.通常,在训练有监督的学习的机器学习模型的时候,会将数据划分为__训练集__和__测试集__,划分比例一般为0.75:0.25。

1.分类问题的基本流程可以分为__训练__和__预测_两个阶段。

2.构建一个机器学习框架的基本步骤:数据的加载、选择模型、模型的训练、__模型的预测_、模型的评测、模型的保存。

3.__回归分析_是确定两种或两种以上变量间相互依赖关系的一种统计分析方法是应用及其广泛的数据分析方法之一。

4.在机器学习的过程中,我们将原始数据划分为训练集、验证集、测试集之后,可用的数据将会大大地减少。

为了解决这个问题,我们提出了__交叉验证_这样的解决办法。

5.当机器学习把训练样本学得“太好”的时候,可能已经把训练样本自身的一些特点当作所有潜在样本都会具有的一般性质,这样会导致泛化性能下降。

这种现象在机器学习中称为__过拟合__。

6.常用的降维算法有__主成分分析__、___因子分析__和独立成分分析。

7.关联规则的挖掘过程主要包含两个阶段__发现频繁项集_和__产生关联规则__1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种7、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)8、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等9、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)10、OLAP的中文意思是指(在线分析处理)1、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种2、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)5、OLAP的中文意思是指(在线分析处理)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等2、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)3、OLAP的中文意思是指(在线分析处理4、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])5、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)6、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,l]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类3、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法4、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)5、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1如果dfl二pd.DataFrame([[l,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[&&NaN]]), 则dfl.fillna(100)=?([[l,2,3],[100,100,2],[100,100,100],[8,8,100]])2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10 ,15,20]})则df.groupby('key').sum()=?(A:15,B:30,C:45)3、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、OLAP的中文意思是指(在线分析处理)6、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据挖掘模型一般分为(有监督学习)和(无监督学习)两大类2、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法3、常见的数据仓库体系结构包括(两层架构)、(独立型数据集市)、(依赖型数据集市和操作型数据存储)、(逻辑型数据集市和实时数据仓库)等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,l]),ser*2=([8,6,4,2])6、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)7、Python字符串str='HelloWorld!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li二[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个(面向主题的)、(集成的)、(相对稳定的)、(反映历史变化)的数据集合,通常用于(决策支持的)目的2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]})则df.groupby('key').sum()=?(A:15,B:30,C:45)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用(信息增益),C4.5算法使用(信息增益率),CART算法使用(基尼系数)5、OLAP的中文意思是指(在线分析处理)6、如果ser=pd.Series(np.arange(4,0,-1),index=["a","b","c","d"]),则ser.values二?([4,3,2,1]),ser*2=([&6,4,2])7、线性回归最常见的两种求解方法,一种是(最小二乘法),另一种是(梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入(正则化)项来改善,最有名的改进算法包括(Ridge岭回归)和(Lasso套索回归)9、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)10、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤。

数据挖掘测试题及答案

数据挖掘测试题及答案

数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。

答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。

答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。

答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。

数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。

2. 描述什么是关联规则挖掘,并给出一个例子。

答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。

例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。

四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。

(2) 计算规则A => B的置信度。

答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。

(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。

五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。

答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。

- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。

- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案第一部分:选择题(每题4分,共40分)1.数据挖掘的定义是以下哪一个选项?A)从大数据中提取有用的信息B)从数据库中提取有用的信息C)从互联网中提取有用的信息D)从文件中提取有用的信息2.以下哪个是数据挖掘的一个主要任务?A)数据的存储和管理B)数据的可视化展示C)模型的建立和评估D)数据的备份和恢复3.下列哪个不是数据挖掘的一个常用技术?A)关联规则挖掘B)分类算法C)聚类分析D)数据编码技术4.以下哪个不属于数据预处理的步骤?A)数据清洗B)数据集成C)数据转换D)模型评估5.以下哪个是数据挖掘任务中的分类问题?A)预测数值B)聚类分析C)异常检测D)关联规则挖掘6.以下哪个不属于数据可视化的一种方法?A)散点图B)柱状图C)热力图D)关联规则图7.在使用决策树算法进行分类任务时,常用的不纯度度量指标是:A)基尼指数B)信息增益C)平方误差D)均方根误差8.以下哪个算法常用于处理文本数据挖掘任务?A)K-means算法B)Apriori算法C)朴素贝叶斯算法D)决策树算法9.以下哪种模型适用于处理离散型目标变量?A)线性回归模型B)逻辑回归模型C)支持向量机模型D)贝叶斯网络模型10.数据挖掘的应用领域包括以下哪些?A)金融风控B)医疗诊断C)社交网络分析D)所有选项都正确第二部分:填空题(每题4分,共20分)1.数据挖掘的基础是______和______。

