有理数知识点总结

合集下载

有理数的知识点总结

有理数的知识点总结

有理数的知识点总结一、有理数的定义及基本性质:有理数是指所有可以表示为两个整数的比值的数,包括整数、分数和零。

有理数可以用一组整数的比值表示成两种形式:分数形式(也称作比例效应)和小数形式(也称作数列形式)。

有理数的集合通常记作Q。

有理数具有以下基本性质:1. 有理数的加法、减法、乘法和除法仍然是有理数,也就是说,有理数集合对于这四种运算是封闭的。

2. 有理数满足交换律和结合律,在加法和乘法运算中,a+b =b+a,(a+b)+c = a+(b+c);在乘法运算中,a×b = b×a,(a×b)×c= a×(b×c)。

3. 有理数乘法和除法具有倒数性质,即对于任意非零有理数a,存在一个有理数b使得a×b = 1。

4. 有理数乘法符合分配律,即对于任意有理数a、b和 c,a×(b+c) = a×b + a×c。

5. 有理数具有唯一分解性质,即任何一个非零有理数都可以唯一表示为两个整数的比值,而且这个比值对于最简分数形式是唯一的。

二、有理数的四则运算:1. 有理数的加法和减法:对于两个有理数a/b和 c/d,它们的加法定义为(a/b) + (c/d) = (ad+bc)/bd,减法定义为(a/b) - (c/d) = (ad-bc)/bd。

在进行加法和减法运算时,通常需要化简结果为最简分数形式。

2. 有理数的乘法和除法:对于两个有理数 a/b和 c/d,它们的乘法定义为(a/b) × (c/d) =ac/bd,除法定义为(a/b) ÷ (c/d) = ad/bc(其中c/d≠0)。

在进行乘法和除法运算时,同样需要化简结果为最简分数形式。

三、有理数的大小比较:在有理数集合中,任何两个有理数都可以通过大小比较运算来确定它们的相对大小。

有理数的大小比较有以下几个基本原则:1. 相同符号的有理数比较大小,绝对值越大的数为更大的数;2. 不同符号的有理数比较大小,正数大于零,零大于负数;3. 相同符号的两个有理数的绝对值比较,绝对值较小的数较小。

有理数知识点总结

有理数知识点总结

有理数知识点总结1. 有理数的定义和性质1.1 有理数的定义有理数是可以表示为两个整数的比的数,包括整数、分数和零。

1.2 有理数的性质•有理数可以进行加、减、乘、除运算,并仍为有理数。

•有理数的加法和乘法满足交换律、结合律和分配律。

2. 有理数的表示和分类2.1 有理数的表示有理数可以用分数的形式表示,即分子和分母都是整数,并且分母不为零。

2.2 有理数的分类有理数可以分为以下几类: - 正数:大于零的有理数。

- 负数:小于零的有理数。

- 零:既不大于零也不小于零的有理数。

3. 有理数的比较和大小关系3.1 有理数的比较•对于同号的两个有理数,绝对值大的数较大。

•对于异号的两个有理数,正数较大。

3.2 有理数的大小关系•两个正数比较大小,数值大的较大。

•两个负数比较大小,数值小的较大。

•正数大于零,零大于负数。

4. 有理数的运算4.1 加法和减法有理数的加法和减法满足交换律和结合律,可以通过以下步骤进行: - 对于同号的两个有理数,将它们的绝对值相加(减),并保持符号不变。

