电阻焊原理和工艺

合集下载

电阻焊

电阻焊

电阻点焊熔核形成过程
(3) 电阻焊过程 预压、通电加热、在压力下冷却结晶或塑 性变形和再结晶。
电阻焊与电弧焊相比有如下两个特征: (1)热效率高 电弧焊是借助外部集中热源,从外部向焊件传导热能; 电阻焊是电阻热由高温区向低温区传导,属于内部热源。 因此,热能损失比较少,热效率比较高。 (2)焊缝致密 一般电弧焊的焊缝是在常压下凝固结晶的; 电阻焊的焊缝是在有外界压力的作用下凝固结晶的,具 有锻压的特征,属于压焊范畴,所以比较容易避免产生缩 孔、疏松和裂缝等缺陷,从而获得致密焊缝。
影响接触电阻的因素:
工件表面状态 表面愈粗糙、氧 化愈严重、接触电阻愈大。 电极压力 压力愈高、接触电阻愈 小。 焊前预热 焊前预热将会使接触 电阻大大下降。
(2) 力
静压力用来调整电阻大小,改善加热。产生塑性变形或 在压力下结晶。 冲击力(锻压力)用来细化晶粒,焊合缺陷等。其压力 变化形式有平压力,阶梯压力和马鞍形压力,其中马鞍形压 力较为理想。
2.焊接(F=FW ,I=IW)
焊件加热熔化形成熔核的阶段,最后输入热量与散失热量平衡时,熔核达 到稳定尺寸。这个过程是焊接的关键,焊点强度取决于熔核尺寸。
对点焊质量的要求 1.熔核尺寸的几个基本概念 1)熔核直径 d (mm) 或
d 2 3
d 5 板厚
c
h

d
2)焊透率 A(%)
2.接触电阻Rw
1)形成原因:焊件表面的微观凸凹不平及不良导体层。
接触电阻形成原因示意图
1 )焊件表面氧化膜或污物层,使电流受到较大阻碍, 过厚的氧化膜或污物层会导致电流不能导通。 2 )由于焊件表面是凹陷不平的,使焊件在粗糙表面形 成接触点。在接触点形成电流线的集中,因此增加了 接触处的电阻Rc。 电极压力增加或温度升高使金属达到塑性状态时, 都会导致焊件间接触面积增加,促使接触电阻Rc减小。 因此,当焊件表面较清洁时,接触电阻仅在通电时极 短时间内存在,随后就会迅速减小以至消失。 接触电阻尽管存在时间极短,但在点焊极薄的铝 合金时,对熔化核的形成仍有显著影响。

电阻点焊的工作原理

电阻点焊的工作原理

电阻点焊的工作原理
电阻点焊是一种常用的金属连接方法,它利用电流通过金属工件的接触点产生热量,将接触点瞬间加热至熔化,然后通过一定的压力使两个金属工件迅速连接在一起。

电阻点焊主要包括三个基本要素:电流源、电极和工件。

电流源提供电流供应,电极是电流的传递和压力施加的部分,而工件是待连接的金属材料。

工作时,首先将待连接的工件放置在电极之间,电流通过电极的接触点进入工件。

由于金属具有电阻,电流通过接触点时会产生热量。

这种热量使接触点迅速升温,瞬间达到熔化温度,形成熔融池。

接下来,通过一定的压力施加在工件上,确保两个金属工件的接触面密封紧密,使熔融池均匀地分布在接触面上。

在一定的时间内,电流和压力会保持不变,以使熔融池形成稳定的连接。

当焊点达到所需时间后,断开电流和压力,让焊点自然冷却。

在冷却过程中,熔融金属会重新凝固,从而形成坚固耐用的焊点。

整个点焊过程通常只需要数毫秒的时间。

电阻点焊具有简单、快速、经济的特点,适用于连接厚度不超过3mm的金属材料,广泛应用于汽车、家电、建筑等领域的
生产制造中。

它不仅可以实现多个焊点的同时焊接,还能有效提高焊接强度和效率,是一种非常常用的金属连接技术。

电阻焊原理和焊接工艺完整版

电阻焊原理和焊接工艺完整版

电阻焊原理和焊接工艺完整版电阻焊是指利用电流通过两个接触电极,通过电流在焊接接头上产生的热量,将两个焊接材料加热至熔化状态,然后冷却固化,实现连接的一种焊接方法。

