华东师大版八年级数学下册第一章 分式 单元复习测试题(含答案)

合集下载

华东师大版八年级数学下册17.3《分式的运算》单元练习.doc

华东师大版八年级数学下册17.3《分式的运算》单元练习.doc

17.3分式的运算一、选择题 :( 每小题 5 分 , 共 30 分 ) 1. 下列各式计算正确的是 ( )A.a 2 2ab b 2a b ;B.x 2 2 xy y 2x yb a( x y)32C. x 3x 5 ; D.1 y1 yy 4y 6x x 2. 计算 111 的结果为 ()x 111x 2A.1B.x+1C.x 11xD.x 13. 下列分式中 , 最简分式是 ( )A.a bB.x 2 y 2 C.x 2 4 D.a 2 2 ab ax yx2a 24. 已知 x 为整数 , 且分式2x 2的值为整数 , 则 x 可取的值有 ( )x 21A.1 个B.2 个C.3 个D.4个5. 化 简 x1y 1 的结果是 ( )yxA.1B. xC.y D.-1yx6. 当 x=3 时, 代数式xx2x 的值是 ()x 1 x 1 1 x31B.13C.33 D.33A.2222二、填空题 :( 每小题 6 分 , 共 30 分 )7. 计算 21 3x的结果是 ____________.x 1 2 2x8. 计算 a 2÷ b ÷ 1 ÷ c × 1 ÷ d × 1的结果是 __________.bc d9. 若代数式x1 x 3 有意义 , 则 x 的取值范围是 __________. x2 x 410. 化简 113 a 的结果是 ___________.22a4 a11. 若M 2xy y2 x y则 M=___________.y2 x2 y2 x,x2 y12.公路全长 s 千米 , 骑车 t 小时可到达 , 要提前 40 分钟到达 , 每小时应多走 ____千米 .三、计算题 :( 每小题 5 分 , 共 10 分 )13. x2 9x x2 9 ; 14. x 2 3x x2 6x 9四、解答题 :( 每小题 10 分 , 共 20 分 )15. 阅读下列题目的计算过程: 2 x 3 xx 11 x 1x 3 2 x 3 2( x 1)①x2 1 1 x (x 1)(x 1) ( x 1)( x 1)=x-3-2(x-1) ②=x-3-2x+2 ③=-x-1 ④(1)上述计算过程 , 从哪一步开始出现错误 ?请写出该步的代号 :______.(2)错误的原因是 ____ _____ _.(3)本题目的正确结论是 __________.16. 已知 x 为整数 , 且 2 2 2x 18为整数 , 求所有符合条件的 x 值的和 .x 3 3 x x2 9答案一、1. D2.C 解 : 原式 =x 1x 1 x2 1 11x 1 1 x2 1 x2x x2 x ( x 1)(x 1) x 1=x2 1 x 1 x2 xx 13.B点拨:A的最简结果是-1 ;C的最简结果是x+2;D 易被错选 , 因为 a2+a-2=(a+2)(a-1)易被忽视 , 故化简结果应为1a .14.D 解 : 先化简分式2x2 2( x 1) 2 , 故当 x-1 分别等于 2,1,-1 或 -2, 即 xx 21 ( x 1)(x 1)x 1分别等于 3,2,0 或 -1 时 , 分式的值为整数 .点拨 : 解决此类问题 , 最关键的是先将分式化成最简形式.5.B 解 : 原式 =xy 1xy 1xy 1 xy 1 x .y y x xyx y6.B 解 : 原式 =x(x 1)x( x 1)2x1)(x 1) ( x 1)(x 1)1 x(x=x 2 x x 2 x 2x2x1 x 1(x 1)(x1) 1 x(x 1)(x 1)2x.x 1把 x=3 代入 上式 , 得原式 =11 ( 3 1) 1 3 .3 1( 3 1)( 3 1) 2点拨 : 此题计算到1这一步时 , 并未结束 , 还应进一步进行分母有理化, 应引起足3 1够的重视 .二、7. 5 3x解 : 原式 =21 3x 4 1 3x 4 1 3x 5 3x .2x 2x 1 2x 2 2x 2 2x 2 2x 2 2x 28.a 2解 : 原式 = a 21 1 1 11a 2 2.c 2d 2bcdd c 2dbc点拨 : 先将除法统一成乘法后再运算, 即简便 又不易出错 , 否则 , 很容易犯运算顺序的错误 .9.x ≠ -2,-3 和 -4点拨 : 此题易忽略了“ x ≠ -3 ”这个条件 ,(x+3) 虽然是分式x 3的分子 , 但是x3x 4x 4又是整个算式的除式部分 , 由于除数不能为零 , 所以 x+3≠ 0, 即 x ≠-3.10.-2解: 原式 =a 2 1 3 a a 3 2( a 2) 2.a 2 a 2 2( a 2) a 2 3 a11.x 2点拨 : ①将等号右边通分, 得x 2 2,比较等号左边的分式M , 不难得出2y x 2y 2xM=x 2. ②可以在等号两边都乘以 (x 2-y 2) 后, 化简右 边即可 .12.2s 点拨 : ①首先把“ 40 分钟” 化为“2小时” . ②易列出ss的非最简形 3t 2 2t32 tt3式 , 应进一步进行化简计算 : 上式 =3s2 s3st 2) s(3t 2) 2s.3t tt(3t t (3t 2)3t 22t三、13. 解 : 原式 =x(x 9) ( x3)(x 3) x 9 x 3 2x 6 2( x 3)2.x(x 3)( x 3)2 x 3x 3 x 3 x 3点拨 : 计算该题易错将最简形式为止 .2x6看成最终结果 . 强调 : 进行分式的运算 , 要将结果化成x 314. 解 : 原式 =2xx 1 3 2 x x 2 1 3x 1 1 x 1 x 1x 1 x 1=2 x x 2 4 2 x x 1( x 2) x 11 .x 1 x 1x 1 x 2 4x 1 (x 2)( x 2) x 2四、 15.(1) ② ;( 2) 错用了同分母分式的加减法则 . (3)1.x 1点拨 : 等学习了解分式方程之后 , ②步的错更易发生 , 特别提醒读者 , 进行分式的运算 , 每步都要严格遵守法则 .16. 解 : 原式 = 22 2x 183 x 3 ( x 3)( x 3)x=2( x 3) 2( x 3)2x 18( x 3)( x 3) ( x 3)( x 3)( x 3)(x 3)=2x6 2x 6 2x 18(x 3)( x 3)=2 x 62( x 3)2.( x 3)( x 3) ( x 3)( x 3)x 3显然 , 当 x-3=2,1,-2或 -1, 即 x=5,4,2 或 1 时 ,2 的值是整数 ,所以满足条件的数x 3只有 5,4,2,1 四个 ,5+4+2+1=12.点拨 : 显然在原式形式下无法确定满足条件的x 的值 ,需先经 过化简计算才能使问题得到解决 , 这是解决分式问题常用的做法 .。

最新华东师大版下册数学八年级《分式》单元测试卷1(内附有答案).docx

最新华东师大版下册数学八年级《分式》单元测试卷1(内附有答案).docx

(新课标)华东师大版八年级下册《分式》单元测试题姓名: 班级: 学号: 分数: 一.选择题(每小题3分,共24分)1.下列各式中,分式的个数为:( )3x y -,21a x -,1x π+,3ab -,12x y+,12x y +,2123x x =-+; A 、5个; B 、4个; C 、3个; D 、2个;2、下列约分正确的是( )A 、326x xx =;B 、0=++yx yx ;C 、xxy x y x 12=++;D 、214222=y x xy3.下列各式正确的是( ) A 、c ca b a b =----; B 、c ca b a b =---+; C 、c ca b a b=--++; D 、c ca b a b-=----;4.人体中成熟的红细胞的平均直径为0.0000077米,用科学记数法表示为( )A 、57.710-⨯米;B 、67710-⨯米;C 、57710-⨯米;D 、67.710-⨯米; 5.下列分式是最简分式的是( ) A 、11m m--; B 、3xy yxy-; C 、22x y x y -+; D 、6132mm-; 6.将分式2x x y+中的x 、y 的值同时扩大2倍,则扩大后分式的值( )A 、扩大2倍;B 、缩小2倍;C 、保持不变;D 、无法确定; 7、若分式33x x --的值为零,则x =( )A 、3;B 、-3;C 、3±;D 、08、已知0≠x ,xx x 31211++等于( )A 、x21 B 、x61 C 、x65 D 、x611二.填空题(每小题3分,共21分) 9.分式x x -+212中,当____=x 时,分式没有意义,当____=x 时,分式的值为零。

10.分式2x y xy +,23yx,26x yxy -的最简公分母为; 11.计算:201()( 3.14)3π--+-=;12.分式方程3-x x +1=31--x x 有增根,则x = 13.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时。

华东师大版数学八年级下册全册练习题(含答案)

华东师大版数学八年级下册全册练习题(含答案)