- 对于异号的两个有理数,将它们的绝对值相减,结果的符号由绝对值较大的数决定。

4.2 乘法和除法有理数的乘法和除法满足交换律、结合律和分配律,可以通过以下步骤进行: -两个有理数的乘积的符号由乘数的符号决定。

- 两个有理数的商的符号由被除数和除数的符号决定。

5. 有理数的进一步思考5.1 有理数的无穷性有理数是无穷的,可以无限接近但无法达到某些无理数,如圆周率π和自然对数的底数e。

5.2 有理数的应用有理数在实际生活中有广泛的应用,如计算、测量、金融等领域。

在金融中,有理数可以表示货币的数量,进行利息计算等。

5.3 有理数的拓展有理数是数的一个重要分支,还有其他类型的数如无理数、实数、复数等。

无理数是无法表示为两个整数的比的数,实数是有理数和无理数的统称,而复数是实数和虚数的组合。

结论有理数是可以表示为两个整数的比的数,包括整数、分数和零。

有理数知识点总结

有理数知识点总结

有理数知识点总结理数是指可以用有限个整数相加、相减或相乘来表示的数。

理数包括正整数、负整数、零和分数。

1. 整数:正整数、负整数和零都是整数。

整数的运算有加法、减法和乘法。

加法的运算结果仍然是整数,减法的运算结果也可以是整数,但乘法的运算结果不一定是整数,可能是分数。

2. 分数:分数由分子和分母组成,分子是整数,分母是非零整数。

分数的运算包括加法、减法、乘法和除法。

加法和减法的分数运算基本规则是先通分,然后进行相应的运算。

乘法和除法的分数运算基本规则是分子相乘,分母相乘。

两个分数相除可以变成将除数的分子分母互换,然后再进行乘法运算。

3. 小数:小数是分数的一种特殊形式,用有限的十进制数或无限循环的十进制数表示。

小数可以转换为分数,将小数的数值部分作为分子,小数点后的位数作为分母的10的幂。

4. 数轴:数轴是用来表示有理数的直线,从左向右递增,可以根据数轴进行加法、减法和比较大小等操作。

5. 绝对值:绝对值是一个有理数的非负值。

对于正数,它的绝对值等于本身;对于负数,它的绝对值等于去掉负号。

绝对值的运算规则包括绝对值取正和绝对值取负。

6. 有理数的大小比较:有理数的大小比较可以根据数轴上的位置进行判断,也可以通过将有理数化为相同的分数形式进行比较。

在数轴上,离原点越远的数值越大。

7. 有理数的相反数:一个有理数的相反数是与它数值大小相等但符号相反的有理数。

8. 有理数的倒数:一个非零有理数的倒数是与它的分数定义中分子和分母交换位置后得到的分数。

倒数的运算规则包括正数的倒数仍然是正数,负数的倒数是与它的绝对值的倒数相等。

这些是关于有理数的一些基本知识点总结,理解这些知识点有助于我们在数学运算中正确地使用有理数。

有理数相关知识点

有理数相关知识点

有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 a+b=0 a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a >⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a =. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6. 乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n ,当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.。

关于有理数的知识点总结

关于有理数的知识点总结

关于有理数的知识点总结一、有理数的概念及性质1. 有理数的定义有理数是指可以表示为两个整数的比的数,它通常用分数形式表示。

实际上,每个有理数都可以写成一个整数和一个非零整数的商。

例如,2/3、-5/4、3等都是有理数。

2. 有理数的性质(1)有理数可以用分数形式表示,例如2/3、-5/4等。

(2)有理数中包括正整数、负整数、零以及所有的分数。

(3)有理数的数轴表示:有理数可以用数轴上的点来表示,正数在原点的右侧,负数在原点的左侧,0在原点上。

二、有理数的表示和分类1. 有理数的表示有理数可以用分数形式表示或者小数形式表示。

对于分数形式,它可以用a/b的形式表示,其中a为分子,b为分母;对于小数形式,它可以用有限小数或者循环小数来表示。

2. 有理数的分类有理数可以分为正数、负数和零三种。

其中正数是大于0的数,负数是小于0的数,零表示0。

三、有理数的加法和减法1. 有理数的加法(1)同号数的加法:两个正数相加或者两个负数相加,结果为正数;例如2+3=5,(-2)+(-3)=-5。

(2)异号数的加法:两个正数相加或者一个正数和一个负数相加,结果的绝对值大的减去绝对值小的,符号取绝对值大的数的符号;例如2+(-3)=-1,(-2)+3=1。

2. 有理数的减法有理数的减法可以转化为加法来进行,即a-b=a+(-b)。

也就是说,将减法问题转化为加法问题,然后按照加法的规则进行计算。

四、有理数的乘法和除法1. 有理数的乘法(1)同号数的乘法:两个正数相乘或者两个负数相乘,结果为正数;例如2*3=6,(-2)*(-3)=6。

(2)异号数的乘法:一个正数和一个负数相乘,结果为负数;例如2*(-3)=-6。

2. 有理数的除法有理数的除法同样可以转化为乘法来进行,即a/b=a*(1/b)。

也就是说,将除法问题转化为乘法问题,然后按照乘法的规则进行计算。

五、有理数的绝对值1. 有理数绝对值的定义有理数a的绝对值定义为a的非负数表示,即a的绝对值记为|a|,有两种定义形式:(1)当a>=0时,|a|=a;(2)当a<0时,|a|=-a。