答案:统计学、机器学习2.数据挖掘的任务包括分类、聚类、预测和______。

答案:关联规则挖掘3.常用的数据预处理方法包括数据清洗、数据集成和______。

答案:数据转换4.决策树算法的基本思想是通过选择最佳的______进行分类。

答案:划分属性5.支持向量机(SVM)算法适用于______问题。

答案:二分类问题第三部分:简答题(每题10分,共40分)1.请简述数据挖掘的流程及各个阶段的主要任务。

答:数据挖掘的流程一般包括问题定义、数据收集、数据预处理、模型选择与建立、模型评估与选择、知识应用等阶段。

数据挖掘技术课程模拟练习题

数据挖掘技术课程模拟练习题

数据挖掘技术课程模拟练习题一、选择题1、以下哪项不是数据挖掘的主要任务?()A 分类B 聚类C 数据清洗D 关联规则挖掘2、在数据挖掘中,以下哪种算法常用于分类问题?()A KMeans 算法B Apriori 算法C 决策树算法D 层次聚类算法3、数据挖掘中的“过拟合”现象是指()A 模型在训练集上表现很好,但在测试集上表现很差B 模型在训练集和测试集上表现都很差C 模型在训练集上表现很差,但在测试集上表现很好D 模型在训练集和测试集上表现都很好4、以下哪项不是处理缺失值的常用方法?()A 删除包含缺失值的记录B 用平均值填充缺失值C 用众数填充缺失值D 对缺失值不做处理5、数据挖掘中的特征选择是为了()A 减少数据量B 提高模型的准确性C 便于数据可视化D 以上都是二、填空题1、数据挖掘的流程包括_____、_____、_____、_____、_____和_____。

2、常见的数据预处理方法有_____、_____、_____、_____和_____。

3、关联规则挖掘中,常用的两个指标是_____和_____。

三、简答题1、请简要说明数据挖掘与传统数据分析的区别。

数据挖掘和传统数据分析有以下几个主要区别。

首先,在数据规模上,数据挖掘通常处理的是大规模的数据集合,可能包含海量的数据记录和丰富的属性;而传统数据分析一般处理相对较小规模的数据。

其次,数据挖掘更注重发现隐藏在数据中的未知模式和关系,具有一定的探索性和预测性;传统数据分析则更多是对已知问题进行分析和描述。

再者,数据挖掘所使用的技术和算法更加复杂多样,常常需要综合运用多种方法;传统数据分析则主要依赖一些基本的统计分析方法。

另外,数据挖掘的结果往往是新的知识和洞察,可能会对业务产生重大影响;传统数据分析则主要是为了支持决策和解决特定的业务问题。

2、简述数据清洗的主要步骤。

数据清洗的主要步骤包括:第一步是数据审查,对原始数据进行全面的检查,了解数据的质量状况,包括缺失值、异常值、错误数据等。

数据挖掘技术考核模拟测试卷

数据挖掘技术考核模拟测试卷

数据挖掘技术考核模拟测试卷一、选择题(共 20 题,每题 3 分)1、以下不属于数据挖掘任务的是()A 数据分类B 数据清洗C 关联规则挖掘D 聚类分析2、在数据挖掘中,用于发现数据中隐藏模式的技术是()A 预测建模B 关联分析C 异常检测D 以上都是3、以下哪种算法常用于分类问题?()A KMeansB 决策树C AprioriD EM 算法4、数据挖掘中的预处理步骤不包括()A 数据清洗B 数据集成C 模型训练D 数据变换5、决策树算法中,用于选择最佳分裂属性的指标通常是()A 信息增益B 基尼系数C 准确率D 召回率6、以下哪种数据挖掘技术可以用于市场篮分析?()A 分类B 聚类C 关联规则挖掘D 预测7、对于高维数据,以下哪种降维方法较为常用?()A 主成分分析(PCA)B 线性判别分析(LDA)C 因子分析D 以上都是8、在聚类分析中,KMeans 算法的初始聚类中心通常是()A 随机选择B 根据数据分布选择C 用户指定D 以上都可以9、以下哪种评估指标常用于评估分类模型的性能?()A 均方误差B 准确率和召回率C 轮廓系数D 调整兰德系数10、数据挖掘中的过拟合现象是指()A 模型在训练集上表现良好,但在测试集上表现差B 模型在训练集和测试集上表现都差C 模型在训练集和测试集上表现都好D 模型无法训练11、以下哪种方法可以用于处理数据中的缺失值?()A 直接删除含缺失值的记录B 用均值或中位数填充C 基于其他变量进行预测填充D 以上都是12、逻辑回归是一种()A 线性分类算法B 非线性分类算法C 聚类算法D 关联规则挖掘算法13、以下关于支持向量机(SVM)的说法,错误的是()A 可以处理线性可分和非线性可分问题B 核函数的选择对模型性能影响较大C 训练速度较快,适用于大规模数据D 目标是找到一个最优的分类超平面14、在关联规则挖掘中,最小支持度和最小置信度的作用是()A 控制规则的数量和质量B 提高挖掘效率C 降低计算复杂度D 以上都是15、以下哪种数据结构常用于存储频繁项集?()A 数组B 链表C 哈希表D 二叉树16、对于不平衡数据集,以下哪种方法可以提高分类效果?()A 过采样B 欠采样C 生成合成样本D 以上都是17、以下哪种数据挖掘技术可以用于发现异常值?()A 聚类分析B 分类C 关联规则挖掘D 以上都不是18、随机森林是由多个()组成的集成学习算法。