2.分式的基本性质1.下列运算正确的是( D )(A)=- (B)=(C)=x+y (D)=-2.下列分式中是最简分式的是( A )(A)(B)(C)(D)3.若将分式中的x,y都扩大到原来的3倍,则分式的值( A )(A)不变 (B)扩大3倍(C)扩大6倍 (D)缩小到原来的4.(整体求解思想)(2018新乡一中月考)若y2-7y+12=0,则分式的值是( B )(A)1 (B)-1 (C)13 (D)-135.若=2,=6,则= 12 .6.若梯形的面积是(x+y)2(x>0,y>0),上底是2x(x>0),下底是2y(y>0),高是z(z>0),则z=x+y .7.化简:= x-y+1 .8.(辅助未知数法)若==≠0,则= .9.不改变分式的符号,使分式的分子、分母最高次项的系数为正数.解:==.10.通分:(1),,;(2),.解:(1),,的最简公分母为12x3y4z,所以==,==,==.(2),的最简公分母为x(x-y)(x+y),所以==,==.11.(拓展探究)不改变分式的值,把分式中分子、分母的各项系数化为整数,然后选择一个你喜欢的整数代入求值.解:==.因为6x-5≠0,所以x≠.所以当x=0时,原式==-.12.(一题多解)已知=3,求的值.解:法一分子、分母的每一项除以y2,得===.法二已知=3,得x=3y,代入得====.16.2 分式的运算1.分式的乘除1.若分式(-)2与另一个分式的商是2x6y,则另一个分式是( B )(A)- (B)(C)(D)-2.计算:的结果为( A )(A)1 (B)(C) (D)03.如果x等于它的倒数,那么÷的值是( A )(A)1 (B)-2(C)-3 (D)2或-34.计算()2·()3÷(-)4得( A )(A)x5 (B)x5y (C)y5 (D)x155.化简:÷= .6.(2018洛阳伊川期末)若·△=,则△表示的代数式是-.7.学习分式的乘除时,李老师在黑板上写出这样一道题目:若分式没有意义,则÷()2·的值是-.8.化简下列各式:(1)÷;(2) ÷(x+3)·;(3)·÷(-ab4).解:(1)原式=÷=×=.(2)原式=··=-.(3)原式=··=.9.已知a=b+2 018,求代数式·÷的值.解:原式=××(a-b)(a+b)=2(a-b),因为a=b+2 018,所以a-b=2 018,所以原式=2×2 018=4 036.10.(拓展探究)若=x-,化简:(x+)(x2+)(x4+)(x8+)(x16+) (x2-1). 解:因为=x-,所以原式=[(x-)(x+)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x2-)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x4-)(x4+)(x8+)(x16+)](x2-1)÷=[(x8-)(x8+)(x16+)](x2-1)÷=[(x16-)(x16+)](x2-1)÷=(x32-)(x2-1)·=(x32-)·x=x33-.11.(拓展探究)(1)计算:(a-b)(a2+ab+b2);(2)利用所学知识以及(1)所得等式,化简代数式÷. 解:(1)原式=a3+a2b+ab2-a2b-ab2-b3=a3-b3.(2)原式=·=m+n.2.分式的加减第1课时分式的加减1.若-β=,则β等于( D )(A)(B)(C)(D)2.计算++的结果为( D )(A)(B)(C)(D)3.化简-等于( B )(A)(B)(C)-(D)-4.化简:+的结果是a-b .5.化简:-+1=x .6.若=+,则A= 3 ,B= 6 .7.计算:(1)-;(2)-+;(3)+.解:(1)-=+===.(2)-+=-+====.(3)+=-=-===-.8.(2018广州)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值. 解:(1)T=+=+====.(2)因为正方形ABCD的边长为a,面积为9,所以a2=9,所以a=3(负值已舍去),所以T==.9.(规律探索题)(2018安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.解:(1)++×=1.(2)++·=1.证明如下:因为左边=++·===1,右边=1,所以左边=右边,所以等式成立.所以第n个等式为++·=1.第2课时分式的混合运算1.化简:(-)·(x-3)的结果是( B )(A)2 (B)(C) (D)2.计算:(1+)÷(1+)的结果是( C )(A)1 (B)a+1(C)(D)3.当x=6,y=3时,代数式(+)·的值是( C )(A)2 (B)3 (C)6 (D)94.化简(y-)÷(x-)的结果是( D )(A)- (B)-(C)(D)5.若x=-1,则÷-2+x的值是0 .6.化简:·÷+= .7.(整体求解法)若x+=2,则(x2+2+)·(x2-)÷(x-)+2 019的值是 2 027 .8.化简:(+)÷.解:(+)÷=·=·=.9.先化简:·+,再在-3,-1,0,,2中选择一个合适的x值代入求值. 解:·+=·+=+===x,为使原分式有意义x≠-3,0,2,所以x只能取-1或.当x=-1时,原式=-1.或当x=时,原式=.(选择其中一个即可)10.(分类讨论题)若a的立方等于它的本身,求(+)÷·的值. 解:原式=÷·=·(a+2)(a-2)·=a3.因为a的立方等于它的本身,所以a=0或1或-1.所以当a=0时,原式=03=0;当a=1时,原式=13=1;当a=-1时,原式=(-1)3=-1.所以(+)÷·的值是0或1或-1.11.(拓展题)(2018德州)先化简,再求值:÷-(+1),其中x是不等式组的整数解.解:原式=·-(+)=-=.因为不等式组的解集是3<x<5,所以不等式组的整数解是x=4.所以当x=4时,原式==.16.3 可化为一元一次方程的分式方程第1课时分式方程及解法1.(2018德州)分式方程-1=的解为( D )(A)x=1 (B)x=2 (C)x=-1 (D)无解2.若方程=+的解为x=15,则?表示的数为( C )(A)7 (B)5 (C)3 (D)13.对于非零的实数a,b,规定a⊕b=-.若2⊕(2x-1)=1,则x等于( D )(A)5 (B)6 (C) (D)4.关于x的方程=2+无解,则m的值为( A )(A)-5 (B)-8 (C)-2 (D)55.若关于x的方程+=3的解为正数,则m的取值范围是( B )(A)m<(B)m<且m≠(C)m>-(D)m>-且m≠-6.有四个方程为-=1,=2,()2=+-1,+6=.其中分式方程有 1 个.7.(2018潍坊)当m= 2 时,解分式方程=会出现增根.8.解分式方程:+=4.解:方程两边同乘(x-1),得x-2=4(x-1),整理得-3x=-2,解得x=,经检验x=是原方程的解,故原方程的解为x=.9.若|a-1|+(b+2)2=0,求方程+=1的解.解:因为|a-1|+(b+2)2=0,所以a-1=0,b+2=0.所以a=1,b=-2.把a=1,b=-2代入方程,得-=1.解得x=-1.经检验x=-1是原方程的解.所以原方程的解是x=-1.10.(拓展题)若分式无意义,则当-=0时,m= .11.(归纳猜想思想)已知方程x-=1的解是x1=2,x2=-;x-=2的解是x1=3,x2=-;x-=3的解是x1=4,x2=-;x-=4的解是x1=5,x2=-.问题:(1)观察上述方程及其解,再猜想x-=n+(n为正整数)的解(不要求证明);(2)写出方程x-=10的解并且验证你写的解是否正确.解:(1)x1=n+1,x2=-.(2)x1=11,x2=-.验证:当x=11时,左边=11-=10=右边;当x=-时,左边=-+11=10=右边.所以x1=11,x2=-都是原方程的解.第2课时分式方程的应用1.某市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是( A )(A)-=5 (B)-=5(C)+5=(D)-=52.(2018衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( A )(A)-=10 (B)-=10(C)-=10 (D)+=103.(2018嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意可列出方程=(1-10%) .4.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: =.5.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是80 km/h.6.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .7.某校学生利用双休时间去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.解:设骑车学生的速度为x km/h,汽车的速度为2x km/h,根据题意得=+,解得x=15,经检验x=15是原方程的解,所以2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15 km/h,30 km/h.8.(2018威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件.根据题意,得-=+.解得x=60.经检验x=60是原方程的解.所以(1+)x=80.答:软件升级后每小时生产80个零件.9.(拓展题)某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求甲工程队完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的分配方案是什么?(甲、乙两工程队完成的天数均为整数)解:(1)设甲工程队每天能铺设x米,则乙工程队每天能铺设(x-20)米.根据题意,得=,解得x=70.经检验x=70是原方程的解,所以x-20=70-20=50.答:甲、乙工程队每天分别能铺设70米和50米.(2)设分配给甲工程队y米,则分配给乙工程队(1 000-y)米.所以甲工程队完成该项工程的工期为天,乙工程队完成该项工程的工期为天,根据题意,得≤10,解得y≤700.因为y是以百米为单位,所以y=100,200,300,400,500,600,700.所以1 000-y=900,800,700,600,500,400,300.因为甲、乙两工程队完成的天数均为整数,所以y=700.所以1 000-y=300.答:分配给甲工程队700米,分配给乙工程队300米.10.(分类讨论)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.解:(1)设这种笔单价为x元,则本子单价为(x-4)元,由题意得=,解得x=10,经检验x=10是原分式方程的解,则x-4=6.答:这种笔单价为10元,则本子单价为6元.(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得10m+6n=100,整理得m=10-n,因为m,n都是正整数,所以①n=5时,m=7,②n=10时,m=4,③n=15,m=1.所以有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.16.4 零指数幂与负整数指数幂1.零指数幂与负整数指数幂2.科学记数法1.下列计算正确的是( D )(A)(-1)0=-1 (B)(-1)-1=1(C)3m-2= (D)(-a)÷(-a)3=2.计算:-()2+(+π)0+(-)-2的结果是( D )(A)1 (B)2 (C)(D)33.(2018洛阳伊川模拟)某种流感病毒的直径约为0.000 000 08 m,若把0.000 000 08用科学记数法表示为8×10n,则n的值是( A )(A)-8 (B)-7 (C)-6 (D)-54.计算:|-5|+()-1-2 0170的结果是( B )(A)5 (B)6 (C)7 (D)85.某颗粒物的直径是0.000 002 5米,把0.000 002 5用科学记数法表示为 2.5×10-6.6.(2018泰安)一个铁原子的质量是0.000 000 000 000 000 000 000 000 093 kg,将这个数据用科学记数法表示为9.3×10-26kg.7.计算:|1-|+()0= .8.若(3x-15)0+8有意义,则x的取值范围是x≠5 .9.用科学记数法表示:(1)0.000 03;(2)-0.000 006 4;(3)0.000 031 4.解:(1)0.000 03=3×10-5.(2)-0.000 006 4=-6.4×10-6.(3)0.000 031 4=3.14×10-5.10.若52x-1=1,3y=,求x y的值.解:因为52x-1=1,3y=,所以52x-1=50,3y=3-3.所以2x-1=0,y=-3,所以x=,所以x y=()-3==8.11.计算:(1)|-1|-+(π-3)0+2-2;(2)(-1)2 017+(-)-2×-|-2|.解:(1)原式=1-+1+=1-2+1+=.(2)原式=-1+4×1-2=-1+4-2=1.12.(易错题)计算的结果是( B )(A)(B)(C)(2a-1)b (D)(2a-1)b313.(规律探究题)(1)通过计算比较下列各式中两数的大小:(填“>”“<”或“=”)①1-2> 2-1,②2-3> 3-2,③3-4< 4-3,④4-5< 5-4,…;(2)由(1)可以猜测n-(n+1)与(n+1)-n (n为正整数)的大小关系:当n ≤2 时,n-(n+1)>(n+1)-n;当n >2 时,n-(n+1)<(n+1)-n.第17章函数及其图象17.1 变量与函数1.(2018洛阳伊川期末)在函数y=+(9x-81)-1中,自变量x的取值范围是( D )(A)x≠1 (B)x≠-5(C)x≠9 (D)x≠-5且x≠92.下列说法正确的是( D )(A)在球的体积公式V=πr3中,V不是r的函数(B)若变量x,y满足y2=x,则y是x的函数(C)在圆锥的体积公式V=πR2h中,当h=4厘米,R=2厘米时,V是π的函数(D)变量x,y满足y=-x+,则y是x的函数3.某地的地面温度为21 ℃,如果高度每升高1千米,气温下降6 ℃,则气温T(℃)与高度h(千米)之间的表达式为( A )(A)T=21-6h (B)T=6h-21(C)T=21+6h (D)T=(21-6)h4.下列曲线中不能表示y是x的函数的是( C )5.(2018灵宝期中)若等腰△ABC的周长是36,则底边y与腰长x之间的函数表达式是y=36-2x ,其中自变量x的取值范围是9<x<18 .6.根据如图所示程序计算函数值,若输入的x的值为-1,则输出的函数值为 1 .7.下面的表格列出了一个实验的统计数据(单位:厘米),表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,则能表示这种关系的式子是b= d .d 50 80 100 150b 25 40 50 758.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则y 与n之间的函数表达式为y= 4n .9.分别指出下列表达式中的变量与常量.(1)三角形的一边长为8,它的面积S与这条边上的高h之间满足表达式S=4h;(2)圆的半径r与该圆的面积S之间满足表达式S=πr2.解:(1)变量为S与h,常量为4.(2)变量为S和r,常量为π.10.求下列函数中自变量x的取值范围.(1)y=-8x;(2)y=-x+10;(3)y=x2+2x-3;(4)y=.解:(1)自变量x的取值范围是全体实数.(2)自变量x的取值范围是全体实数.(3)自变量x的取值范围是全体实数.(4)因为11x-88≠0,所以x≠8.所以自变量x的取值范围是x≠8.11.某市出租车价格是这样规定的:不超过2.5千米,付车费8元,超过的部分按每千米2.5元收费.已知某人乘坐出租车行驶了x(x>2.5)千米,付车费y元,请写出出租车行驶的路程x(千米)与所付车费y(元)之间的表达式.解:根据题意可知所付车费为y=8+2.5×(x-2.5)=2.5x+1.75(其中x>2.5).12.一辆汽车的油箱中现有汽油49升,如果不再加油,那么油箱中的油量y(单位:升)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.07升/千米.(1)写出y与x之间的函数关系式;(2)求自变量x的取值范围;(3)汽车行驶200千米时,油箱中还有多少汽油?解:(1)根据题意,得每行驶x千米,耗油0.07x,即总油量减少0.07x,则油箱中的油剩下49-0.07x,所以y与x的函数关系式为y=49-0.07x.(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.07x,不能超过油箱中现有汽油量的值49,即0.07x≤49,解得x≤700.综上所述,自变量x的取值范围是0≤x≤700.(3)当x=200时,代入x,y的函数关系式得,y=49-0.07×200=35.所以汽车行驶200千米时,油箱中还有35升汽油.13.(分类讨论)已知两个变量x,y满足关系2x-3y+1=0,试问:(1)y是x的函数吗?(2)x是y的函数吗?若是,写出y与x的表达式,若不是,说明理由.解:(1)由2x-3y+1=0,得y=,因为对于x的每一个取值,y都有唯一确定的值,所以y是x的函数.(2)由2x-3y+1=0,得x=,因为对于y的每一个取值,x都有唯一确定的值,所以x是y的函数.14.(拓展探究题)用火柴棒按如图所示的方式搭一行三角形,搭1个三角形需3根火柴棒,搭2个三角形需5根火柴棒,搭3个三角形需7根火柴棒,照这样的规律搭下去,搭n个三角形需要y根火柴棒.(1)求y关于n之间的函数表达式;(2)当n=2 019时,求y的值;(3)当y=2 021时,求n的值.解:(1)因为3=2×1+1,5=2×2+1,7=2×3+1,…,所以y与n之间的函数表达式为y=2n+1.(2)当n=2 019时,y=2×2 019+1=4 039.(3)当y=2 021时,2n+1=2 021.所以n=1 010.17.2 函数的图象1.平面直角坐标系1.如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为( D )(A)(2,1) (B)(1,2)(C)(-1,2) (D)(-1,3)2.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( D )(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.(2018洛阳栾川期末)若|3-x|+|y-2|=0,则点(x y,y x)在( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限4.已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( B )5.若点P的坐标是(8,6),则坐标原点O到点P的距离是10 .6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为a+b=0 .7.若21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,且22 017的个位数字是a,22 018的个位数字是b,22 019的个位数字是c,22 020的个位数字是d,则点A(a-b,c-d)在第二象限.8.已知点P(x,y)位于第二象限,并且y≤x+4,x,y为整数,写出一个符合上述条件的点P的坐标: (-1,3)或(-1,2)或(-1,1)或(-2,1)或(-2,2)或(-3,1) .9.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,求“距离坐标”是(2,1)的点的个数,并画出草图.解:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个,如图所示.10.在一次“寻宝”游戏中,寻宝人已经找到了坐标分别为(3,2)和(3,-2)的两个标点A,B,并且知道藏宝地点C的坐标为(4,4),除此之外不知道其他信息,如何确定平面直角坐标系并找到“宝藏”(即在图中先正确画出平面直角坐标系,再描出点C的位置)?解:根据题意,建立如图所示的坐标系,点C的位置就是宝藏的位置.11.(探索规律)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(5,0) .2.函数的图象1.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( D )2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OA BC为折线),这个容器的形状可以是( D )3.一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列4幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( C )4.(2018渑池模拟)星期天晚饭后,小红从家里出去散步,如图是描述她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象信息,则描述符合小红散步情景的是( B )(A)从家出发,到了一个公共阅报栏,看了一会儿报就回家了(B)从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了(C)从家出发,一直散步,然后回家了(D)从家出发,散了一会儿步,就找同学去,18分钟后才开始返回5.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量x的取值范围是4<x≤6 .6.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,请你观察:(1)这是一次100 米赛跑;(2)甲、乙两人先到达终点的是甲;(3)在这次赛跑中乙的速度是8米/秒.7.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是①②④.8.星期天,小明与小刚骑自行车去距家15千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在如图的平面直角坐标系中,画出符合他们行驶的路程s(千米)与行驶时间t(时)之间的函数图象.解:由题意可知,2.5个小时走完全程15千米,所以1.5小时走了9千米,休息0.5小时后1小时走了6千米,由此作图即可.9.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)的关系(从小强开始爬山时计时),看图回答下列问题:(1)小强让爷爷先爬了多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)图中两条线段的交点表示什么意思?(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,这对问题的结论有影响吗?允许这样做吗?解:(1)小强让爷爷先爬了60米.(2)山顶离山脚的距离有300米,小强先爬上山顶.(3)图中两条线段的交点表示小强出发8分钟时,小强赶上爷爷,并且都爬了240米.(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,对问题结论没有影响,可以这样做.10.拖拉机开始工作时,油箱中有油30升,每小时耗油5升.(1)写出油箱中剩余油量Q(升)与工作时间t(时)之间的函数表达式;(2)写出自变量t的取值范围;(3)画出函数的图象.解:(1)所求的函数表达式是Q=-5t+30.(2)自变量t的取值范围是0≤t≤6.(3)①列表:t 0 2 4 6Q 30 20 10 0②描点并连线,函数图象如图所示.11.(拓展探究)如图①,点G是BC的中点,点H在AF上,动点P以每秒2 cm的速度沿图①的边线运动,运动路径为G-C-D-E-F-H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图②,若AB=6 cm,则下列四个结论中正确的个数为( D )(1)图①中的BC长是8 cm;(2)图②中的M点表示第4秒时y的值为24 cm2;(3)图①中的CD长是4 cm;(4)图②中的N点表示第12秒时y的值为18 cm2.(A)1个(B)2个(C)3个(D)4个12.(实际应用)汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶时共用了几分钟?速度是多少?在这段时间内,它走了多远?解:(1)这辆汽车的最高时速是120千米/时.(2)汽车在行驶了10分钟后停了下来,停了2分钟.(3)汽车在第一次匀速行驶时共用了4分钟,速度是90千米/时,在这段时间内,它走了90×=6千米.17.3 一次函数1.一次函数1.(2018洛阳实验中学月考)若长方形的周长是y,长是2x,宽比长少1,则y与x的函数表达式是( D )(A)y=2x (B)y=2x-1(C)y=2x-2 (D)y=8x-22.(2018郑州一中月考)有下列四个式子:①y-2x2=0;②y+9x=0;③6y=60-2x;④xy-18=0;⑤x-y=0.其中y是x的一次函数的有( B )(A)2个(B)3个(C)4个(D)5个3.用同样规格的黑白两种颜色的正方形瓷砖按如图所示的方式铺地板,设自左向右第x个图形中需要黑色瓷砖y块,则y与x之间的函数表达式是( D )(A)y=x2(B)y=2x+1(C)y=x+3 (D)y=3x+14.函数,一次函数和正比例函数之间的包含关系是( A )5.当m= -1 时,y=(m-1)x m+2是正比例函数.6.某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶超过3千米的部分,按每千米 1.60 元计费.则出租车收费y(元)与行驶路程x(千米)之间的函数表达式是y=.7.如图是由若干盆花组成的形如三角形的图案,每条边有n(n>1)盆花,每个图案中花盆的总数是S,按此规律,则S与n的函数关系式是S=3n-3 .8.从地面到高空11千米之间,气温随高度的升高而下降,每升高1千米,气温下降6 ℃.已知某处地面气温为23 ℃,设该处离地面x千米(0≤x≤11)处的气温为y ℃,则y与x的函数表达式是y=23-6x (0≤x≤11) .9.某用煤单位有煤m吨,每天烧煤n吨,现已知烧煤3天后余煤102吨,烧煤8天后余煤72吨.(1)求m和n的值,并求该单位余煤量y(吨)与烧煤天数x(天)之间的函数表达式;(2)当烧煤12天后,还余煤多少吨?解:(1)由题意,得解得即m=120,n=6.余煤量y吨与烧煤天数x的函数表达式为y=120-6x.(2)当x=12时,y=120-6×12=48.即当烧煤12天后,还余煤48吨.10.水是人类的生命之源,节约用水,人人有责.据测试:拧不紧的水龙头每秒钟会滴下两滴水,每滴水约0.05毫升.小明在洗手时,没有把水龙头拧紧,当小明离开x小时后水龙头滴了y 毫升水.(1)说明y与x之间的关系;(2)当滴了1 620毫升水时,小明离开水龙头多少小时?解:(1)水龙头每秒钟会滴下两滴水,每滴水约0.05毫升,所以离开x小时滴的水为3 600×2×0.05x毫升,所以y=360x(x≥0).所以y与x之间是正比例函数的关系.(2)当y=1 620时,有360x=1 620,解得x=4.5.所以当滴了1 620毫升水时,小明离开水龙头4.5小时.11.(图表信息题)某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.(1)完成下表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余油量y/升(2)写出x与y之间的关系.解:(1)填表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余100 91 82 73 64 46 油量y/升(2)x与y之间的关系为y=100-0.18x.12.(分类讨论题)新学期开始,小明用的练习本可在甲、乙两个商店内买到,已知两个商店的标价都是每本练习本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是:从第1本开始就按标价的85%出售.(1)小明要买20本练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的表达式,它们都是正比例函数吗?(3)小明现有24元钱,最多可买多少本练习本?解:(1)甲店:10+10×0.7=17(元),乙店:20×0.85=17(元),所以到两个商店一样.(2)甲店:y=10+0.7×(x-10),即y=0.7x+3(x>10),不是正比例函数;乙店:y=0.85x,是正比例函数.(3)因为24元钱到甲店,24=0.7x+3,解得x=30(本);24元钱到乙店,24=0.85x,解得x≈28(本),所以到甲店买,最多可买30本练习本.2.一次函数的图象1.已知坐标平面上,一次函数y=3x+a的图象经过点(0,-4),其中a为一常数,则a的值为( B )(A)-12 (B)-4(C)4 (D)122.把直线y=2x-1向左平移1个单位,平移后直线的表达式为( B )(A)y=2x-2 (B)y=2x+1(C)y=2x (D)y=2x+23.如图所示的计算程序中,y与x之间的函数关系所对应的图象是( C )4.(2018滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图象为( A )5.如图,在△ABC中,点O是△ABC的角平分线的交点,过点O作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( B )6.若点P(-3,-4)在直线y=kx-8上,则直线y=kx-8与x轴的交点坐标是(-6,0) .7.在平面直角坐标系xOy中,点A,B的坐标分别为(3,m),(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m-6≤b≤m-4 (用含m的代数式表示).8.画出y=2x与y=2x+3的图象,根据图象的特点,说明两者的联系.解:如图所示,从形状看:将y=2x的图象向上平移3个单位可得y=2x+3的图象.9.在直角坐标系中,求原点O到直线y=-x+5的距离.解:如图,因为当x=0时,y=5,所以直线y=-x+5与y轴的交点A的坐标是(0,5).因为当y=0时,-x+5=0,所以x=12,所以直线y=-x+5与x轴的交点B的坐标是(12,0),所以OA=5,OB=12,所以AB==13.作OC⊥AB于点C,所以×13×OC=×5×12,所以OC=.所以原点O到直线y=-x+5的距离是.10.画出函数y=x-3的图象,求出与x轴、y轴的交点坐标及这条直线与两坐标轴围成的三角形的面积.解:当y=0时,x=2,所以直线与x轴的交点坐标是A(2,0),当x=0时,y= -3,所以直线与y轴的交点坐标是B(0,-3).所以S△OAB=OA·OB=×2×3=3.11.(探究题)已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数表达式;(2)画出函数的图象.解:(1)因为y+2与x成正比例,所以设y+2=kx(k是常数,且k≠0),当x=-2时,y=0,所以0+2=k·(-2),解得k=-1.所以函数表达式为y+2=-x,即y=-x-2.(2)列表如下:x 0 -2y -2 0描点、连线,画图,如图所示.3.一次函数的性质1.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( D )(A)a+b<0 (B)a-b>0(C)ab>0 (D)<03.(2018汝州期末)在同一坐标系中,正比例函数y=kx与一次函数y=x-k的图象大致应为( B )4.关于直线l:y=kx+k(k≠0),下列说法不正确的是( D )(A)点(0,k)在l上(B)l经过定点(-1,0)(C)当k>0时,y随x的增大而增大(D)l经过第一、二、三象限5.(2018安阳模拟)若y是关于x的一次函数为y=(k+1)+k,且y随x的增大而减小,则k的值是-2 ,此函数的表达式是y=-x-2 .6.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k >1 ,b <0 .7.若y是关于x的正比例函数为y=(a-2)x+9-a2,且y随x的增大而增大,则点(-3,-6) 不在直线y=(a-2)x+9-a2上.(填“在”或“不在”)8.在一次函数y=2x+3中,y随x的增大而增大(填“增大”或“减小”),当0≤x≤5时,y 的最小值为 3 .9.已知一次函数y=(3a-2)x+1-b,求a,b的取值范围,使得(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.解:(1)由一次函数y=kx+b(k≠0)的性质可知,当k>0时,函数值y随x的增大而增大,即3a-2>0,所以a>,且b取任意实数.(2)函数图象与y轴的交点为(0,1-b),因为与y轴交点在x轴的下方,。