电阻焊可以分为电阻点焊、电阻缝焊和电阻插焊等。

电阻焊的原理是利用焊接接点的电阻加热而焊接材料加热到熔化温度。

焊接接头形成一个电阻,通过焊机施加的电流通过接头,形成焊接接点的电阻加热。

当焊接接头内部电流通过产生的热量超过材料的熔点时,焊接材料开始熔化。

然后通过施加的压力使熔化的焊接材料接触,形成一体化连接。

焊接完成后,断开电流,焊接接头冷却固化,形成强固的连接。

电阻焊的焊接工艺可以从焊材选择、接触电阻、焊接时间、施加压力等多个方面进行控制。

首先,选择合适的焊材能够确保焊接接头的质量。

焊接材料应具备良好的导电性和可焊性。

其次,接触电阻是决定焊接热量的重要因素之一、焊接电极与工件的接触电阻越小,焊接热量就越大。

因此,要采取措施确保接触电阻的稳定和减小接触电阻。

然后,焊接时间是控制焊接热量的另一重要参数。

焊接时间应根据焊接材料的熔点来确定。

焊接时间过短会导致焊接不充分,焊接强度不够;焊接时间过长则容易热损伤焊接接头。

最后,施加的压力也是控制焊接质量的关键。

合适的压力能够保证熔化的焊接材料进一步接触,使焊接接头的凝固过程更加完善。

针对不同焊接材料及材料厚度,电阻焊还可以采用不同的焊接工艺。

例如,电阻点焊广泛应用于金属板材的连接,可以快速、高效地实现金属板材的焊接。

电阻点焊的工艺流程一般包括调整焊机参数、清洁焊接接头、固定焊接接头、施加电流和压力、焊接完成后的冷却和检测等步骤。

电阻点焊的优点是焊接速度快、接头强度高。

此外,电阻焊还有电阻缝焊和电阻插焊等。

总之,电阻焊是利用通过焊接接头的电流加热焊接材料,实现焊接的一种方法。

通过控制焊接材料的选择、接触电阻、焊接时间和施加压力等参数,可以实现高质量的焊接连接。

电阻焊涉及到的焊接工艺可以根据具体的焊接需求进行选择和设计。

电阻焊原理和焊接工艺完整版

电阻焊原理和焊接工艺完整版

三、电阻点焊原理
3、焊接区电阻及变化规律 点焊时焊接区存在三个种 类的电阻见右图: (a)焊件本身电阻Rw (b)焊件间的接触电阻Rc (c)焊件与电极间的接
触电阻Rew
RW
K 1 2 S
1)焊件本身电阻
电流通过焊件而产生的电阻热与焊件本身电阻有关,该 电阻按下式计算:
其中ρ—焊件电阻系数 δ1、δ2—两焊件厚度 S—对应于电极接触面积 K—考虑电流在板中扩散的系统<1,K仅与电极与焊件 的几何形状有关。
由于ρ一般随温度升高而增大,故加热时间越长,电阻 越大,产热多,对形成焊点的贡献越大。
2)接触电阻 Rc+ 2Rew 接触电阻是一种附加电阻,通常是指
在点焊电极压力下所测定的接触面(焊件 -焊件接触面、焊件-电极接触面)处的 电阻值。
影响接触电阻的主要因素:
表面状态
电极压力
加热温度:钢600℃,铝350℃时的接触 电阻接近为零 。
点焊过程中接触电阻的变化
焊接区总电阻的分配(举例)
点焊过程中焊接区电阻的变化规律
三、电阻点焊原理
4、点焊时的热量分配
Q1-加热焊接区母材 金属形成熔核的热量; Q2-通过电极热传导
损失的热量。 Q3-通过焊接区周围 金属热传导损失的热量
四、电阻点焊工艺
1、点焊分类
双 面 点 焊
四、电阻点焊工艺
Hale Waihona Puke 一、电阻焊分类及简介闪光对焊
对接接头 大截面工件 钳口式电极 焊后接头处有 毛刺
二、电阻焊的特点及工业应用
热量集中、加热时间短、焊接变形小;
冶金过程简单;
特点
能适应多类同种及异种金属的焊接;
工艺过程简单,易于实现机械化及自动化;