有理数十五大知识点总结

有理数十五大知识点总结

有理数十五大知识点总结一、有理数的定义及性质有理数是可以表示为分数形式的数,包括整数、负整数和分数。

有理数的加、减、乘、除法满足封闭性,即两个有理数进行这四种运算得到的仍然是有理数。

二、有理数的比较有理数的大小可以通过绝对值的大小来比较。

对于两个有理数a和b,如果|a| > |b|,则a > b;如果|a| < |b|,则a < b。

三、有理数的运算1. 有理数的加法对于有理数a和b,它们的加法运算是将它们的分子通分后进行相加,然后化简得到结果。

2. 有理数的减法对于有理数a和b,它们的减法运算可以转化为加法的形式,即a - b = a + (-b)。

3. 有理数的乘法有理数a和b的乘法运算是将它们的分子和分母分别相乘得到结果。

4. 有理数的除法有理数a和b的除法运算可以转化为乘法的形式,即a ÷ b = a × (1/b)。

四、有理数的绝对值有理数a的绝对值(|a|)是a到0的距离,并且它具有非负性、单调性和三角不等式等性质。

五、有理数的乘方有理数的n次方是将这个有理数连续乘以自身n次,其中n是自然数。

六、有理数的逆运算有理数a的逆数是1/a,它满足乘法逆元的性质,即a × (1/a) = 1。

七、有理数的分数化简对于有理数的分数形式,我们可以通过化简得到最简形式,即分子和分母没有共同因子。

八、有理数的混合运算有理数的混合运算包括加减乘除等多种运算,我们需要根据具体的题目进行分析和解决。

九、有理数的小数有理数可以表示为有限小数和无限循环小数两种形式,我们可以通过逐步除以10或乘以10将有理数转化为小数形式。

十、有理数的比例对于含有有理数的比例,我们可以通过交叉乘积法则或取十法则等方法进行比例的计算和推导。

十一、有理数的线性方程对于含有有理数的线性方程,我们可以通过整理方程、去分母和解方程的方法进行求解。

十二、有理数的实际应用有理数在实际生活中应用非常广泛,涉及到金融、商业、科学等各个领域。

有理数知识点总结

有理数知识点总结

有理数知识点总结有理数是数学中的一个重要概念,它是整数和分数的统称。

在数学中,有理数的性质和运算规律是我们学习的基础,下面将从有理数的定义、性质和运算规律三个方面进行总结。

一、有理数的定义有理数是可以用两个整数的比表示出来的数,即有理数是整数和分数的统称。

其中,整数是有理数的一种特殊形式,而分数则是整数的推广。

有理数的特点是可以用分数表示为有限小数或无限循环小数。

二、有理数的性质1. 有理数可以进行比较大小。

对于任意两个有理数a和b,有且只有以下三种情况之一成立:a<b,a=b,a>b。

2. 有理数可以进行加、减、乘、除运算。

有理数的加法、减法、乘法、除法运算仍然是有理数。

3. 有理数的加法和乘法满足交换律、结合律和分配律。

三、有理数的运算规律1. 加法运算规律:对于任意三个有理数a、b、c,有(a+b)+c=a+(b+c);a+b=b+a。

2. 减法运算规律:对于任意三个有理数a、b、c,有(a-b)+c=a+(b-c);a-b=-(b-a)。

3. 乘法运算规律:对于任意三个有理数a、b、c,有(a*b)*c=a*(b*c);a*b=b*a。

4. 除法运算规律:对于任意三个非零有理数a、b、c,有(a/b)/c=a/(b/c);a/b=(c/b)*a。

5. 分配律:对于任意三个有理数a、b、c,有a*(b+c)=a*b+a*c。

有理数是数学中的基本概念之一,它在实际生活中有着广泛的应用。

比如,在商业活动中,我们需要进行货币的加减乘除运算,这就涉及到有理数的运算规律;在科学研究中,我们需要对数据进行分析和比较,这也需要用到有理数的性质。

有理数是数学中重要的概念之一,它包括了整数和分数,并具有比较大小和四则运算的性质。

掌握有理数的定义、性质和运算规律,对于我们学习数学和应用数学知识都具有重要意义。

有理数知识点整理

有理数知识点整理

有理数知识点整理有理数是数学中的一种数形集合,是可以用整数或者整数的比来表示的数。

有理数的主要性质是可以进行加减乘除等基本运算。

下面是对有理数的知识点进行整理。

一、有理数的定义和表示方法有理数是可以表示成分数的数,可以用整数或整数的比来表示。

二、有理数的基本运算1.有理数的加法对于任意两个有理数a和b,它们的加法运算为a+b=c,其中c也是一个有理数。

5.有理数的整除性如果在有理数a和b中,b整除a且b不等于0,则可以表示为a=n×b。

6.有理数的商的整除性如果有理数a÷b是有理数q,而q也可以表示为q=m/n,则有a=nq=bm。

这种情况称为有理数的商的整除性。

三、有理数的大小比较两个有理数相等的充分必要条件是它们的差为0。

四、有理数的绝对值有理数a的绝对值记作|a|,表示a到0的距离。

六、有理数的倒数有理数a的倒数记作1/a或a-1,表示a的倒数是1/a,其中a不等于0。

七、有理数的基本性质1.有理数的加法、减法、乘法和除法都满足结合律、交换律和分配律。

2.对于任意的有理数a,有加数等于减去它的相反数,即a+a'=0。

3.对于任意的有理数a和b,有乘数等于被除以它的倒数,即a×1/a=1。

4.有理数的加法和乘法满足可逆性。

八、有理数的比值有理数a和b之间的比a:b可以表示为a÷b或a/b。