最新华东师大版下册数学八年级分式的基本性质及考点解析同步练习试题.doc

最新华东师大版下册数学八年级分式的基本性质及考点解析同步练习试题.doc

(新课标)华东师大版八年级下册16.1.2分式的基本性质一.选择题(共8小题)1.分式可变形为()A.B.﹣C.D.﹣2.已知a﹣b≠0,且2a﹣3b=0,则代数式的值是()A.﹣12 B.0 C.4 D.4或﹣123.下列变形正确的是()A.=x3B.=C.=x+y D.=﹣14.下列式子从左到右的变形一定正确的是()A.B.=C.=D.=5.如果=3,则=()A.B.xy C.4 D.6.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的7.若分式中的a、b的值同时扩大到原来的10倍,则分式的值()A.是原来的20倍B.是原来的10倍C.是原来的D.不变8.如果,则=()A.B.1 C.D.2二.填空题(共6小题)9已知a:b:c=2:3:5,则的值为_________ .10.若实数x,y满足,则分式的值等于_________ .11.若代数式的值为零,则x的值为_________ ;若,则=_________ .12.如果:,那么:= _________ .13.如果,那么= _________ .14.如果=,那么= _________ .三.解答题(共6小题)15.请从下列三个代数式中任选两个构成一个分式,并化简该分式:x2﹣4xy+4y2,x2﹣4y2,x﹣2y.16.在括号里填上适当的式子或数字,使等式成立:.17.不改变分式的值,把分式的分子、分母中含x的项的系数都化为正数.18.不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数,且使分子和分母不含公因式.(1);(2).19.不改变分式的值,使分式的分子与分母中最高次项的系数都是正的.(1)= _________ ;(2)= _________ ;(3)= _________ ;(4)= _________ .20.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).16.1.2分式的基本性质参考答案与试题解析一.选择题(共8小题)1.分式可变形为()A.B.﹣C.D.﹣考点:分式的基本性质.菁优网版权所有分析:根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.解答:解:分式的分子分母都乘以﹣1,得﹣,故选:D.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.2.已知a﹣b≠0,且2a﹣3b=0,则代数式的值是()A.﹣12 B.0 C.4 D.4或﹣12考点:分式的基本性质.菁优网版权所有专题:计算题.分析:由2a﹣3b=0,得a=,代入所求的式子化简即可.解答:解:由2a﹣3b=0,得a=,∴=.故选C.点评:解答此类题一定要熟练掌握分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.3.下列变形正确的是()A.=x3B.=C.=x+y D.=﹣1考点:分式的基本性质.菁优网版权所有分析:根据分式的基本性质进行约分即可.解答:解:A、结果为x4,故本选项错误;B、不能约分,故本选项错误;C、不能约分,故本选项错误;D、结果是﹣1,故本选项正确;故选D.点评:本题考查了分式的基本性质的应用,主要考查学生对分式的基本性质的理解能力和应用能力.4.下列式子从左到右的变形一定正确的是()A.B.=C.=D.=考点:分式的基本性质.菁优网版权所有分析:分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.解答:解:A、在分式的分子与分母上同时加上3不符合分式的基本性质,故A错误;B、当c=0时,不成立,故B错误;C、分式的分子与分母上同时乘以3,分式的值不变,故C正确;D、分式的分子与分母分别乘方不符合分式的基本性质,故D错误;故选C.点评:本题主要考查了分式的性质.注意约分是约去分子、分母的公因式,并且分子与分母相同时约分结果应是1,而不是0.5.如果=3,则=()A.B.xy C.4 D.考点:分式的基本性质.菁优网版权所有专题:计算题.分析:由=3,得x=3y,再代入所求的式子化简即可.解答:解:由=3,得x=3y,把x=3y代入==4,故选C.点评:找出x、y的关系,代入所求式进行约分.6.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的考点:分式的基本性质.菁优网版权所有专题:计算题;压轴题.分析:依题意分别用10x和10y去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用10x和10y去代换原分式中的x和y,得==,可见新分式与原分式的值相等;故选A.点评:本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7.若分式中的a、b的值同时扩大到原来的10倍,则分式的值()A.是原来的20倍B.是原来的10倍C.是原来的D.不变考点:分式的基本性质.菁优网版权所有专题:计算题;压轴题.分析:依题意分别用10a和10b去代换原分式中的a和b,利用分式的基本性质化简即可.解答:解:分别用10a和10b去代换原分式中的a和b,得==,可见新分式与原分式相等.故选:D.点评:本题主要考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.8.如果,则=()A.B.1 C.D. 2考点:分式的基本性质.菁优网版权所有分析:已知,就可以变形为a=2b,把它代入所要求的式子就可以求出式子的值.解答:解:∵,∴a=2b,∴=.故选C.点评:把已知中的,变形成a=2b,是解决本题的关键.二.填空题(共6小题)9.(2011•黄浦区一模)已知a:b:c=2:3:5,则的值为.考点:分式的基本性质.菁优网版权所有专题:计算题.分析:根据分式的性质(分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变)解答.解答:解:∵a:b:c=2:3:5,∴可设a=2k、b=3k、c=5k,∴,=,=.故答案为:.点评:本题是基础题,考查了分式的基本性质,比较简单.10.若实数x,y满足,则分式的值等于.考点:分式的基本性质.菁优网版权所有专题:整体思想.分析:由,得y﹣x=5xy,∴x﹣y=﹣5xy.代入所求的式子化简即可.解答:解:由,得y﹣x=5xy,∴x﹣y=﹣5xy,∴原式==.故答案为.点评:解题关键是用到了整体代入的思想.规律总结:(1)利用分式的性质变形时必须注意所乘的(或所除的)整式不为零.(2)同时在分式的变形中,还要注意符号法则,即分式的分子、分母及分式的符号,只有同时改变两个其值才不变.11.若代数式的值为零,则x的值为x=1 ;若,则= .考点:分式的基本性质;分式的值为零的条件.菁优网版权所有专题:计算题.分析:(1)若分式的值为0,那么分子必为0,且分母不等于0,根据这两个条件来进行判断.(2)根据分式的基本性质,可将已知的等式两边都乘以y(y≠0),得到x的表达式,然后代入所求分式中进行计算即可.解答:解:若代数式的值为零,则x﹣1=0,且x+2≠0;解得x=1,且x≠﹣2;故x的值为x=1.根据分式的基本性质知:x=y;∴==.故答案为x=1、.点评:此题主要考查了分式的基本性质以及分式的值为零的条件,需要注意的是若分式的值为零,那么①分子为0,②分母不为0,两个条件必须同时成立,缺一不可.12.如果:,那么:= .考点:分式的基本性质.菁优网版权所有专题:计算题.分析:由已知可知,2a=3b,再代入所求式进行化简.解答:解:∵,∴2a=3b,∴===.故答案为.点评:本题的关键是找到a,b的关系.13.如果,那么= .考点:分式的基本性质.菁优网版权所有专题:计算题.分析:由可知:若设a=2x,则b=3x.代入所求式子就可求出.解答:解:∵,∴设a=2x,则b=3x,∴.故答案为.点评:解决这类题目的关键是正确的代入,并根据分式的性质进行分式的化简.14.如果=,那么= .考点:分式的基本性质.菁优网版权所有专题:计算题.分析:由已知可得出,3x=2y,让等式两边都加上3y,那么3x+3y=5y即3(x+y)=5y,那么=.解答:解:∵=∴3x=2y∴3(x+y)=5y∴=.故答案为.点评:本题主要考查分式的基本性质,比较简单.三.解答题(共6小题)15.请从下列三个代数式中任选两个构成一个分式,并化简该分式:x2﹣4xy+4y2,x2﹣4y2,x﹣2y.考点:分式的基本性质.菁优网版权所有专题:开放型.分析:根据分式的定义和概念进行作答.解答:解:(4分)=(6分)=.(8分)点评:本题是一道开放型题目,但所求的结果一定要符合题目的限制条件.16.在括号里填上适当的式子或数字,使等式成立:.考点:分式的基本性质.菁优网版权所有分析:根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.解答:解:,故答案为:2x2.点评:本题考查了分式的基本性质,根据分母的变化,可知分母乘以﹣x,分子也乘以﹣x.17.不改变分式的值,把分式的分子、分母中含x的项的系数都化为正数.考点:分式的基本性质.菁优网版权所有分析:根据分式的基本性质,分子、分母、分式中有两个改变符号,分式的值不变进行变形即可.解答:解:=.点评:本题考查了分式的基本性质,解题的关键是利用分式的变号不变大小的性质.18.不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数,且使分子和分母不含公因式.(1);(2).考点:分式的基本性质.菁优网版权所有分析:(1)分式的分子分母都乘以12,可得答案;(2)分式的分子分母都乘以20,可得答案.解答:解:(1)原式=;(2)原式=.点评:本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变.19.不改变分式的值,使分式的分子与分母中最高次项的系数都是正的.(1)= ﹣;(2)= ;(3)= ﹣;(4)= .考点:分式的基本性质.菁优网版权所有分析:(1)、(3)分式分子提取﹣1变形即可得到结果;(2)、(4)分式的分子与分母同时乘以﹣1即可得出结论.解答:解:(1)原式==﹣.故答案为:﹣;(2)原式==.故答案为:;(3)原式==﹣.故答案为:﹣;(4)原式==.故答案为:.点评:本题考查的是分式的基本性质,熟知分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变是解答此题的关键.20.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).考点:分式的基本性质.菁优网版权所有分析:(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.解答:解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.点评:本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.。