数据挖掘练习题.doc

数据挖掘练习题.doc

一、填空题1、 数据预处理对于数据挖掘是一个重要问题,主要包括 _______________ 、数 据集成、 ____________ 和数据归约。

2、 多维数据模型的星形模式中,主要依靠事实表中 __________ 的与维表联系在一起。

3、 __________ 允许从多个维对数据建模和观察,它由维和事实定义。

}的中位数为 _______ , 4、 数据集{5, 10, 11, 13, 15, 15, 35, 50, 55, 72, 92, 204, 215众数为 _________ o5、 在多个抽象层上挖掘数据产生的关联规则称为 _____________ o6、 将物理或抽象对象的集合分成相似的对象类(或簇)的过程称为 ___________O7、 分类和预测是两种数据分析形式,可以用来建立模型,预测数据未来的趋势,其中 _____________ 用来预测类别标号, ___________ 用来建立连续函数 模型。

),两个对象8、 给定两个对象,分别表示为(22, 1, 42, 10), (20, 0, 36, 8之间的曼哈顿距离为 _______________o9、 通常数据仓库与0LAP工具是基于 ___________ 模型进行设计的。

10、 涉及两个或多个维的关联规则称为 ______________o二、单项选择题1、 S PSS作为通用的统计软件包不仅被广泛地用于经济、管理、工业等领域的数据统计处理,而且在()中得到了应用。

A、数据挖掘领域B、数据仓库领域C、信息管理领域D、系统管理领域2、 下列度量中,哪一个度量不属于集中趋势度量:()。

A、中位数B、中列数C、众数D、极差3、 OLAP技术的核心是:( )。

A、在线性B、对用户的快速响应C、互操作性D、多维分析4、 关于OLAP和OLTP的说法,下列不正确的是:()A、 OLTP事务量大,但事务内容比较简单且重复率高B、 OLAP的数据来源与OLTP不完全一样C、 OLTP面对的是决策人员和高层管理人员D、 OLTP以应用为核心,是应用驱动的5、 下列哪种操作可以使用户更加直观地从不同角度观察数据立方体中不同维之间的关系:()0A、上卷B、下钻C、切片D、旋转6、数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了哪种数据挖掘方法: ()0A、分类B、预测C、关联分析D、聚类7、 利用信息增益方法作为属性选择度量建立决策树时,已知某训练样本集的四个属性的信息增益分别为:Gain(收入戶0.940位,Gain(职业)=0.151位,Gain(年龄)=0.780位,Gain(信誉)=0.048位,则应该选择哪个属性作为决策树的测试属 性:()。

数据仓库与数据挖掘考试试题

数据仓库与数据挖掘考试试题

中国矿业大学银川学院期末考试试题2010至2011学年第2学期考试科目 数据仓库与数据挖掘 学分 2 年级 2008系 机电动力与信息工程系 专业 计算机一、 填空题(15分)面向主题 、 集成 、 相对稳定 、反映历史变化。