九、有理数的平方根有理数a的平方根是一个有理数b,当b^2=a时,也就是说b是满足b×b=a的正有理数。

总之,有理数是数学中的一个重要概念,掌握有理数的定义、表示方法、基本运算、大小比较、绝对值、相反数和倒数等知识点,对于学好数学有很大的帮助。

(完整版)有理数知识点总结

(完整版)有理数知识点总结

有理数基础知识正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

有理数知识点

有理数知识点

有理数知识点一、定义和性质有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和零。

有理数的加减乘除运算满足交换律、结合律和分配律,有理数加减乘除的结果仍为有理数。

二、整除性和约分两个整数a和b,如果存在整数m,使得a = bm,那么称a被b 整除,a为b的倍数,b为a的约数。

如果a和b都不是零,则a和b的最大公约数(gcd)是指所有能同时整除a和b的整数中最大的那个数。

a和b的最小公倍数(lcm)是指能同时被a和b整除的最小的正整数。

可以通过约分,即将分子和分母同时除以最大公约数,将一个有理数化简成最简分数形式。

三、小数和循环小数小数是指有限的十进制数或无限不循环的十进制数(比如求根号2的精确值),也可以写成分数形式。

而循环小数是指无限循环的十进制数,可以写成一个整数加一个小数部分,小数部分有限或循环。

如果一个分数的分母只含有因子2和5,则可以化成有限小数,否则为无限循环小数。

可以将一个循环小数化成分数形式。

四、代数式和方程代数式是指用数和代数符号(比如x、y)表示的表示式,可以进行加减乘除运算。

而方程是指含有未知数的代数式,等号两边可以互相转化而不改变等式的真假。

可以通过移项、合并同类项、因式分解和配方法等方式解方程。

有些方程无解,有些方程有多个解,有些方程的解可以用根式或循环小数的形式表示。

五、应用有理数是数学和现实问题中不可或缺的一种数,包括货币、长度、面积、体积、速度、时间、温度等。

通过对有理数的研究,很多数学和物理问题可以得到解决。

例如,人口增长问题可以用指数函数描述,而指数函数可以用对数函数表示。

对数函数的定义域是正实数,但实际问题中往往存在负数、零和小于1的数,可以通过引入有理数概念来解决。

另外,有理数还可以用于表示比值、比例关系等,在生活和工作中有很重要的作用。

六、结语有理数是数学中的一个基本概念,其理论和实践方面都有广泛的应用。

掌握了有理数知识,我们可以更好地理解和应用数学,解决生活和工作中的实际问题。

(完整版)有理数知识点总结

(完整版)有理数知识点总结

有理数知识点总结(2016)第一章有理数1.1正数和负数一、概念1、正数:大于零的数,有时根据需要在正数前面加“+”(正号)2、负数:在正数前面加上“—”(负号)的数说明:一个数前面的“+”“—”叫做它的号,其中“+”有时可以省略,但仍然表示正数,有时“+”是为了强调它是正数,但“—”号是绝对不能省略的。

3、0既不是正数也不是负数,它是正负数的分界。

说明:关于0的总结——实数,自然数,有理数,整数,非正数,非负数,偶数,相反数是本身,没有倒数,绝对值是本身,正负数分界二、实际应用在解决一些实际问题时,可以认为规定具有相反意义的量的正负。

例如:收入为正,支出为负,收支平衡为0 零上为正,零下为负,分界为0 向北(东)走为正,向南(西)走为负,原地不动为0 加分为正,扣分为负,不加不扣为0 逆时针为正,顺时针为负超标为正,低标为负,标准为0 地上为正,地下为负,地面基准为0 盈余为正,亏空为负,收支平衡为0 水位上升为正,水位下降为负,水平面为0 高于平均分为正,低于平均分为负增加为正,减少为负,不增不减为0 海平面以上为正,以下为负,海平面记为0三、易错易误点1、-a一定是负数么?答案:不一定,需要分类分析解析:当a大于0时,-a就是负数;当a等于0时,-a为0;当a小于0时,-a是正数因此,a不一定是正数也不一定是负数,判断字母的正负时,需要分类讨论,也不能忽略0的存在。

2、海拔0米并不表示没有海拔,而是说海拔中海平面的平均高度为0米。

3、非正数:0和负数非负数:0和正数1.2 有理数1、概念1、有理数:正整数,0,负整数,正分数,负分数都可以写成分数(含有限小数和无限循环小数)的形式,这样的数称为有理数。

2、无理数:既不是正数也不是分数,就一定不是有理数。

如无限不循环小数π=3.1415926…它不能化成分数形式。

2、分类1、按定义分类;有理数分为整数(正整数、0、负整数);分数(正分数、负分数)2、按性质符号分类;有理数分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)三、数轴1、定义:数轴是一条可以向两端无限延伸的直线规定三要素——原点,正方向,单位长度注意“规定”二字,是说三要素是根据实际需要认为规定的。

(完整版)有理数知识点总结.doc

(完整版)有理数知识点总结.doc

有理数知识点总结(2016 )第一章有理数1.1正数和数一、概念1 、正数:大于零的数,有根据需要在正数前面加“+”(正号)2 、数:在正数前面加上“—(” 号)的数明:一个数前面的“+”“—叫”做它的号,其中“+”有可以省略,但仍然表示正数,有“+”是了它是正数,但“—”号是不能省略的。