华东师大版数学八年级下册全册练习题(含答案)

华东师大版数学八年级下册全册练习题(含答案)

2.分式的基本性质1.下列运算正确的是( D )(A)=- (B)=(C)=x+y (D)=-2.下列分式中是最简分式的是( A )(A)(B)(C)(D)3.若将分式中的x,y都扩大到原来的3倍,则分式的值( A )(A)不变 (B)扩大3倍(C)扩大6倍 (D)缩小到原来的4.(整体求解思想)(2018新乡一中月考)若y2-7y+12=0,则分式的值是( B )(A)1 (B)-1 (C)13 (D)-135.若=2,=6,则= 12 .6.若梯形的面积是(x+y)2(x>0,y>0),上底是2x(x>0),下底是2y(y>0),高是z(z>0),则z=x+y .7.化简:= x-y+1 .8.(辅助未知数法)若==≠0,则= .9.不改变分式的符号,使分式的分子、分母最高次项的系数为正数.解:==.10.通分:(1),,;(2),.解:(1),,的最简公分母为12x3y4z,所以==,==,==.(2),的最简公分母为x(x-y)(x+y),所以==,==.11.(拓展探究)不改变分式的值,把分式中分子、分母的各项系数化为整数,然后选择一个你喜欢的整数代入求值.解:==.因为6x-5≠0,所以x≠.所以当x=0时,原式==-.12.(一题多解)已知=3,求的值.解:法一分子、分母的每一项除以y2,得===.法二已知=3,得x=3y,代入得====.16.2 分式的运算1.分式的乘除1.若分式(-)2与另一个分式的商是2x6y,则另一个分式是( B )(A)- (B)(C)(D)-2.计算:的结果为( A )(A)1 (B)(C) (D)03.如果x等于它的倒数,那么÷的值是( A )(A)1 (B)-2(C)-3 (D)2或-34.计算()2·()3÷(-)4得( A )(A)x5 (B)x5y (C)y5 (D)x155.化简:÷= .6.(2018洛阳伊川期末)若·△=,则△表示的代数式是-.7.学习分式的乘除时,李老师在黑板上写出这样一道题目:若分式没有意义,则÷()2·的值是-.8.化简下列各式:(1)÷;(2) ÷(x+3)·;(3)·÷(-ab4).解:(1)原式=÷=×=.(2)原式=··=-.(3)原式=··=.9.已知a=b+2 018,求代数式·÷的值.解:原式=××(a-b)(a+b)=2(a-b),因为a=b+2 018,所以a-b=2 018,所以原式=2×2 018=4 036.10.(拓展探究)若=x-,化简:(x+)(x2+)(x4+)(x8+)(x16+) (x2-1). 解:因为=x-,所以原式=[(x-)(x+)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x2-)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x4-)(x4+)(x8+)(x16+)](x2-1)÷=[(x8-)(x8+)(x16+)](x2-1)÷=[(x16-)(x16+)](x2-1)÷=(x32-)(x2-1)·=(x32-)·x=x33-.11.(拓展探究)(1)计算:(a-b)(a2+ab+b2);(2)利用所学知识以及(1)所得等式,化简代数式÷. 解:(1)原式=a3+a2b+ab2-a2b-ab2-b3=a3-b3.(2)原式=·=m+n.2.分式的加减第1课时分式的加减1.若-β=,则β等于( D )(A)(B)(C)(D)2.计算++的结果为( D )(A)(B)(C)(D)3.化简-等于( B )(A)(B)(C)-(D)-4.化简:+的结果是a-b .5.化简:-+1=x .6.若=+,则A= 3 ,B= 6 .7.计算:(1)-;(2)-+;(3)+.解:(1)-=+===.(2)-+=-+====.(3)+=-=-===-.8.(2018广州)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值. 解:(1)T=+=+====.(2)因为正方形ABCD的边长为a,面积为9,所以a2=9,所以a=3(负值已舍去),所以T==.9.(规律探索题)(2018安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.解:(1)++×=1.(2)++·=1.证明如下:因为左边=++·===1,右边=1,所以左边=右边,所以等式成立.所以第n个等式为++·=1.第2课时分式的混合运算1.化简:(-)·(x-3)的结果是( B )(A)2 (B)(C) (D)2.计算:(1+)÷(1+)的结果是( C )(A)1 (B)a+1(C)(D)3.当x=6,y=3时,代数式(+)·的值是( C )(A)2 (B)3 (C)6 (D)94.化简(y-)÷(x-)的结果是( D )(A)- (B)-(C)(D)5.若x=-1,则÷-2+x的值是0 .6.化简:·÷+= .7.(整体求解法)若x+=2,则(x2+2+)·(x2-)÷(x-)+2 019的值是 2 027 .8.化简:(+)÷.解:(+)÷=·=·=.9.先化简:·+,再在-3,-1,0,,2中选择一个合适的x值代入求值. 解:·+=·+=+===x,为使原分式有意义x≠-3,0,2,所以x只能取-1或.当x=-1时,原式=-1.或当x=时,原式=.(选择其中一个即可)10.(分类讨论题)若a的立方等于它的本身,求(+)÷·的值. 解:原式=÷·=·(a+2)(a-2)·=a3.因为a的立方等于它的本身,所以a=0或1或-1.所以当a=0时,原式=03=0;当a=1时,原式=13=1;当a=-1时,原式=(-1)3=-1.所以(+)÷·的值是0或1或-1.11.(拓展题)(2018德州)先化简,再求值:÷-(+1),其中x是不等式组的整数解.解:原式=·-(+)=-=.因为不等式组的解集是3<x<5,所以不等式组的整数解是x=4.所以当x=4时,原式==.16.3 可化为一元一次方程的分式方程第1课时分式方程及解法1.(2018德州)分式方程-1=的解为( D )(A)x=1 (B)x=2 (C)x=-1 (D)无解2.若方程=+的解为x=15,则?表示的数为( C )(A)7 (B)5 (C)3 (D)13.对于非零的实数a,b,规定a⊕b=-.若2⊕(2x-1)=1,则x等于( D )(A)5 (B)6 (C) (D)4.关于x的方程=2+无解,则m的值为( A )(A)-5 (B)-8 (C)-2 (D)55.若关于x的方程+=3的解为正数,则m的取值范围是( B )(A)m<(B)m<且m≠(C)m>-(D)m>-且m≠-6.有四个方程为-=1,=2,()2=+-1,+6=.其中分式方程有 1 个.7.(2018潍坊)当m= 2 时,解分式方程=会出现增根.8.解分式方程:+=4.解:方程两边同乘(x-1),得x-2=4(x-1),整理得-3x=-2,解得x=,经检验x=是原方程的解,故原方程的解为x=.9.若|a-1|+(b+2)2=0,求方程+=1的解.解:因为|a-1|+(b+2)2=0,所以a-1=0,b+2=0.所以a=1,b=-2.把a=1,b=-2代入方程,得-=1.解得x=-1.经检验x=-1是原方程的解.所以原方程的解是x=-1.10.(拓展题)若分式无意义,则当-=0时,m= .11.(归纳猜想思想)已知方程x-=1的解是x1=2,x2=-;x-=2的解是x1=3,x2=-;x-=3的解是x1=4,x2=-;x-=4的解是x1=5,x2=-.问题:(1)观察上述方程及其解,再猜想x-=n+(n为正整数)的解(不要求证明);(2)写出方程x-=10的解并且验证你写的解是否正确.解:(1)x1=n+1,x2=-.(2)x1=11,x2=-.验证:当x=11时,左边=11-=10=右边;当x=-时,左边=-+11=10=右边.所以x1=11,x2=-都是原方程的解.第2课时分式方程的应用1.某市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是( A )(A)-=5 (B)-=5(C)+5=(D)-=52.(2018衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( A )(A)-=10 (B)-=10(C)-=10 (D)+=103.(2018嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意可列出方程=(1-10%) .4.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: =.5.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是80 km/h.6.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .7.某校学生利用双休时间去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.解:设骑车学生的速度为x km/h,汽车的速度为2x km/h,根据题意得=+,解得x=15,经检验x=15是原方程的解,所以2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15 km/h,30 km/h.8.(2018威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件.根据题意,得-=+.解得x=60.经检验x=60是原方程的解.所以(1+)x=80.答:软件升级后每小时生产80个零件.9.(拓展题)某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求甲工程队完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的分配方案是什么?(甲、乙两工程队完成的天数均为整数)解:(1)设甲工程队每天能铺设x米,则乙工程队每天能铺设(x-20)米.根据题意,得=,解得x=70.经检验x=70是原方程的解,所以x-20=70-20=50.答:甲、乙工程队每天分别能铺设70米和50米.(2)设分配给甲工程队y米,则分配给乙工程队(1 000-y)米.所以甲工程队完成该项工程的工期为天,乙工程队完成该项工程的工期为天,根据题意,得≤10,解得y≤700.因为y是以百米为单位,所以y=100,200,300,400,500,600,700.所以1 000-y=900,800,700,600,500,400,300.因为甲、乙两工程队完成的天数均为整数,所以y=700.所以1 000-y=300.答:分配给甲工程队700米,分配给乙工程队300米.10.(分类讨论)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.解:(1)设这种笔单价为x元,则本子单价为(x-4)元,由题意得=,解得x=10,经检验x=10是原分式方程的解,则x-4=6.答:这种笔单价为10元,则本子单价为6元.(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得10m+6n=100,整理得m=10-n,因为m,n都是正整数,所以①n=5时,m=7,②n=10时,m=4,③n=15,m=1.所以有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.16.4 零指数幂与负整数指数幂1.零指数幂与负整数指数幂2.科学记数法1.下列计算正确的是( D )(A)(-1)0=-1 (B)(-1)-1=1(C)3m-2= (D)(-a)÷(-a)3=2.计算:-()2+(+π)0+(-)-2的结果是( D )(A)1 (B)2 (C)(D)33.(2018洛阳伊川模拟)某种流感病毒的直径约为0.000 000 08 m,若把0.000 000 08用科学记数法表示为8×10n,则n的值是( A )(A)-8 (B)-7 (C)-6 (D)-54.计算:|-5|+()-1-2 0170的结果是( B )(A)5 (B)6 (C)7 (D)85.某颗粒物的直径是0.000 002 5米,把0.000 002 5用科学记数法表示为 2.5×10-6.6.(2018泰安)一个铁原子的质量是0.000 000 000 000 000 000 000 000 093 kg,将这个数据用科学记数法表示为9.3×10-26kg.7.计算:|1-|+()0= .8.若(3x-15)0+8有意义,则x的取值范围是x≠5 .9.用科学记数法表示:(1)0.000 03;(2)-0.000 006 4;(3)0.000 031 4.解:(1)0.000 03=3×10-5.(2)-0.000 006 4=-6.4×10-6.(3)0.000 031 4=3.14×10-5.10.若52x-1=1,3y=,求x y的值.解:因为52x-1=1,3y=,所以52x-1=50,3y=3-3.所以2x-1=0,y=-3,所以x=,所以x y=()-3==8.11.计算:(1)|-1|-+(π-3)0+2-2;(2)(-1)2 017+(-)-2×-|-2|.解:(1)原式=1-+1+=1-2+1+=.(2)原式=-1+4×1-2=-1+4-2=1.12.(易错题)计算的结果是( B )(A)(B)(C)(2a-1)b (D)(2a-1)b313.(规律探究题)(1)通过计算比较下列各式中两数的大小:(填“>”“<”或“=”)①1-2> 2-1,②2-3> 3-2,③3-4< 4-3,④4-5< 5-4,…;(2)由(1)可以猜测n-(n+1)与(n+1)-n (n为正整数)的大小关系:当n ≤2 时,n-(n+1)>(n+1)-n;当n >2 时,n-(n+1)<(n+1)-n.第17章函数及其图象17.1 变量与函数1.(2018洛阳伊川期末)在函数y=+(9x-81)-1中,自变量x的取值范围是( D )(A)x≠1 (B)x≠-5(C)x≠9 (D)x≠-5且x≠92.下列说法正确的是( D )(A)在球的体积公式V=πr3中,V不是r的函数(B)若变量x,y满足y2=x,则y是x的函数(C)在圆锥的体积公式V=πR2h中,当h=4厘米,R=2厘米时,V是π的函数(D)变量x,y满足y=-x+,则y是x的函数3.某地的地面温度为21 ℃,如果高度每升高1千米,气温下降6 ℃,则气温T(℃)与高度h(千米)之间的表达式为( A )(A)T=21-6h (B)T=6h-21(C)T=21+6h (D)T=(21-6)h4.下列曲线中不能表示y是x的函数的是( C )5.(2018灵宝期中)若等腰△ABC的周长是36,则底边y与腰长x之间的函数表达式是y=36-2x ,其中自变量x的取值范围是9<x<18 .6.根据如图所示程序计算函数值,若输入的x的值为-1,则输出的函数值为 1 .7.下面的表格列出了一个实验的统计数据(单位:厘米),表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,则能表示这种关系的式子是b= d .d 50 80 100 150b 25 40 50 758.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则y 与n之间的函数表达式为y= 4n .9.分别指出下列表达式中的变量与常量.(1)三角形的一边长为8,它的面积S与这条边上的高h之间满足表达式S=4h;(2)圆的半径r与该圆的面积S之间满足表达式S=πr2.解:(1)变量为S与h,常量为4.(2)变量为S和r,常量为π.10.求下列函数中自变量x的取值范围.(1)y=-8x;(2)y=-x+10;(3)y=x2+2x-3;(4)y=.解:(1)自变量x的取值范围是全体实数.(2)自变量x的取值范围是全体实数.(3)自变量x的取值范围是全体实数.(4)因为11x-88≠0,所以x≠8.所以自变量x的取值范围是x≠8.11.某市出租车价格是这样规定的:不超过2.5千米,付车费8元,超过的部分按每千米2.5元收费.已知某人乘坐出租车行驶了x(x>2.5)千米,付车费y元,请写出出租车行驶的路程x(千米)与所付车费y(元)之间的表达式.解:根据题意可知所付车费为y=8+2.5×(x-2.5)=2.5x+1.75(其中x>2.5).12.一辆汽车的油箱中现有汽油49升,如果不再加油,那么油箱中的油量y(单位:升)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.07升/千米.(1)写出y与x之间的函数关系式;(2)求自变量x的取值范围;(3)汽车行驶200千米时,油箱中还有多少汽油?解:(1)根据题意,得每行驶x千米,耗油0.07x,即总油量减少0.07x,则油箱中的油剩下49-0.07x,所以y与x的函数关系式为y=49-0.07x.