2.元数据是描述数据仓库内数据的结构和建立方法的数据。

根据元数据用途的不同可将元数据分为 技术 元数据和 业务 元数据两类。

3.OLAP技术多维分析过程中,多维分析操作包括 切片 、 切块 、 钻取 、 旋转 等。

“ 中心和辐射 〞架构,其中 企业级数据仓库 是中心,源数据系统和数据集市在输入和输出范围的两端。

5.ODS实际上是一个集成的、 面向主题的 、 可更新的 、当前值的 、 企业级的 、详细的数据库,也叫运营数据存储。

二、 多项选择题(10分)6.在数据挖掘的分析方法中,直接数据挖掘包括( ACD )A 分类B 关联C 估值D 预言7.数据仓库的数据ETL过程中,ETL软件的主要功能包括(ABC)A 数据抽取B 数据转换C 数据加载D 数据稽核8.数据分类的评价准则包括( ABCD )A 精确度B 查全率和查准率C F-MeasureD 几何均值9.层次聚类方法包括( BC )A 划分聚类方法B 凝聚型层次聚类方法C 分解型层次聚类方法D 基于密度聚类方法10.贝叶斯网络由两局部组成,分别是( A D )A 网络结构B 先验概率C 后验概率D 条件概率表三、 计算题(30分)11.一个食品连锁店每周的事务记录如下表所示,其中每一条事务表示在一项收款机业务中卖出的工程,假定sup min =40%,conf min=40%,使用Apriori 算法计算生成的关联规则,标明每趟数据库扫描时的候选集和大工程集。

(15分)事务工程 事务 工程 T1 T2 T3 面包、果冻、花生酱 面包、花生酱面包、牛奶、花生酱T4 T5 啤酒、面包啤酒、牛奶 解:(1)由I={面包、果冻、花生酱、牛奶、啤酒}的所有工程直接产生1-候选C 1,计算其支持度,取出支持度小于sup min 的项集,形成1-频繁集L 1,如下表所示: 项集C 1 支持度项集L 1 支持度 {面包} {花生酱} {牛奶} 4/53/52/5 {面包} {花生酱} {牛奶} 4/5 3/5 2/5{啤酒} 2/5 {啤酒} 2/5(2)组合连接L 1中的各工程,产生2-候选集C 2,计算其支持度,取出支持度小于sup min 的项集,形成2-频繁集L 2,如下表所示: 项集C 2 支持度 项集L 2 支持度{面包、花生酱} 3/5 {面包、花生酱} 3/5至此,所有频繁集都被找到,算法结束,所以,confidence({面包}→{花生酱})=(4/5)/(3/5)=4/3> conf minconfidence({ 花生酱}→{面包})=(3/5)/(4/5)=3/4> conf min所以,关联规则{面包}→{花生酱}、{ 花生酱}→{面包}均是强关联规则。

数据挖掘试卷-题集

数据挖掘试卷-题集

数据挖掘复习题集1. 名词解释及简答数据矩阵闭频繁项集,极大频繁项集四分位数极差聚类分析聚类算法DBSCAN中的密度可达与密度相连简述数据清理的任务简述k-means聚类与k-中心点聚类的相似与不同之处2. 填空题(1)计算sin(45o)的Matlab命令是(2)假设x=10,计算的Matlab命令是(3)Matlab中清除显示内容的命令是(4)Matlab中清除变量y的命令是(5)Matlab中有矩阵a=[1 2 3; 4 5 6; 7 8 9],执行a(2,:)=[]后,a的值为。

(6)Matlab中绘制曲线的基本命令是。

(7)数据质量涉及许多因素,包括,,,时效性,可信性和可解释性。

(8)属性的类型由该属性可能具有的值的集合决定,属性类型包括,,序数的或数值的。

(9)KDD 过程包括:, 数据集成, 数据选择, 数据变换, 数据挖掘, 模式评估, 和。

(10)一个模式是有趣的,如果它是, 在某种程度上在新的或测试数据上是有效的, , 新颖的, 或验证了用户希望证实的某种假设。

(11)数据对象又称为样本、、数据点、或。

(12)数值属性可以被分为属性和属性(13) 常见的数据的可视化技术有基于 的技术,几何投影技术,基于 的技术以及层次的和基于图形的技术。

(14) 支持度和 是规则兴趣度的两种度量。

3. 选择题:1) Matlab 中,执行a=-4:4;b=reshape(a,3,3)后b 的值是()。

2) 在MATLAB中,列出当前工作空间变量名的函数是(A) who(s) (B) clc (C)path (D) draw3) 已知462837A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则在MATLAB 中调用命令A(3)的结果为 (A)3 (B)2 (C) 无结果 (D)7 4) MATLAB 对图形窗口进行灵活分割的命令为(A) plot (B) subplot (C) aplot (D) ploval5)[3 6 3]A =,[2 1 1]B =,则A .*B=(A) 运算不执行,因有错 (B)6 83 (C) 5 74 (D) 6 6 36) MATLAB 中保持图形窗口不关闭的命令为(A) alter (B) hold on (C) hold off (D) cd 7) MATLAB 中a=[2,3,1],则b=a .^2的结果为(A) b=[4,6,1](B)b=[4,9,1] (C)b=[4,6,2] (D) 执行出错,无结果 8) MATLAB 中给变量w 赋空矩阵的语句为(A)w=zeros() (B)w=[] (C)w=zeros(0,0)(D) clear w9)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?()A. 关联规则发现B. 聚类C. 分类D. 自然语言处理10)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15,35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.知识发现是一个完整的数据分析过程,主要包括以下几个步骤:确定知识发现的目标、数据采集、数据探索、数据预处理、__数据挖掘_、模式评估。