3 、0 既不是正数也不是数,它是正数的分界。

明:关于0 的——数,自然数,有理数,整数,非正数,非数,偶数,相反数是本身,没有倒数,是本身,正数分界二、用在解决一些,可以定具有相反意的量的正。

例如:收入正,支出,收支平衡0 零上正,零下,分界 0 向北()走正,向南(西)走,原地不0 加分正,扣分,不加不扣0 逆正,超正,低,准0 地上正,地下,地面基准0 盈余正,空,收支平衡0 水位上升正,水位下降,水平面0 高于平均分正,低于平均分增加正,减少,不增不减0 海平面以上正,以下,海平面0三、易易点1 、-a 一定是数么?答案:不一定,需要分分析解析:当a大于0,-a就是数;当 a 等于 0 , -a0 ;当 a 小于 0 ,-a 是正数因此,a不一定是正数也不一定是数,判断字母的正,需要分,也不能忽略0 的存在。

2 、海拔 0 米并不表示没有海拔,而是海拔中海平面的平均高度0 米。

3、非正数:0和数非数:0和正数1.2有理数一、概念1 、有理数:正整数,0,整数,正分数,分数都可以写成分数(含有限小数和无限循小数)的形式,的数称有理数。

2 、无理数:既不是正数也不是分数,就一定不是有理数。

如无限不循小数π=3.1415926⋯它不能化成分数形式。

二、分1 、按定分;有理数分整数(正整数、0、整数);分数(正分数、分数)2 、按性符号分;有理数分正有理数(正整数、正分数)、0、有理数(整数、分数)三、数1 、定:数是一条可以向两端无限延伸的直定三要素——原点,正方向,位度注意“ 定”二字,是三要素是根据需要定的。

有理数章知识点总结

有理数章知识点总结

有理数章知识点总结一、有理数的概念有理数是指可以表示为两个整数的比值的数,包括有限小数、无限循环小数和整数。

有理数的特点是可以表示为分数形式,即p/q的形式,其中p和q都是整数,且q不能为0。

有理数用符号Q表示,其中Q={a/b|a∈Z, b∈Z*, b≠0}。

有理数的分类:1. 正有理数:大于0的有理数,如1/2、3/4等;2. 负有理数:小于0的有理数,如-1/3、-5/6等;3. 零:0也是一个有理数。

二、有理数的性质1. 有理数的比较对于任意两个不相等的有理数a和b,有以下性质:(1)如果a>b,则-a<-b;(2)如果a<b,则-a>-b。

这表明有理数的大小可以相互比较,且有明确的大小关系。

2. 有理数的加法性质对于任意三个有理数a、b、c,有以下加法性质:(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)存在零元素:a+0=a;(4)存在相反元素:a+(-a)=0。

这些性质表明有理数的加法操作满足基本的性质。

3. 有理数的乘法性质对于任意三个有理数a、b、c,有以下乘法性质:(1)交换律:a×b=b×a;(2)结合律:(a×b)×c=a×(b×c);(3)存在单位元素:a×1=a;(4)存在倒数元素:a×(1/a)=1,其中a≠0。

这些性质表明有理数的乘法操作也满足基本的性质。

4. 有理数的除法性质对于任意两个有理数a和b,其中b≠0,有以下除法性质:(1)存在商:a/b是一个有理数;(2)零除不合法:a/0是不合法的;(3)乘法逆元:a/1=a;(4)除法逆元:a/(1/a)=a×a。

5. 有理数的分配律对于任意三个有理数a、b、c,有以下分配律:a×(b+c)=a×b+a×c三、有理数的运算1. 有理数的加法两个有理数a和b相加,可以通过以下步骤完成:(1)如果a和b的符号相同,则它们的绝对值相加,并保留原来的符号;(2)如果a和b的符号不同,则它们的绝对值相减,并以绝对值大的符号为结果的符号。

有理数的知识点

有理数的知识点

有理数的知识点1. 有理数的定义有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b是整数,且b不等于0。

有理数集合包括所有的整数、分数和它们的负数。

2. 有理数的性质- 封闭性:有理数集合在加法、减法、乘法和除法(除数不为零)下是封闭的。

- 有序性:任何两个有理数都可以比较大小,即对于任意两个有理数a 和b,总有a=b、a>b或a<b中的一种关系成立。

- 稠密性:任何两个有理数之间都存在另一个有理数。

3. 有理数的分类- 正有理数:大于0的有理数。

- 负有理数:小于0的有理数。

- 整数:分母为1的有理数,即形式为a/1的数。

- 分数:分子和分母都是整数,且分母不为1的有理数。

4. 有理数的运算规则- 加法:(a/b) + (c/d) = (ad + bc) / bd- 减法:(a/b) - (c/d) = (ad - bc) / bd- 乘法:(a/b) * (c/d) = (ac) / (bd)- 除法:(a/b) / (c/d) = (a/b) * (d/c) = (ad) / (bc)5. 有理数的简化通过约分,可以将有理数化为最简形式,即分子和分母没有公因数(除了1)。