(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.07x,不能超过油箱中现有汽油量的值49,即0.07x≤49,解得x≤700.综上所述,自变量x的取值范围是0≤x≤700.(3)当x=200时,代入x,y的函数关系式得,y=49-0.07×200=35.所以汽车行驶200千米时,油箱中还有35升汽油.13.(分类讨论)已知两个变量x,y满足关系2x-3y+1=0,试问:(1)y是x的函数吗?(2)x是y的函数吗?若是,写出y与x的表达式,若不是,说明理由.解:(1)由2x-3y+1=0,得y=,因为对于x的每一个取值,y都有唯一确定的值,所以y是x的函数.(2)由2x-3y+1=0,得x=,因为对于y的每一个取值,x都有唯一确定的值,所以x是y的函数.14.(拓展探究题)用火柴棒按如图所示的方式搭一行三角形,搭1个三角形需3根火柴棒,搭2个三角形需5根火柴棒,搭3个三角形需7根火柴棒,照这样的规律搭下去,搭n个三角形需要y根火柴棒.(1)求y关于n之间的函数表达式;(2)当n=2 019时,求y的值;(3)当y=2 021时,求n的值.解:(1)因为3=2×1+1,5=2×2+1,7=2×3+1,…,所以y与n之间的函数表达式为y=2n+1.(2)当n=2 019时,y=2×2 019+1=4 039.(3)当y=2 021时,2n+1=2 021.所以n=1 010.17.2 函数的图象1.平面直角坐标系1.如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为( D )(A)(2,1) (B)(1,2)(C)(-1,2) (D)(-1,3)2.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( D )(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.(2018洛阳栾川期末)若|3-x|+|y-2|=0,则点(x y,y x)在( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限4.已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( B )5.若点P的坐标是(8,6),则坐标原点O到点P的距离是10 .6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为a+b=0 .7.若21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,且22 017的个位数字是a,22 018的个位数字是b,22 019的个位数字是c,22 020的个位数字是d,则点A(a-b,c-d)在第二象限.8.已知点P(x,y)位于第二象限,并且y≤x+4,x,y为整数,写出一个符合上述条件的点P的坐标: (-1,3)或(-1,2)或(-1,1)或(-2,1)或(-2,2)或(-3,1) .9.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,求“距离坐标”是(2,1)的点的个数,并画出草图.解:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个,如图所示.10.在一次“寻宝”游戏中,寻宝人已经找到了坐标分别为(3,2)和(3,-2)的两个标点A,B,并且知道藏宝地点C的坐标为(4,4),除此之外不知道其他信息,如何确定平面直角坐标系并找到“宝藏”(即在图中先正确画出平面直角坐标系,再描出点C的位置)?解:根据题意,建立如图所示的坐标系,点C的位置就是宝藏的位置.11.(探索规律)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(5,0) .2.函数的图象1.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( D )2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OA BC为折线),这个容器的形状可以是( D )3.一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列4幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( C )4.(2018渑池模拟)星期天晚饭后,小红从家里出去散步,如图是描述她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象信息,则描述符合小红散步情景的是( B )(A)从家出发,到了一个公共阅报栏,看了一会儿报就回家了(B)从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了(C)从家出发,一直散步,然后回家了(D)从家出发,散了一会儿步,就找同学去,18分钟后才开始返回5.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量x的取值范围是4<x≤6 .6.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,请你观察:(1)这是一次100 米赛跑;(2)甲、乙两人先到达终点的是甲;(3)在这次赛跑中乙的速度是8米/秒.7.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是①②④.8.星期天,小明与小刚骑自行车去距家15千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在如图的平面直角坐标系中,画出符合他们行驶的路程s(千米)与行驶时间t(时)之间的函数图象.解:由题意可知,2.5个小时走完全程15千米,所以1.5小时走了9千米,休息0.5小时后1小时走了6千米,由此作图即可.9.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)的关系(从小强开始爬山时计时),看图回答下列问题:(1)小强让爷爷先爬了多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)图中两条线段的交点表示什么意思?(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,这对问题的结论有影响吗?允许这样做吗?解:(1)小强让爷爷先爬了60米.(2)山顶离山脚的距离有300米,小强先爬上山顶.(3)图中两条线段的交点表示小强出发8分钟时,小强赶上爷爷,并且都爬了240米.(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,对问题结论没有影响,可以这样做.10.拖拉机开始工作时,油箱中有油30升,每小时耗油5升.(1)写出油箱中剩余油量Q(升)与工作时间t(时)之间的函数表达式;(2)写出自变量t的取值范围;(3)画出函数的图象.解:(1)所求的函数表达式是Q=-5t+30.(2)自变量t的取值范围是0≤t≤6.(3)①列表:t 0 2 4 6Q 30 20 10 0②描点并连线,函数图象如图所示.11.(拓展探究)如图①,点G是BC的中点,点H在AF上,动点P以每秒2 cm的速度沿图①的边线运动,运动路径为G-C-D-E-F-H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图②,若AB=6 cm,则下列四个结论中正确的个数为( D )(1)图①中的BC长是8 cm;(2)图②中的M点表示第4秒时y的值为24 cm2;(3)图①中的CD长是4 cm;(4)图②中的N点表示第12秒时y的值为18 cm2.(A)1个(B)2个(C)3个(D)4个12.(实际应用)汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶时共用了几分钟?速度是多少?在这段时间内,它走了多远?解:(1)这辆汽车的最高时速是120千米/时.(2)汽车在行驶了10分钟后停了下来,停了2分钟.(3)汽车在第一次匀速行驶时共用了4分钟,速度是90千米/时,在这段时间内,它走了90×=6千米.17.3 一次函数1.一次函数1.(2018洛阳实验中学月考)若长方形的周长是y,长是2x,宽比长少1,则y与x的函数表达式是( D )(A)y=2x (B)y=2x-1(C)y=2x-2 (D)y=8x-22.(2018郑州一中月考)有下列四个式子:①y-2x2=0;②y+9x=0;③6y=60-2x;④xy-18=0;⑤x-y=0.其中y是x的一次函数的有( B )(A)2个(B)3个(C)4个(D)5个3.用同样规格的黑白两种颜色的正方形瓷砖按如图所示的方式铺地板,设自左向右第x个图形中需要黑色瓷砖y块,则y与x之间的函数表达式是( D )(A)y=x2(B)y=2x+1(C)y=x+3 (D)y=3x+14.函数,一次函数和正比例函数之间的包含关系是( A )5.当m= -1 时,y=(m-1)x m+2是正比例函数.6.某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶超过3千米的部分,按每千米 1.60 元计费.则出租车收费y(元)与行驶路程x(千米)之间的函数表达式是y=.7.如图是由若干盆花组成的形如三角形的图案,每条边有n(n>1)盆花,每个图案中花盆的总数是S,按此规律,则S与n的函数关系式是S=3n-3 .8.从地面到高空11千米之间,气温随高度的升高而下降,每升高1千米,气温下降6 ℃.已知某处地面气温为23 ℃,设该处离地面x千米(0≤x≤11)处的气温为y ℃,则y与x的函数表达式是y=23-6x (0≤x≤11) .9.某用煤单位有煤m吨,每天烧煤n吨,现已知烧煤3天后余煤102吨,烧煤8天后余煤72吨.(1)求m和n的值,并求该单位余煤量y(吨)与烧煤天数x(天)之间的函数表达式;(2)当烧煤12天后,还余煤多少吨?解:(1)由题意,得解得即m=120,n=6.余煤量y吨与烧煤天数x的函数表达式为y=120-6x.(2)当x=12时,y=120-6×12=48.即当烧煤12天后,还余煤48吨.10.水是人类的生命之源,节约用水,人人有责.据测试:拧不紧的水龙头每秒钟会滴下两滴水,每滴水约0.05毫升.小明在洗手时,没有把水龙头拧紧,当小明离开x小时后水龙头滴了y 毫升水.(1)说明y与x之间的关系;(2)当滴了1 620毫升水时,小明离开水龙头多少小时?解:(1)水龙头每秒钟会滴下两滴水,每滴水约0.05毫升,所以离开x小时滴的水为3 600×2×0.05x毫升,所以y=360x(x≥0).所以y与x之间是正比例函数的关系.(2)当y=1 620时,有360x=1 620,解得x=4.5.所以当滴了1 620毫升水时,小明离开水龙头4.5小时.11.(图表信息题)某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.(1)完成下表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余油量y/升(2)写出x与y之间的关系.解:(1)填表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余100 91 82 73 64 46 油量y/升(2)x与y之间的关系为y=100-0.18x.12.(分类讨论题)新学期开始,小明用的练习本可在甲、乙两个商店内买到,已知两个商店的标价都是每本练习本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是:从第1本开始就按标价的85%出售.(1)小明要买20本练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的表达式,它们都是正比例函数吗?(3)小明现有24元钱,最多可买多少本练习本?解:(1)甲店:10+10×0.7=17(元),乙店:20×0.85=17(元),所以到两个商店一样.(2)甲店:y=10+0.7×(x-10),即y=0.7x+3(x>10),不是正比例函数;乙店:y=0.85x,是正比例函数.(3)因为24元钱到甲店,24=0.7x+3,解得x=30(本);24元钱到乙店,24=0.85x,解得x≈28(本),所以到甲店买,最多可买30本练习本.2.一次函数的图象1.已知坐标平面上,一次函数y=3x+a的图象经过点(0,-4),其中a为一常数,则a的值为( B )(A)-12 (B)-4(C)4 (D)122.把直线y=2x-1向左平移1个单位,平移后直线的表达式为( B )(A)y=2x-2 (B)y=2x+1(C)y=2x (D)y=2x+23.如图所示的计算程序中,y与x之间的函数关系所对应的图象是( C )4.(2018滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图象为( A )5.如图,在△ABC中,点O是△ABC的角平分线的交点,过点O作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( B )6.若点P(-3,-4)在直线y=kx-8上,则直线y=kx-8与x轴的交点坐标是(-6,0) .7.在平面直角坐标系xOy中,点A,B的坐标分别为(3,m),(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m-6≤b≤m-4 (用含m的代数式表示).8.画出y=2x与y=2x+3的图象,根据图象的特点,说明两者的联系.解:如图所示,从形状看:将y=2x的图象向上平移3个单位可得y=2x+3的图象.9.在直角坐标系中,求原点O到直线y=-x+5的距离.解:如图,因为当x=0时,y=5,所以直线y=-x+5与y轴的交点A的坐标是(0,5).因为当y=0时,-x+5=0,所以x=12,所以直线y=-x+5与x轴的交点B的坐标是(12,0),所以OA=5,OB=12,所以AB==13.作OC⊥AB于点C,所以×13×OC=×5×12,所以OC=.所以原点O到直线y=-x+5的距离是.10.画出函数y=x-3的图象,求出与x轴、y轴的交点坐标及这条直线与两坐标轴围成的三角形的面积.解:当y=0时,x=2,所以直线与x轴的交点坐标是A(2,0),当x=0时,y= -3,所以直线与y轴的交点坐标是B(0,-3).所以S△OAB=OA·OB=×2×3=3.11.(探究题)已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数表达式;(2)画出函数的图象.解:(1)因为y+2与x成正比例,所以设y+2=kx(k是常数,且k≠0),当x=-2时,y=0,所以0+2=k·(-2),解得k=-1.所以函数表达式为y+2=-x,即y=-x-2.(2)列表如下:x 0 -2y -2 0描点、连线,画图,如图所示.3.一次函数的性质1.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( D )(A)a+b<0 (B)a-b>0(C)ab>0 (D)<03.(2018汝州期末)在同一坐标系中,正比例函数y=kx与一次函数y=x-k的图象大致应为( B )4.关于直线l:y=kx+k(k≠0),下列说法不正确的是( D )(A)点(0,k)在l上(B)l经过定点(-1,0)(C)当k>0时,y随x的增大而增大(D)l经过第一、二、三象限5.(2018安阳模拟)若y是关于x的一次函数为y=(k+1)+k,且y随x的增大而减小,则k的值是-2 ,此函数的表达式是y=-x-2 .6.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k >1 ,b <0 .7.若y是关于x的正比例函数为y=(a-2)x+9-a2,且y随x的增大而增大,则点(-3,-6) 不在直线y=(a-2)x+9-a2上.(填“在”或“不在”)8.在一次函数y=2x+3中,y随x的增大而增大(填“增大”或“减小”),当0≤x≤5时,y 的最小值为 3 .9.已知一次函数y=(3a-2)x+1-b,求a,b的取值范围,使得(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.解:(1)由一次函数y=kx+b(k≠0)的性质可知,当k>0时,函数值y随x的增大而增大,即3a-2>0,所以a>,且b取任意实数.(2)函数图象与y轴的交点为(0,1-b),因为与y轴交点在x轴的下方,。