2._特征性描述_是指从某类对象关联的数据中提取这类对象的共同特征(属性)。

3.回归与分类的区别在于:___回归__可用于预测连续的目标变量,___分类__可用于预测离散的目标变量。

4.__数据仓库_是面向主题的、集成的、相对稳定的、随时间不断变化的数据集合,与传统数据库面向应用相对应。

5.Pandas的两种核心数据结构是:__Series__和__DataFrame__。

6.我们可以将机器学习处理的问题分为两大类:监督学习和_无监督学习__。

7.通常,在训练有监督的学习的机器学习模型的时候,会将数据划分为__训练集__和__测试集__,划分比例一般为0.75:0.25。

1.分类问题的基本流程可以分为__训练__和__预测_两个阶段。

2.构建一个机器学习框架的基本步骤:数据的加载、选择模型、模型的训练、__模型的预测_、模型的评测、模型的保存。

3.__回归分析_是确定两种或两种以上变量间相互依赖关系的一种统计分析方法,是应用及其广泛的数据分析方法之一。

4.在机器学习的过程中,我们将原始数据划分为训练集、验证集、测试集之后,可用的数据将会大大地减少。

为了解决这个问题,我们提出了__交叉验证_这样的解决办法。

5.当机器学习把训练样本学得“太好”的时候,可能已经把训练样本自身的一些特点当作所有潜在样本都会具有的一般性质,这样会导致泛化性能下降。

这种现象在机器学习中称为__过拟合__。

6.常用的降维算法有__主成分分析__、___因子分析__和独立成分分析。

7.关联规则的挖掘过程主要包含两个阶段__发现频繁项集_和__产生关联规则__。

1、数据仓库是一个( 面向主题的 ) 、( 集成的 )、( 相对稳定的 )、 ( 反映历史变化 )的数据集合,通常用于( 决策支持的 )目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习 )和( 无监督学习 )两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、常见的数据仓库体系结构包括( 两层架构 )、( 独立型数据集市 )、( 依赖型数据集市和操作型数据存储)、( 逻辑型数据集市和实时数据仓库 )等四种7、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)8、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等9、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数) 10、OLAP的中文意思是指( 在线分析处理)1、常见的数据仓库体系结构包括( 两层架构 )、( 独立型数据集市 )、( 依赖型数据集市和操作型数据存储)、( 逻辑型数据集市和实时数据仓库 )等四种2、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数)5、OLAP的中文意思是指( 在线分析处理)6、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])7、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)9、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等2、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数)3、OLAP的中文意思是指( 在线分析处理)4、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])5、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)6、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)7、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li=[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个( 面向主题的 ) 、( 集成的 )、( 相对稳定的 )、 ( 反映历史变化 )的数据集合,通常用于( 决策支持的 )目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习 )和( 无监督学习 )两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])7、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)9、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据仓库是一个( 面向主题的 ) 、( 集成的 )、( 相对稳定的 )、 ( 反映历史变化 )的数据集合,通常用于( 决策支持的 )目的2、数据挖掘模型一般分为(有监督学习 )和( 无监督学习 )两大类3、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法4、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)5、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数) 6、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])7、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li=[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]]) 2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'], 'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)3、常见的数据仓库体系结构包括( 两层架构 )、( 独立型数据集市 )、( 依赖型数据集市和操作型数据存储)、( 逻辑型数据集市和实时数据仓库 )等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、OLAP的中文意思是指( 在线分析处理)6、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)7、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li=[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据挖掘模型一般分为(有监督学习 )和( 无监督学习 )两大类2、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法3、常见的数据仓库体系结构包括( 两层架构 )、( 独立型数据集市 )、( 依赖型数据集市和操作型数据存储)、( 逻辑型数据集市和实时数据仓库 )等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])6、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)7、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li=[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个( 面向主题的 ) 、( 集成的 )、( 相对稳定的 )、 ( 反映历史变化 )的数据集合,通常用于( 决策支持的 )目的2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'], 'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数)5、OLAP的中文意思是指( 在线分析处理)6、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])7、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)9、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)10、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤。

相关文档
最新文档