6. 有理数的比较- 正有理数都大于0。

- 负有理数都小于0。

- 正有理数大于所有的负有理数。

- 两个负有理数比较大小,绝对值大的反而小。

7. 有理数的混合运算在进行有理数的混合运算时,应先乘除后加减,并注意括号的优先级。

8. 有理数的分数形式- 真分数:分子小于分母的分数。

- 假分数:分子大于或等于分母的分数。

- 带分数:一个整数和一个真分数的和,形式为a + b/c,其中a和c是整数,b是大于1的整数。

9. 有理数的实际应用有理数在日常生活中广泛应用,如计算价格、测量距离、统计数据等。

10. 有理数与无理数有理数与无理数是实数的两个子集。

无理数不能表示为两个整数的比,例如√2和π。

以上是有理数的主要知识点,理解和掌握这些知识点对于学习更高级的数学概念至关重要。

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结有理数是数学中的一种基本概念,它包括了整数、分数和零。

有理数可以用分数形式表示,分子是整数,分母是正整数。

一、有理数的定义和性质1.有理数的定义:有理数表示为两个整数的比值,其中分母不为零。

有理数可以用分数形式表示为a/b的形式,其中a是整数,b是正整数。

2.有理数的四则运算法则:加法:同号求和,异号作差,结果的符号跟两个有理数的符号相同。

减法:转化为加法运算,将减法问题转化为加法问题。

乘法:同号得正,异号得负。

除法:将除法转化为乘法,取倒数后将除法问题转换为乘法问题。

3.有理数的乘方运算:有理数的乘方运算是将一个有理数乘以自身若干次。

有理数的乘方运算的结果仍然是有理数。

4.有理数的比较运算:可以通过比较大小符号来比较有理数的大小,如果两个有理数的大小符号相同,则比较绝对值的大小。

5.有理数的约分:可以将一个有理数化简成最简形式,即将分子和分母互质的形式。

二、有理数的绝对值和相反数1.有理数的绝对值:绝对值表示有理数距离零的距离,绝对值是非负的。

正数的绝对值是它本身,负数的绝对值是它的相反数。

2.有理数的相反数:一个有理数的相反数是与它的绝对值相等但符号相反的数。

三、有理数的数轴1.有理数的数轴是一条直线,可以用来表示有理数的大小关系。

2.在数轴上,正数表示为向右的方向,负数表示为向左的方向,原点为零。

3.数轴上,绝对值越大的数离原点越远,绝对值相同的数离原点的距离相等。

四、有理数的运算律1.有理数的加法符合交换律、结合律和分配律。

交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)分配律:a×(b+c)=a×b+a×c2.有理数的乘法符合交换律、结合律和分配律。

交换律:a×b=b×a结合律:(a×b)×c=a×(b×c)分配律:(a+b)×c=a×c+b×c五、有理数的应用1.有理数可以用来表示一些具体问题中的数值,比如表示温度、长度、质量等。

有理数有理数知识点归纳

有理数有理数知识点归纳

0000<=>⎪⎩⎪⎨⎧-=a a a a a a一、有理数1. 0和正整数叫做自然数,也叫非负整数.2. 有理数的分类: (1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数负整数正整数正有理数有理数0二、数轴1.规个定了原点、正方向和单位长度的直线叫做数轴.2. 任意一个有理数,都可以用数轴上的一个点表示,但数轴上的任意一点却不一定表示一个有理数,正有理数用原点右边的点表示,负有理数用原点左边的点表示.3. 利用数轴比较有理数的大小,数轴上右边的点表示的数总大于左边的点表示的数.三、相反数1. 只有符号不同的两个数叫做互为相反数.0的相反数仍是0.2. 在数轴上,表示一对相反数的点分别位于原点两侧,并且到原点的距离相等,它们关于原点对称.3. 互为相反数的两个数的和为0,即a 与b 互为相反数.四、绝对值1. 数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a .2. 绝对值的性质:(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(2)绝对值具有非负性,即有理数a 的绝对值a >0.(3)利用绝对值可以比较两个 负数的大小,两个负数绝对 值大的反而小. 五、倒数乘积是1的两个数互为倒数.倒数是成对的,互为倒数的两个数同号;0没有倒数.六、乘方求n 个相同的因数的积的运算,叫做乘方,乘方的结果叫做幂.在na 中,a 叫做底数,n 叫 做指数.乘方的运算法则:(1)负数的奇次幂是负数,负数的偶次幂是正数.(2)正数的任何次幂都是正数,0的任何任何正整数次幂都是0.七、科学记数法1. 把一个大于10的数表示成n a 10⨯的形式(其中a 的整数数位只有一位的数,n 是正整数). 有理数知识点归纳2. 精确度:近似数四舍五人到哪一位,就精确到哪一位.3. 有效数字: 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效 数字.4. (1)科学记数法中a 应满足101<≤a ,n 等于原数的整数位数减1,一个负数的科学记数法只 要在n a 10⨯前面加上“一”即可.(2) 用科学记数法表示的数na 10⨯,精确度由还原后的数字中a 的末位字所在的数位决定.(3) 用科学记数法表示的数n a 10⨯,有效数字与n 10无关,只与a 有关,当近似数后面有单位是,有效数字与单位无关,只与单位前面的数有关.八、有理数的混合运算(1)先乘方,在乘除,最后加减.(2)同级运算,从做到右进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.考点分析1. 用正负数表示具有相反意义的量;2. 有理数相关概念;3. 数轴、相反数、绝对值、倒数;4.有理数的大小比较及运算;5. 有理数的乘方;6. 科学记数法.两个负数比较大小有两个步骤:①先分别求出这两个负数的绝对值,并比较绝对值大小.②根据“两个负数,绝对值大的反而小”得出结论.。