最新华东师大版下册数学八年级分式的加减法及考点解析同步练习试题.doc

最新华东师大版下册数学八年级分式的加减法及考点解析同步练习试题.doc

(新课标)华东师大版八年级下册16.2.2分式的加减法一.选择题(共8小题)1.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x2.化简:﹣=()A.0 B.1 C.x D.3.化简+的结果为()A.1 B.﹣1 C.D.4.下列计算正确的是()A.a+b=ab B.(a3)2=a5 C.+=D.ab+bc=b(a+c)5.计算的结果为()A.B.C.﹣1 D.26.下列计算正确的是()A.a2×a3=a6 B.﹣=C.8﹣1=﹣8 D.(a+b)2=a2+b2 7.计算的结果为()A.a+b B.a﹣b C.D.a2﹣b2 8.化简的结果为()A.﹣1 B.1 C.D.二.填空题(共7小题)9.计算:= _________ .10.化简:= _________ .11.化简﹣的结果是_________ .12.计算:﹣= _________ .13.简+的结果是_________ .14.计算:+= _________ .15.计算:+的结果是_________ .三.解答题(共7小题)16.化简﹣.17.化简:﹣.18.化简:.19.化简﹣.20.按要求化简:.21.(1)计算:.(2)化简:.22.计算:.16.2.2分式的加减法参考答案与试题解析一.选择题(共8小题)1.化简的结果是()A. x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.菁优网版权所有专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选:D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.2.化简:﹣=()A. 0 B.1 C.x D.考点:分式的加减法.菁优网版权所有分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选:C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.化简+的结果为()A. 1 B.﹣1 C D.考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式变形后利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.4.下列计算正确的是()A. a+b=ab B.(a3)2=a5C.+=D.ab+bc=b(a+c)考点:分式的加减法;合并同类项;幂的乘方与积的乘方;因式分解-提公因式法.菁优网版权所有专题:计算题.分析:A、原式不能合并,错误;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=a6,错误;C、原式=,错误;D、原式=b(a+c),正确,故选D点评:此题考查了分式的加减法,合并同类项,幂的乘方与积的乘方,以及因式分解,熟练掌握运算法则是解本题的关键.5.计算的结果为()A.B.C.﹣1 D. 2考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式利用同分母分式的减法法则计算即可得到结果.解答:解:原式==﹣=﹣1,故选C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.下列计算正确的是()A. a2×a3=a6B.﹣=C.8﹣1=﹣8 D.(a+b)2=a2+b2考点:分式的加减法;同底数幂的乘法;完全平方公式;负整数指数幂.菁优网版权所有专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式通分并利用同分母分式的减法法则计算得到结果,即可做出判断;C、原式利用负指数幂法则计算得到结果,即可做出判断;D、原式利用完全平方公式展开得到结果,即可做出判断.解答:解:A、原式=a5,故选项错误;B、原式==,故选项正确;C、原式=,故选项错误;D、原式=a2+2ab+b2,故选项错误.故选B.点评:此题考查了分式的加减法,同底数幂的乘法,完全平方公式,以及负指数幂,熟练掌握运算法则是解本题的关键.7.计算的结果为()A. a+b B.a﹣b C.D.a2﹣b2考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式===a+b.故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.化简的结果为()A.﹣1 B.1 C.D.考点:分式的加减法.菁优网版权所有分析:先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.解答:解:=﹣==1;故选B.点评:此题考查了分式的加减,根据在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减即可.二.填空题(共7小题)9.计算:= a﹣2 .考点:分式的加减法.菁优网版权所有专题:计算题.分析:根据同分母分式加减运算法则,分母不变只把分子相加减即可求解.解答:解:==a﹣2.故答案为:a﹣2.点评:本题主要考查同分母分式加减,熟练掌握运算法则是解题的关键.10.化简:= x+2 .考点:分式的加减法.菁优网版权所有专题:计算题.分析:先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.11.化简﹣的结果是﹣.考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣=﹣=﹣.故答案为:﹣.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.计算:﹣= .考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.化简+的结果是.考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=+==.故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.计算:+= 1 .考点:分式的加减法.菁优网版权所有专题:计算题.分析:根据同分母分式相加,分母不变分子相加,可得答案.解答:解:原式==1,故答案为:1.点评:本题考查了分式的加减,同分母分式相加,分母不变分子相加.15.计算:+的结果是﹣1 .考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式变形后利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==﹣1.故答案为:﹣1.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)16.化简﹣.考点:分式的加减法.菁优网版权所有专题:计算题.分析:先把原式的分母通分,化为同分母的分数后再相加减.解答:解:原式=﹣===﹣.点评:本题考查了分式的加减法,要牢记异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.:17.化简:﹣.考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣===.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.化简:.考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣===.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.19.化简﹣.考点:分式的加减法.菁优网版权所有专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣===.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.20.按要求化简:.考点:分式的加减法.菁优网版权所有分析:首先通分,把分母化为(a+1)(a﹣1),再根据同分母分数相加减,分母不变,分子相加减进行计算,注意最后结果要化简.解答:解:原式=﹣===.点评:此题主要考查了分式的加减,关键是掌握异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.21.(1)计算:.(2)化简:.考点:分式的加减法;实数的运算.菁优网版权所有专题:计算题.分析:(1)原式先计算乘方运算及绝对值运算,再计算乘法运算,最后算加减运算,即可得到结果;(2)原式通分并利用同分母分式的加减运算法则计算即可得到结果.解答:解:(1)原式=4×5+(π﹣1)﹣3=20+π﹣1﹣3=16+π;(2)原式=+﹣===.点评:此题考查了分式的加减法,以及实数的运算,分式的加减运算关键是通分,通分的关键是找最简公分母.22.计算:.考点:分式的加减法.菁优网版权所有分析:首先把的分母分解因式,再约分,然后根据同分母分式加法法则:同分母的分式相加,分母不变,把分子相加,进行计算即可.解答:解:原式=+=+==1.点评:此题主要考查了分式的加减法,关键是熟练掌握计算法则,注意观察式子特点,确定方法后再计算.。

(新课标)华东师大版八年级数学下册《分式》单元综合测试题

(新课标)华东师大版八年级数学下册《分式》单元综合测试题

(新课标)2017-2018学年华东师大版八年级下册《分式》单元测试一、选择题1.当x=1时,下列各分式有意义的是( )A .211x x --B .2311x x --C .3411x x ++D .4511x x --2.下列方程中,不是分式方程的是( )A .11x xx-= B .1x(x-1)+x=1 C .110x x-++2x x-=1 D .13[12(x-1)-1]=13.分式1a b-,1a b+,21()a b -的最简公分母是( )A .21()()a b a b -+ B .21()a b - C .(a-b )2 D .(a+b )(a-b )24.下列各式中正确的个数有( ) ①-a ax y y x -=---;②-a a x y x y-=--;③-a ax y y x-=--;④-a a x y y x--=---. A .1个 B .2个 C .3个 D .4个 5.计算-2n m÷22n m·2m n的结果是() A .-22m nB .-3m nC .-4n m D .-n6.如果分式-23x -的值为负,则x 的取值范围是( )A .x>2B .x>3C .x<3D .x<2 7.方程1+2(1)1x x +-=0有增根,增根是( ) A .x=1 B .x=-1C .x=±1D .x=08.若分式(1)(1)(1)(2)x x x x +-+-的值为零,则x 的值为( ) A .1 B .±1 C .-1 D .29.2210x y xy+中,x 、y 都扩大10倍,则分式的值( )A .扩大10倍B .缩小10倍C .不变D .缩小100倍 10.若已知分式96)1)(3(2+---x x x x 的值为0,则x -2的值为( )A.91或-1B. 91或1C.-1D.111.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( ) A .x+48720─548720= B .x+=+48720548720 C .572048720=-xD .-48720x+48720=512.小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,N 通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时A .2n m + B .nm mn+ C .nm mn+2 D .mnn m +13.若a+b+c ≠0,222a b b c c a cab+++===k ,则k 的值是( )A .2B .3C .-2D .-3 二、填空题1.当x 满足_______时,分式31x x -无意义.2.当x 满足_______时,分式31x x -+有意义.3.若23x y=,则33x y x y-+=________. 4.若4y -3x=0 ,则(x+y):y=5.方程1334x x x x --=--的解是_______. 6.若122xx=,则x应满足_______. 7.若关于x 的方程33211ax xx x +=-++有增根x=-1,则a 的值是________. 8.化简:22222m n mnm n m n+---=_________;9.计算:112()111xx x x+÷-+-=________. 10.已知1a+1b=92()a b +,则b a a b+=_______;11.若x+x1=3,则x 2+21x=____________.12.已知2+x a 与2-x b 的和等于442-x x ,则b a +=三、解答题 1.计算: (1)2112111a a a +--+-; (2)35(2)22x x x x -÷+---; (3)x (y-x )÷222x xy y xy-+·2x y x-.2.解下列方程: (1)1551x x x x -+=+-; (2)2123111x x x +=+--; (3)x b x a ab--=(a≠b ).3.已知3,5,a b a b +=⎧⎨-=⎩,求(1+a b -aa b -)÷(-1+a b -a a b+)的值.4.甲、乙两人合耕一块地12天可耕完,若甲耕2天,乙耕3天,这样可耕全部土地的20%,问甲、乙两人单独耕这块地各需几天?5.为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。

华师大版八年级数学下册《分式》单元试卷检测练习及答案解析

华师大版八年级数学下册《分式》单元试卷检测练习及答案解析

华师大版八年级数学下册《分式》单元试卷检测练习及答案解析一、选择题1、在中,分式有A.1个B.2个C.3个D.4个2、下列等式成立的是()A.B.C.D.3、若分式的值为0,则()A.B.C.D.4、已知是正整数,下列各式中,错误的是()A.B.C.D.5、下列关于分式的判断,正确的是()A.当x=2时,的值为零B.当x≠3时,有意义C.无论x为何值,不可能得整数值D.无论x为何值,的值总为正数6、化简:的结果是()A.B.C.D.7、下列计算正确的是()A.B.C.D.8、化简的结果是()A.B.C.D.9、把分式方程=转化为一元一次方程时,方程两边同乘以 ( )A.x B.2x C.x+4 D.x(x+4)10、甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/时,依据题意列方程正确的是 ( )A.=B.=C.=D.=二、填空题11、= ____________.12、计算=________13、当x_____时,分式的值为正数.14、观察下列分式:,,,,,…,猜想第n个分式是______.15、比较大小:________.(填“>”“=”或“<”)16、计算:()﹣2+()0=_____.17、计算:=___________.18、若=2,,则的值为___________.19、方程的解是__________.20、若分式方程2+=有增根,则k=________.三、计算题21、(1)计算:(2017-π)0-+|-2|;(2)化简:22、解下列分式方程(1(2)23、解方程四、解答题24、先化简,再求值:,其中.25、先化简,然后从0,1,2中选择一个适当的数作为x的值带入求值。

26、已知关于x的分式方程.(1)若方程的增根为x=2,求a的值;(2)若方程有增根,求a的值;(3)若方程无解,求a的值.27、已知关于x的分式方程与分式方程的解相同,求m2-2m的值.28、煤气公司一工人检修一条长540米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长度是原计划的1.5倍,结果提前3小时完成任务,求该工人原计划每小时检修煤气管道多少米?29、列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?参考答案1、B2、C3、B4、C5、D6、A7、D8、A9、D10、C11、2;12、13、x>-114、.15、>16、517、218、19、20、121、(1)-1 (2)22、(1)x=15 (2)方程无解23、24、2-25、x+1,326、(1)-2;(2)-2;(3)3或-227、-28、该工人原计划每小时检修煤气管道60米.29、汽车和自行车的速度分别是75千米/时、15千米/时.答案详细解析【解析】1、【详解】中分式有两个,其它代数式分母都不含有字母,故都不是分式. 故选B.2、A选项:,故是错误的;B选项:,故是错误的;C选项:,故是正确的;D选项:,故是错误的;故选C.3、【分析】分式的值为0,则分子等于0,且分母不等于0.即,且.【详解】因为的值为0,所以,且,即x=±1,且x≠-1.所以x=1.故正确选项为B.【点睛】此题考核知识点是:分式的基本性质和定义.分析分式的值既要看分子又要注意分母是否为0,这也是解题的关键.4、试题解析:所以选项A正确所以选项B正确所以选项D正确故选C.5、A选项:当x=2时,该分式的分母x-2=0,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义. 显然,x=0满足x≠3. 由此可见,当x≠3时,该分式不一定有意义. 故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0;该分式的分子3>0. 由此可知,无论x为何值,该分式的值总为正数. 故D选项正确.故本题应选D.点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.6、===m+n,故选:A.7、A、==,所以A选项错误;B、==,所以B选项错误;C、=,所以C选项错误;D、,所以D选项正确.故选:D.8、试题分析:原式利用除法法则变形,约分即可得到结果.解:原式=•=.故选A.点评:此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找公因式.9、最简公分母是x(x+4),∴两边同乘以x(x+4)10、甲行30千米用的时间=乙行40千米用的时间,故选C.11、分析:根据复制数次幂的计算法则进行计算即可得出答案.详解:原式=.点睛:本题主要考查的是复制数次幂的计算法则,属于基础题型.解答这个问题的关键就是明确计算法则.12、=[2×(−)]2010×(−)=−故答案为:−13、试题解析:由题意可知:x+1>0,∴x>﹣1.故答案为:x>﹣1.14、解:分析题干中的式子的分母为:x2,x3,x4,x5,x6则第n项的分母应为x n+1,分子根号内的数为:12+1,22+1,32+1,则第n项的分子应为:,第n个分式是.故答案为:.点睛:本题考查了分式的定义,对于找规律的题应该观察有哪些部分在变化,总结各部分的变化规律从而得到整个式子的变化规律.15、试题解析:故答案为:16、原式=4+1=5.故答案为:5.17、===2,故答案为:2.18、∵,∴当时,.19、方程两边同时乘以x(2-x),得2-x-2x=0,解得x=,检验:当x=时,x(2-x)≠0,所以原方程的解是x=.20、方程两边同乘以(x-2),得2(x-2)+1-kx=-1因原方程的增根只能是x=2,将x=2代入上式,得1-2k=-1,k=1.21、分析:(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.本题解析:解:(1)原式=1-4+2=-1.(2)原式=÷==·=.22、试题分析:对于解分式方程,首先将分母去掉转化成整式方程,然后求出未知数的值,最后对方程的根进行验根.试题解析:(1)解:方程两边同乘x(x-5)得:2x=3(x-5) 2x=3x-15 解得:x=15检验:当x=15时x(x-5)≠0 ∴ x=15是原分式方程的解。

2022-2023学年华东师大版八年级数学下册《分式方程的应用》同步练习题(附答案)

2022-2023学年华东师大版八年级数学下册《分式方程的应用》同步练习题(附答案)

2022-2023学年华东师大版八年级数学下册《分式方程的应用》同步练习题(附答案)1.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程多10km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的.小王乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为()A.1.8升B.16升C.18升D.50升3.某地为美化环境,计划种植树木6000棵.由于志愿者加入,实际每天植树棵数比原计划增加了25%,结果提前3天完成任务.则实际每天植树棵.4.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?5.小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.6.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多25元,用2000元购进篮球的数量是用750元购进足球数量的2倍,求:每个篮球和足球的进价各多少元?7.为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装36间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天1000元,乙公司安装费每天500元,现需安装教室120间,若想尽快完成安装工作且安装总费用不超过18000元,则最多安排甲公司工作多少天?8.“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?9.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.(1)原来每天生产健身器械多少台?(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?10.为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?11.某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?12.某中学初三学生在开学前去商场购进A,B两款书包奖励班级表现优秀的学生,购买A 款书包共花费6000元,购买B款书包共花费3200元,且购买A款书包数量是购买B款书包数量的3倍,已知购买一个B款书包比购买一个A款书包多花30元.(1)求购买一个A款书包、一个B款书包各需多少元?(2)为了调动学生的积极性,学校在开学后再次购进了A,B两款书包,每款书包不少于14个,总花费恰好为2268元,且在购买时商场对两款书包的销售单价进行了调整,A 款书包销售单价比第一次购买时提高了8%,B款书包按第一次购买时销售单价的九折出售.求此次A款书包有几种购买方案?(3)在(2)的条件下,商场这次销售两款书包,单价调整后利润比调整前减少72元,直接写出两款书包的购买方案.13.为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.(1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?14.为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?15.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?16.永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?17.小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.18.六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?19.为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?20.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?参考答案1.解:设小王用自驾车方式上班平均每小时行驶xkm,则乘公交车平均每小时行驶(x+10)km,由题意得:=×,解得:x=30,经检验,x=30是原方程的解,则x+10=40,即小王乘公交车上班平均每小时行驶40km,故选:C.2.解:根据题意得:3斗=30升,设可以换得的粝米为x升,则=,解得:x==18(升),经检验:x=18是原分式方程的解,答:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为18升.故选:C.3.解:设原计划每天植树x棵,则实际每天植树(1+25%)x棵,依题意得:﹣=3,解得:x=400,经检验,x=400是原方程的解,且符合题意,∴(1+25%)x=500.故答案为:500.4.解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,依题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,则2x=8,答:甲种粽子的单价为8元,乙种粽子的单价为4元.(2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,依题意得:8m+4(200﹣m)≤1150,解得:m≤87.5,答:最多购进87个甲种粽子.5.解:设小杰平均每分钟清点图书x本,则小江平均每分钟清点图书1.25x本,依题意得:﹣=5,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴1.25x=1.25×12=15.答:小杰平均每分钟清点图书12本,小江平均每分钟清点图书15本.6.解:设每个足球的进价是x元,则每个篮球的进价是(x+25)元,依题意得:=2×,解得:x=75,经检验,x=75是原方程的解,且符合题意,∴x+25=75+25=100.答:每个足球的进价是75元,每个篮球的进价是100元.7.解:(1)设乙公司每天安装x间教室,则甲公司每天安装1.5x间教室,根据题意得:=3,解得:x=4,经检验,x=4是所列方程的解,则1.5x=1.5×4=6,答:甲公司每天安装6间教室,乙公司每天安装4间教室;(2)设安排甲公司工作y天,则乙公司工作天,根据题意得:1000y+×500≤18000,解这个不等式,得:y≤12,答:最多安排甲公司工作12天.8.解:(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,由题意得:=,解得:x=40,经检验,x=40是原方程的解,则x﹣25=15,答:A奖品的单价为40元,则B奖品的单价为15元;(2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,由题意得:,解得:22.5≤m≤25,∵m为正整数,∴m的值为23,24,25,∴有三种方案:①购买A种奖品23件,B种奖品77件;②购买A种奖品24件,B种奖品76件;③购买A种奖品25件,B种奖品75件.9.解:(1)设原来每天生产健身器械x台,则提高工作效率后每天生产健身器械1.4x台,依题意得:+=8,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:原来每天生产健身器械50台.(2)设使用m辆大货车,使用n辆小货车,∵同时使用大、小货车一次完成这批健身器械的运输,∴50m+20n≥500,∴n≥25﹣m.又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元,∴,即,解得:8≤m<10.又∵m为整数,∴m可以为8,9.当m=8时,n≥25﹣m=25﹣×8=5;当m=9时,n≥25﹣m=25﹣×9=,又∵n为整数,∴n的最小值为3.∴共有2种运输方案,方案1:使用8辆大货车,5辆小货车;方案2:使用9辆大货车,3辆小货车.方案1所需费用为1500×8+800×5=16000(元),方案2所需费用为1500×9+800×3=15900(元).∵16000>15900,∴运输方案2的费用最低,最低运输费用是15900元.10.解:设甲工程队每天改造的道路长度是x米,列方程得:,解得:x=80.经检验x=80是所列方程的根,所以80﹣20=60.答:甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.11.解:设该商品打折前每件x元,则打折后每件0.8x元,根据题意得,+2=,解得,x=50,检验:经检验,x=50是原方程的解.答:该商品打折前每件50元.12.解:(1)设购买一个A款书包需要x元,则购买一个B款书包需要(x+30)元,依题意得:=3×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=50+30=80(元).答:购买一个A款书包需要50元,购买一个B款书包需要80元.(2)设购买m个B款书包,则购买=(42﹣m)个A款书包,依题意得:,解得:14≤m≤21.又∵(42﹣m)为整数,∴m为3的倍数,∴m可以取15,18,21,∴此次A款书包有3种购买方案.(3)依题意得:80×(1﹣0.9)m﹣50×8%(42﹣m)=72,解得:m=18,∴42﹣m=42﹣×18=18(个).答:购买18个A款书包,18个B款书包.13.解:(1)设“文学类”图书的单价为x元/本,则“科普类”图书的单价为(1+20%)x 元/本,依题意:﹣20=,解之得:x=15.经检验,x=15是所列方程的根,且符合题意,所以(1+20%)x=18.答:科普类书单价为18元/本,文学类书单价为15元/本;(2)设“科普类”书购a本,则“文学类”书购(100﹣a)本,依题意:18a+15(100﹣a)≤1600,解之得:a≤.因为a是正整数,所以a最大值=33.答:最多可购“科普类”图书33本.14.解:设该景点在设施改造后平均每天用水x吨,则在改造前平均每天用水2x吨,根据题意,得﹣=5.解得x=2.经检验:x=2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.15.解:设去年A足球售价为x元/个,则B足球售价为(x+12)元/个.由题意得:,即,∴96(x+12)=120x,∴x=48.经检验,x=48是原分式方程的解且符合题意.∴A足球售价为48元/个,B足球售价为60元/个.设今年购进B足球的个数为a个,则有:.∴50.4×50﹣50.4a+54a≤2640.∴3.6a≤120,∴.∴最多可购进33个B足球.16.解:设2022年A种经济作物应种植x亩,则B种经济作物应种植(30﹣x)亩,根据题意,得+2=.解得x=20或x=﹣15(舍去).经检验x=20是原方程的解,且符合题意.所以30﹣x=10.答:2022年A种经济作物应种植20亩,则B种经济作物应种植10亩.17.解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,根据题意,得,解得:x=150,经检验,x=150是所列方程的根,答:小刚跑步的平均速度为150米/分.(2)他不能在上课前赶回学校,理由如下:由(1)得小刚跑步的平均速度为150米/分,则小刚跑步所用时间为1800÷150=12(分),骑自行车所用时间为12﹣4.5=7.5(分),∵在家取作业本和取自行车共用了3分,∴小刚从开始跑步回家到赶回学校需要12+7.5+3=22.5(分).又∵22.5>20,∴小刚不能在上课前赶回学校.18.解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据题意得:,解得:x=50,经检验:x=50是方程的解,且符合题意,答:第一次每件的进价为50元;(2)70×()﹣3000×2=1700(元),答:两次的总利润为1700元.19.解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,依题意得:=,解得:x=7,经检验,x=7是原方程的解,且符合题意.答:每千克有机大米的售价为7元.20.解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,依题意得:+=25,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴4x=60,3x=45.答:一等奖奖品单价为60元,二等奖奖品单价为45元.(2)设购买一等奖奖品m件,二等奖奖品n件,依题意得:60m+45n=1275,∴n=.∵m,n均为正整数,且4≤m≤10,∴或或,∴共有3种购买方案,方案1:购买4件一等奖奖品,23件二等奖奖品;方案2:购买7件一等奖奖品,19件二等奖奖品;方案3:购买10件一等奖奖品,15件二等奖奖品.。

最新华师大版八年级数学下册单元测试题及答案全套

最新华师大版八年级数学下册单元测试题及答案全套

最新华师大版八年级数学下册单元测试题及答案全套第一单元测验题一、填空题(每空2分,共10分)1. 分别计算下列各商① 5.4÷4 ② 7.98 ÷ 6 ③ 12.6 ÷ 2.1 ④ 24÷0.8 ⑤ 5÷1.25答案:① 1.35 ② 1.33 ③ 6 ④ 30 ⑤ 42. 在下表中,按照最新的科技成果对计算器排序。

[ ]先进 [ ]最后进A. 通信功能键程问题B. 声音大小台数问题C. 提供的功能维护问题答案:A. 先进B. 维护问题C. 台数问题3. 在长方体 ABCDEFGH 中,AB=2,AD=3,AF=4,江明先把A点连接到线段CE 的中点 O ,再把线段AF 连接到线段DG 的中点 N ,线段 ON 的中点为 M ,求 CN 的长度。

54. 解方程...答案:5. 等边三角形的面积公式是 ______。

答案:s²√3/4二、选择题(每空3分,共15分)() 1. 能在五边形中有四个顶点共线的五边形是()A. 四边形B. 平行四边形C. 梯形D. 三角形答案:C() 2. 与已知平行线互相垂直的直线叫()A. 水平线B. 垂直线C. 交线D. 主线B() 3. 赏心悦目的图形不包括()A. 等腰梯形B. 等边三角形C. 矩形D. 正方形答案:C() 4. 十字框等腰梯形的边长比是()A. 2比 3B. 1比 3C. 1比 2D. 2比1答案:C() 5. 判断对错,标√或×()周长相等的四边形,面积相等。

()答案:×三、应用题(每题12分,共24分)1. 计算运算结果。

()1. 24 × 0.2 + 0.24 =()答案:4.8()2. (320 ×2 + 0.32)÷8 = ()答案:80.082. 解简单方程。

()2. 设 5x + 3 = 3x - 15 ,求 x 的值()答案:-9()3. 解方程:3y + 2 = 7 ,求 y 的值()答案:1四、解答题1. 简答解释如下几个概念。

华师大版八年级下册数学分式及其基本性质习题(附答案)

华师大版八年级下册数学分式及其基本性质习题(附答案)

华师大版八年级下册数学16.1 分式及其基本性质习题(附答案)一、单选题1.函数y=xx−2的自变量x的取值范围是()A.x≥2B.x≠2C.x≠0D.x<22.若代数式3x+3有意义,则实数x的取值范围是()A.x≠3B.x≠−3C.x>3D.x>−33.下列各有理式2x,12x2y,−a2b24,1a+5,m+a5.中,分式有()A.1个B.2个C.3个D.4个4.下列式子是分式的是()A.1πB.x3C.xx−1D.255.要使分式x+1x−2有意义,则x的取值应满足()A.x≠2B.x≠−1C.x=2D.x=−16.要使分式12x−4有意义,则x的取值范围是()A.x=2B.x=4C.x≠2D.x≠47.关于分式2m−6n3m−4n,下列说法正确的是()A.分子、分母中的m、n均扩大2倍,分式的值也扩大2倍B.分子、分母的中m扩大2倍,n不变,分式的值扩大2倍C.分子、分母的中n扩大2倍,m不变,分式的值不变D.分子、分母中的m、n均扩大2倍,分式的值不变8.已知a,b为实数且满足a≠−1,b≠−1,设M=aa+1+bb+1,N=1a+1+1b+1.①若ab=1时,M=N;②若ab>1时,M>N;③若ab<1时,M<N;④若a+b=0,则M·N≤0.则上述四个结论正确的有()A.1B.2C.3D.49.下列式子与x−yx+y相等的是()A.x2−y2x2+y2B.(x−y)+5(x+y)+5C.2x−y2x+y D.(x−y)2x2−y2(x≠y)10.若分式xx−4值为0,则x的值是()A .x ≠0B .x ≠4C .x =0D .x =411.已知分式3x 2−3x+1的值为0,则( ) A .x =1 B .x =﹣1 C .x >1 D .x >﹣112.把分式2a a+b中a 、b 都扩大2倍,则分式的值( ) A .扩大4倍 B .扩大2倍 C .缩小2倍 D .不变二、填空题13.若代数式 1x−1有意义,则实数x 的取值范围是 . 14.分式x−2(x−1)2,52x−2的最简公分母为 . 15.从下列几个均不为零的式子 x 2−4,x 2−2x ,x 2−4x +4,x 2+2x ,x 2+4x +4 中任选两个都可以组成分式,请选择一个不是最简分式的分式进行化简:16.已知整数x 使分式2x 2+5x−20x−3的值为整数,则满足条件的整数x = . 17.化简: a 2+2ab+b 2a 2−b 2= . 18.对于分式x+y x−2y ,如果y =1,那么x 的取值范围是 . 19.a+b (a−b)3=()(b−a)3. 20.若分式 x 2x−3 有意义,则 x 的取值范围是 .三、计算题21.先化简,再求值: (x x−1−1x+1)÷1x 2−1,其中 x =√2 . 22.先化简: 3−a 2a−4÷(a +2−5a−2) ,再从2,-2,3,-3中选一个合适的数作为a 的值代入求值。

2020—2021年华东师大版八年级数学下册《分式》单元测试题1及答案.docx

2020—2021年华东师大版八年级数学下册《分式》单元测试题1及答案.docx

(新课标)华东师大版八年级下册16章分式单元测试题姓名:;成绩:;一、选择题(每小题4分,共48分)1、代数式11,,3,,652a b x y b c m x yπ+-+-+中,是分式的有( )个。