有理数知识点汇总

有理数知识点汇总

有理数知识点汇总一、有理数的概念和性质有理数是指可以表示为两个整数之比(分母不为零)的数。

有理数包括正整数、负整数、零以及正分数和负分数。

有理数的性质主要有以下几点:1. 有理数的加法和减法:有理数相加减时,可以先化简为同分母,然后对分子进行相应的运算。

同号数相加减,结果符号不变,异号数相加减,结果取绝对值较大的数的符号。

2. 有理数的乘法和除法:有理数相乘除时,先对分子分母分别进行相应的运算,然后再化简为最简形式。

同号数相乘除,结果为正数,异号数相乘除,结果为负数。

3. 有理数的比较:有理数大小的比较可以转化为同号数的比较。

对于两个同号数,绝对值较大的数较大;对于两个异号数,负数较大。

4. 有理数的绝对值:有理数的绝对值是该数去掉符号的值,即正数的绝对值还是正数,负数的绝对值就是对应的正数。

5. 有理数的倒数:非零有理数的倒数,是指该数的分子与分母互换位置所得的有理数。

二、有理数的运算法则1. 有理数的加法法则:同号数相加,保持符号,将绝对值相加;异号数相加,结果取绝对值较大的数的符号,将绝对值较小的数从绝对值较大的数上减去。

2. 有理数的减法法则:可以通过加法法则化简为加法运算。

3. 有理数的乘法法则:同号数相乘,结果为正,将绝对值相乘;异号数相乘,结果为负,将绝对值相乘。

4. 有理数的除法法则:除法可以通过乘法的倒数来计算,即将被除数乘以除数的倒数。

三、有理数的应用有理数在日常生活和实际问题中有广泛的应用,例如:1. 温度的表示:正数表示高温,负数表示低温,零表示冰点或零度。

2. 货币的计算:正数表示收入或盈利,负数表示支出或亏损。

3. 钱的存取:正数表示存钱,负数表示取钱。

4. 海拔的高低:正数表示海拔高,负数表示海拔低。

5. 游戏得分:正数表示得分,负数表示扣分或失分。

四、有理数的运算技巧在进行有理数的运算时,有一些技巧可以简化计算,例如:1. 加法与减法混合运算时,可以先合并同号数进行运算,再对异号数进行运算。

有理数知识点总结归纳

有理数知识点总结归纳

有理数知识点总结归纳有理数是数学中的一个重要概念,包括整数和分数。

它们在数学运算、代数、几何、实际应用等方面都有广泛的应用。

本文将对有理数的基本概念、性质以及相关的运算规则进行总结归纳。

一、有理数的基本概念有理数是可以表示为两个整数之比(分数)的数。

整数是有理数的特殊情况,可以表示为分母为1的分数。

有理数可以有正负之分,分数可以是正的、负的或零。

有理数可以用分数形式表示,也可以用小数形式表示。

二、有理数的性质1. 封闭性:有理数的加法、减法和乘法运算仍然是有理数。

2. 密度性:在任意两个不相等的有理数之间,总存在一个有理数。

3. 比较性:任意两个有理数都可以进行比较大小,并满足传递性。

4. 0的特殊性:任何有理数与0相乘得到0,除了0以外的任何有理数与0相除都得到0。

三、有理数的运算规则1. 加法和减法:a) 同号两数相加减,绝对值求和差,符号不变。

b) 异号两数相加减,绝对值求差,符号取绝对值大的数的符号。

2. 乘法和除法:a) 同号两数相乘除,结果为正,绝对值求积商。

b) 异号两数相乘除,结果为负,绝对值求积商。

c) 任何数与0相乘得0,0除以任何数等于0。

3. 混合运算:根据运算次序,先进行括号内的运算,然后依次进行乘法和除法,最后进行加法和减法。

四、有理数的应用举例1. 温度计中的正负数:温度计上的正数表示高温,负数表示低温。

例如,今天的温度是-10℃,表示比冰点低10摄氏度。

2. 债务与存款:债务可以表示为负数,存款可以表示为正数。

当我们拥有存款时,我们的财务状况是正的;当我们拥有债务时,我们的财务状况是负的。

3. 有理数在比例和比率中的应用:比例和比率是数学中常用的概念,可以用有理数来表示。

例如,某商品的售价是原价的3/4,可以表示为有理数3/4。

总结:有理数是数学中的重要概念,它包括了整数和分数。

有理数具有封闭性、密度性、比较性和0的特殊性等性质。

在运算方面,有理数的加法、减法、乘法和除法都有相应的规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数知识点总结
有理数的定义
包含有理数分类的原则和方法,相反数、数轴、绝对值的概念和特点。

1.有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数。

“分类”的原则:(1)相称(不重、不漏);(2)有标准
2.非负数:正数与零的统称。

3.相反数:(1)定义:如果两个数的和为0.那么这两个数互为相反数.
(2)求相反数的公式: a的相反数为-a.
(3)性质:①a≠0时,a≠-a;②a与-a在数轴上的位置关于原点对称;③两个相反数的和为0,商为-1。

4.数轴:
(1)定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴。

作用:①直观地比较实数的大小;②明确体现绝对值意义;③所有的有理数可以在数轴上表示出来,所有的无理数如都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。

5.绝对值:(1)代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。

(2)几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

①符号"││”是“非负数”的标志;
②数a的绝对值只有一个;
③处理任何类型的题目,只要其中有"││”出现,其关键一步是去掉"││”符号。

有理数的乘方
1.乘方的意义
求n个相同因数的积的运算,叫乘方,其中,n为自然数,乘方的结果叫幂.
一般地,a·a·...·a(n个a)记作an,其中a叫底数,n叫指数,读作a的n次方或a的n次罪。

指数为1时,可省略不写,底数是分数或负数的应添括号.
应用乘方的定义时,要注意分清底数、指数,如(-3)2与-32中,前者底数是-3,后者底数为3;前者指数对负数起作用,后者指数“管不住”负号,这两个幂不相等,是互为相反数.
注意(1)任何数的偶次幂都是非负数.
(2)-1的偶次幂得1,-1的奇次幂为-1.
(3)1的任何欢幂都得1,0的任何次幂都为0.
2.科学记数法
一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫科学记数法.
用科学记数法表示一个大于10的数时,10的指数(即n的值)比原数的整数位数少1.如原数有6位整数,n=5.
被表示的数若是负数时,用科学记数法表示一个数,不能改变被表示数的大小,并按记数的要求书写,不要遗漏了负号.
3.有效数字
经四舍五人的近似数,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫这个近似数的有效数字.
4.精确度
精确度是近似数的精确程度,一般表现为两种形式:
(1)精确到某一位
一个近似数四舍五入到哪一位,就称这个数精确到哪一位,如近似数0.576精确到千分位,或称精确到0.001.
(2)保留若干个有效数字
一个近似数有几个有效数字,就称这个近似数保留几个有效数字,如近似数0.324是保留三位有效数字.
注意:给定一个近似数,要确定其精确度,主要是由该近似数的最后一位有效数字在该数中所处的位置所决定的.
5.有理数的混合运算
规则是:先算乘方,再算乘除,最后算加减;同级运算,按照从左到右的顺序进行,有括号的先算括号内,计算过程中,灵活运用运算律.
有理数运算法则
加法法则
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.
减法法则
减去一个数,等于加上这个数的相反数.
运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数
总结
①.有理数的加减法可统一成加法.
②.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.
乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
除法的法则:
0没有倒数,乘积为1的两个数互为倒数.
两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不为0的数,都得0.(分母≠0).利用除法法则可以化简分数.
在有理数混合运算中:
1.先乘方,再乘除,最后加减;
2.同级运算从左到右按顺序运算;
3.若有括号,先小再中最后大,依次计算.
常见考法
绝对值、相反数、数轴的概念难度不大,但极易混淆。

在段考和中考中都是重点,题型多以填空、选择为主。

有时也和定义新运算这类题目联系起来考查。

有理数例题
题目
【例】(2009山西省太原市)在数轴上表示-2的点离开原点的距离等于( )
A.2
B.-2
C. 0
D.4
答案
【解析】本题考查数轴的有关知识,也是考查绝对值的几何意义,数轴上表示-2的点离开原点的距离等于2,故选A。

混淆了绝对值、相反数、数轴三者的概念,是学生的常见错误。

有理数的运算是数学运算的基础,通过对中学数学各类考试中试题的分析可以看出对有理数运算侧重于:
1.考查易混淆,易出错的相关运算及符号的确定,如有理数的减法、乘方的运算。

2.考查各种运算意义、法则的理解及灵活运用。

3.结合实际生活中的问题情境,考查实数运算的应用。

题型一般是计算题。

【例】(2010黑龙江哈尔滨)某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( )
(A)16℃(B)20℃(C)-16℃(D).-20℃
【解析】故选B.。

相关文档
最新文档