A 、1 B 、2 C 、3 D 、42、分式21x x +-有意义的条件是( )A 、x=-2B 、x ≠-2C 、x =1D 、x ≠13、分式13x x -+无意义的条件是( )A 、x=-3B 、x ≠-3C 、x =1D 、x ≠14、分式55x x -+的值为零的条件是( ) A 、x=5 B 、x =-5 C 、x =±5D 、x ≠-55、把分式xy x y +中的x 、y 都扩大3倍,则分式的值( )A 、不变B 、扩大3倍C 、扩大9倍D 、扩大6倍6、分式方程23x a x -=+产生的增根是( )A、x=2B、x=-2C、x=3D、x =-37、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=8、施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2B.﹣=2C.﹣=2D.﹣=29、小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x千米/时,根据题意列方程得()A.B.C.D.10、若分式,则分式的值等于()A.﹣B.C.﹣D.11、设实数a,b,c满足a+b+c=3,a2+b2+c2=4,则++=()A.9 B.6 C.3 D.012、如果关于x的分式方程﹣3=有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A .﹣3B .0C .3D .9二、填空题(每小题4分,共24分) 13、把分式20.150.32x x -+中字母的系数化为整数为; 14、把分式中212x x ---+的分子、分母中字母系数中的“-”去掉后为;15、分式21x x +-的值是正数,则x 的取值范围是;16、若a 2+5ab ﹣b 2=0,则的值为.17、计算:+()﹣2+(π﹣1)0=.18、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是.三、解答题(每小题7分,共14分)19、|﹣3|+(﹣1)2011×(π﹣3)0﹣+.20、解方程:解方程:=1﹣.四、解答题(每小题10分,共40分)21、先化简,再求值:,其中x满足x2﹣x﹣1=0.22、绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?23、观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)证明你猜想的结论;(3)求和:+++…+.24、阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b 则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==x2+2 +这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明的最小值为8.[来^&%源:中教网@~]五、解答题(每小题12分,共24分)25、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?26、对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T (x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?16章分式单元测试题答案一、选择题 BDAAB DBCDB CD 二、填空题 13、41320x x -+14、212x x +-15、x>1或x<-2 16、5 17、818、<m<三、解答题19、解:原式=3+(﹣1)×1﹣3+4=320、解:=1﹣方程两边同乘以x﹣2,得1﹣x=x﹣2﹣3解得,x=3,检验:当x=3时,x﹣2≠0,故原分式方程的解是x=3.四、解答题21、解:原式=×,=×=,∵x2﹣x﹣1=0,∴x2=x+1,将x2=x+1代入化简后的式子得:==1.22、解:(1)设乙种牛奶的进价为每件x元,则甲种牛奶的进价为每件(x﹣5)元,由题意得,=,解得x=50.经检验,x=50是原分式方程的解,且符合实际意义.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,由题意得,解得23<y≤25.∵y为整数,∴y=24或25,∴共有两种方案:方案一:购进甲种牛奶67件,乙种牛奶24件;方案二:购进甲种牛奶70件,乙种牛奶25件.23、解:(1)由=﹣;=﹣;=﹣,…则:=;(2)﹣=﹣= =;(3)+++…+=1﹣+﹣+﹣+…+﹣。

华东师大八年级下册第1章分式单元检测卷(含答案)

华东师大八年级下册第1章分式单元检测卷(含答案)

2
21.计算:
3������������2 4������2������3 ⋅
(1) 2������������ 3������2������4
������2 ‒ 6������ + 9 ������ ‒ 2 ⋅
(2) ������2 ‒ 4 3 ‒ ������
22.先化简,再求值:( +
)÷
,其中 x= .
= ������2 + 1 ‒ 2 ‒ 4
原式
������2
= (������ ‒ 1)2 ‒ 4 ������
= 82 ‒ 4
= 64 ‒ 4 路程为单位 1,乙到达目的地所用的时间为 t1,甲到达目的地所用的时间为 t2.
由题意可得:t1= + = , 又∵ a+ b=1, ∴t2= ,
∴t1﹣t2= ﹣ =
>0,
∴t1>t2,
(因为根据题意可得 a≠b)所以甲先到.
故选:A.
10. 解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,an=n(n+2);
∴ + + +…+ =
+
+
+
+…+
﹣ +…+ ﹣ )= (1+ ﹣ ﹣ )= , 故选 C. 11.解:① 不是分式,本选项错误;
答案解析
一 、选择题 1. .
解:将 0.000067 用科学记数法表示为 6.7×10﹣5. 故选 A 2. 解:A.a3•a2=a5,正确,故本选项符合题意; B、(a3)2=a6,故本选项不符合题意; C、不是同类项不能合并,故本选项不符合题意;

华师大版八年级下册 第一讲 分式的概念,性质和运算 进阶培优训练(含答案)

华师大版八年级下册 第一讲 分式的概念,性质和运算 进阶培优训练(含答案)

第一讲 分式的概念•性质与运算培优一、知识要点1:1、 叫分式;2、当 ,分式A B有意义;3、当 ,分式A B值为0.经典例题.... 【例..1.】.1.、下列各式中,哪些是整式?哪些是分式?...................⋅----++++-π1;)1(;2;3;3;13;222x x x x y x y x y x x y x y x 【例2】要使式子有意义,x 的取值范围是( )A .x ≠1B .x ≠0C .x >—1且x ≠0D . x ≥—1且x ≠0【变式题组】......1、使分式1(1)(2)x x x ---有意义,则x 应满足( )A .x ≠1B .x ≠2C .x ≠1 且x ≠2D .x ≠1或 x ≠22、若对于分式21x m +,不论x 取何实数,21x m +总有意义,则m 的取值范围是_________. 3、(希望杯)若分式212x x m -+,不论x 取何实数总有意义,则m 的取值范围是_________4、使分式22y 2+x x有意义的条件为___________.【例3】 当x 取何值时,分式392+-x x 的值为0?【变式题组】 1、若式子(8)(1)1x x x -+-的值为0,则x 的值为______________.2、若分式22943x x x --+的值为0,则x 的值为______________.3、2323x x x ---的值为零,则x 的值为______________. 4、若分式1212+-b b 的值是负数,则b 的取值范围是满足______________.5、若分式x--76x 的值为正数,则x 满足的条件为___________.【.例.4.】.当.x .为何整数时,分式........124+x 的值为整数?......【变式题组】当x 为何整数时,分式121-4x +x 的值为整数?【例5】已知1x+1y =5,求2322x xy y x xy y -+++的值.【变式题组】1、已知:113a b -=,求分式232a ab ba ab b+---的值.2、若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值.二、知识要点2:1、分式基本性质:=A A M B B M,(0)÷=≠÷A A M M BB M【例】约分:(1)db a cb a 42342135-= (2)23)(4)(2x y y y x x -- = (3)2222)()(z y x z y x -+--= 通分:方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积。

2020—2021年华东师大版八年级数学下册《分式》单元同步测试题.docx

2020—2021年华东师大版八年级数学下册《分式》单元同步测试题.docx

(新课标)华东师大版八年级下册分式单元测试 班级:姓名:得分:一、选择题(每题3分,共30分)1.下列各式中,是分式的是 ()A.B.x2C.D.2.当a 为任何实数时,下列分式中一定有意义的一个是 ()A.B.C.D.3.下列分式中,计算正确的是 ()A.=B.C. =-1D.4.若已知分式,若分式的值为零,则x 等于 ( )A ,2B ,-2C ,D ,0 5.分式与的最简公分母是 ()A.B.C.D.6.如果分式方程无解,则m 的值为 ( )A. -2B.0C. 1D. -17.如果分式方程有增根,那么增根是 ( )A. -2B.0C. 2D.8,把分式化简的正确结果为( )2-πx 31312-+x x 21x21a a +11+a 112++a a 112++a a )(3)(2c b a c b +++32+a b a b a b a +=++22222)()(b a b a +-x y y x xy y x -=---12224242--x x 2±2ab 32b -1x m1x x +=+4x x 22x 12x 22-=-++2±2222-+-+-x x x xA ,B ,C ,D ,9、计算:=的结果是 ( )A.1B.C.D.10,化肥厂原计划x 天生产120吨化肥,实际每天多生产3吨,因此提前2天完成任务,求x 的方程应为 () A. B.C. D.二、填空题(每空3分,共21分)11.在等号成立时,右边填上适当的式子:12、一种微粒的半径是0.000000112米,请用科学记数法表示为13、若与的和是零,则x 的值为14、要使与的值相等,则x=15、当x= 时,分式的值为零;当x 时,分式有意义.16、若,则= ,= .17、计算:= .=三、计算题(共30分)18,约分(每小题5分,共10分)(1) (2)19、解方程 (每小题6分,共12分) (1) (2) 482--x x 482+-x x482-x x48222-+x x ba b a ⨯÷2a 2b 22b a 31202120-=-xx 32120120--=x x 31202120-=+xx 32120120-+=x x ()1)1(122+=+-x x x 2x 1-1x 1+15-x 24-x 22--x x 33+-x x 4)1(2=+x x 221x x +2)1(x x -2422---a a a 1111-++x x 22a ab 22222y x y xy x -+-58511--=--x x x 1214112-+=--+-x x x x x20、(8分)化简求值其中 x=1四、应用题(共19分)21.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,求列车现在的速度是多少?(9分)22.某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元.为了促销,现将10千克乙种糖果和一包甲种糖果混合后(搅匀)销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额相同,这包甲种糖果有多少千克?(10分)2x x)4x 4x 42x 2x (2-÷+-+-+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版八年级数学下册第一章 分式 单元复习测试题
(时间:120分钟 满分:120分)
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.
1.若代数式2x x -1
有意义,则实数x 的取值范围是(D ) A .x =0 B .x =1 C .x ≠0 D .x ≠1
2.若分式x -2x +1
无意义,则(B ) A .x =2 B .x =-1 C .x =1 D .x ≠-1
3.下列分式是最简分式的是(A )
A.1a -b
B.b -a b 2-a 2
C.26ab
D.ab -a 2a
4.下列变形正确的是(C )
A.a +1b +1=a b
B.a +b ab =b +1b
C.a -1-b =-a -1b
D.(-a -b )(a +b )2
=1 5.我们八年级下册的数学课本厚度约为0.008 5米,用科学记数法表示为(C )
A .8.5×10-4米
B .0.85×10-3米
C .8.5×10-3米
D .8.5×103米
6.化简x -y x +y ÷(y -x )·1x -y
的结果是(C ) A.1x 2-y 2 B.y -x x +y C.1y 2-x 2 D.x -y x +y
7.下面的计算过程中,从哪一步开始出现错误(B )
A .①
B .②
C .③
D .④
8.如果分式|x|-1x +1
的值为0,那么x 的值为(B ) A .-1 B .1 C .-1或1 D .1或0
9.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000 326毫米,用科学记数法表示为(A )
A .3.26×10-4毫米
B .0.326×10-4毫米
C .3.26×10-4厘米
D .32.6×10-4厘米
10.无论x 取何值,下列分式总有意义的是(C )
A.x -3x
B.12x +2
C.2
2x 2+1 D.
x x -1 11.分式方程x +1x +1
x -2=1的解是(A )
A .x =1
B .x =-1
C .x =3 D
.x =-3 12.已知1x -1y =3,则代数式2x +3xy -2y
x -xy -y 的值是(D )
A .-72
B .-112 C.92 D.
34 二、填空题(每小题3分,共15分)
13.计算:(-5)0+(13)-
1=4.
14.若x -3
x +4=0,则x 的值是3.
15.分式-76x 2y 和25xyz 的最简公分母是30x 2yz .
16.(已知3x -4(x -1)(x -2)=A x -1+B x -2
,则实数A =1. 17.甲、乙两人骑自行车从相距s 千米的两地同时出发,若同向而行,经过a 小时甲追上乙;若相向而行,经过b 小时甲、乙相遇.设甲的速度为v 1千米/时,
乙的速度为v 2千米/时,则v 1v 2=a +b a -b
. 18.若关于x 的分式方程
m x -2=1-x 2-x -3有增根,则实数m 的值是1. 三、解答题(本大题共8个小题,满分75分)
19.(1)解方程:3+x x -4+1=14-x
. 解:方程两边同时乘以(x -4),得3+x +x -4=-1.
∴x =0.
检验:当x =0时,x -4=0-4≠0.
∴x =0是原方程的解.
(2)解方程: 3x +1=x x -1
-1. 解:原方程可化为
3(x -1)=x (x +1)-(x +1)(x -1).
解得x =2.
检验:当x =2时,(x +1)(x -1)≠0,
∴原方程的解是x =2.
20.(1)化简分式(a 2-3a a 2-6a +9+23-a )÷a -2a 2-9
,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.
解:原式=⎣⎢⎡⎦
⎥⎤a (a -3)(a -3)2-2a -3÷a -2(a +3)(a -3) =(a a -3-2a -3)·(a +3)(a -3)a -2
=a -2a -3·(a +3)(a -3)a -2
=a +3.
∵a ≠-3,2,3,
∴a =4或a =5.
则a =4时,原式=7(或a =5时,原式=8).
(2).先化简,再求值:x 2x 2-1÷(1x -1
+1),其中x 为整数且满足不等式组⎩⎨⎧x -1>1,8-2x ≥2.
解:原式=x 2(x +1)(x -1)÷1+x -1x -1
=x 2(x +1)(x -1)·x -1x
=x x +1
. 由⎩⎨⎧x -1>1,8-2x ≥2,
得2<x ≤3. ∵x 是整数,∴x =3.
∴原式=33+1=34
. 21.黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平
均每本的价格比文学类图书平均每本的价格多5元.已知学校用12 000元购买的科普类图书的本数与用9 000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?
解:设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为(x +5)元.根据题意,得
12 000x +5=9 000x
,解得x =15. 经检验,x =15是原方程的解,且符合题意.
则科普类图书平均每本的价格为15+5=20(元).
答:文学类图书平均每本的价格为15元,科普类图书平均每本的价格为20元.
22.“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1 500元,购进乙种礼品共花费1 050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.
(1)求购进一件甲种礼品、一件乙种礼品各需多少元;
(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了20%,一件乙种礼品价格比第一次购进时降低了5元.如果此次购进甲、乙两种礼品的总费用不超过3 100元,那么这家礼品店最少可购进多少件甲种礼品?
解:(1)设购买一件甲种礼品需x 元,则购买一件乙种礼品需(x +20)元.根据题意,得
1 500x =2×1 050x +20
. 解得x =50.
检验:当x =50时,x (x +20)=50×(50+20)≠0.
所以x=50是原分式方程的解.
x+20=50+20=70.
答:购买一件甲种礼品需50元,购买一件乙种礼品需70元.
(2)设这家礼品店可购进a件甲种礼品,根据题意,得
50×(1+20%)a+(70-5)×(50-a)≤3 100.
解得a≥30.
答:这家礼品店最少可购进30件甲种礼品.
23.(阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:
立方和公式:x3+y3=(x+y)(x2-xy+y2)
立方差公式:x3-y3=(x-y)(x2+xy+y2)
根据材料和已学知识,先化简,再求值:
3x
x2-2x

x2+2x+4
x3-8
,其中x=3.
解:原式=3x
x(x-2)-
x2+2x+4
(x-2)(x2+2x+4)
=3
x-2-
1 x-2
=2
x-2
.
当x=3时,原式=
2
3-2
=2.。

相关文档
最新文档