电阻焊的基本原理

电阻焊的基本原理

电阻焊的基本原理一、概述电阻焊是将被焊工件压紧于两电极之间,并通以电流, 利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态,使之形成金属结合的一种方法。

电阻焊方法主要有四种,即点焊、缝焊、凸焊、对焊, 见图6—1。

图6—1主要电阻焊方法点焊时,工件只在有限的接触面上。

即所谓“点”上被焊接起来,并形成扁球形的熔核。

点焊又可分为单点焊和多点焊。

多点焊时;使用两对以上的电极,在同一工序内形成多个熔核。

缝焊类似点焊。

缝焊时,工件在两个旋转的盘状电极深盘)间通过后,形成一条焊点前后搭接的连续焊缝。

凸焊是点焊的一种变型。

在一个工件上有预制的凸点,凸焊时,一次可在接头处形成一个或多个熔核。

对焊时,两工件端面相接触,经过电阻加热和加压后沿整个接触面被焊接起来。

电阻焊有下列优点:(1)熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。

(2)加热时间短,热量集中,故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。

(3)不需要焊丝、焊条等填充金属,以及氧、乙快、氩等焊接材料,焊接成本低。

(4)操作简单,易于实现机械化和自动化,改善了劳动条件。

(5)生产率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。

但闪光对焊因有火花喷溅,需要隔离。

电阻焊缺点:(1)目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。

(2)点、缝焊的搭接接头不仅增加了构件的重量,且因在两板间熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低。

(3)设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的正常运行。

随着航空航天、电子、汽车、家用电器等工业的发展,电阻焊越来受到社会的重视,同时,对电阻焊的质量也提出了更高的要求。

可喜的是,我国微电子技术的发展和大功率可控硅、整流器的开发,给电阻焊技术的提高提供了条件。

电阻焊机原理

电阻焊机原理

电阻焊机原理
电阻焊机是一种利用电热效应进行金属连接的设备,它的工作原理是通过电流通过焊接接点,产生瞬间高温,使接点部分熔化并形成金属连接。

在电阻焊机中,通常有两个电极,被焊接的金属部分位于电极之间。

当电流通过电极,由高温电阻件(通常是电阻焊机的电极之一)产生的电阻会转化为热能,使焊接接点升温。

焊接接点的升温速率取决于应用的电流大小和焊接接点的电阻。

随着接点温度的升高,金属在瞬间熔化,形成焊缝。

此时,焊接接点受到一定的压力,以确保焊接接点处于紧密接触状态。

熔化的金属在接触状态下重新凝固,形成金属连接。

电阻焊机的优点是焊接速度快、焊接强度高、焊接过程稳定。

这种焊接方式适用于焊接铜、铝等导电性较好的金属。

然而,电阻焊机也存在一些缺点,如在连接过程中需要施加足够的压力以确保良好的焊接结果,同时需要控制焊接时间和电流大小,以避免瞬间过热导致材料熔化或电阻焊机损坏。

总之,电阻焊机通过利用电热效应来实现金属连接。

通过控制电流和施加一定的压力,能够在短时间内实现高质量的焊接连接。

这种焊接方式在汽车制造、电子设备制造等领域得到广泛应用。

电阻焊机的工作原理

电阻焊机的工作原理

电阻焊机的工作原理
电阻焊机是一种常用的金属焊接设备,其工作原理是利用电流在金属接头处产生的热量,使两个金属表面熔化并形成焊接。

电阻焊机主要由电源、电阻焊头和焊接控制系统组成。

电源提供所需的电流,电阻焊头包含两个电极,将电流引导到焊接部位;焊接控制系统控制电流的大小、时间和电极压力。

当电流通过金属接头时,由于金属的电阻产生热量。

热量的大小取决于电流的大小和金属的电阻率。

将电阻率较高的金属作为焊接材料,能够更有效地产生热量。

同时,需要适当的压力使接头处的金属接触,并形成良好的导电通路。

在焊接过程中,电流经过接头时,金属表面会迅速升温。

当温度达到足够高时,金属会熔化并形成焊缝。

此时,焊头施加的压力可以帮助将焊缝中的气泡排出,确保焊接质量。

焊接完成后,电流断开,金属在冷却过程中重新凝固。

冷却后的焊缝会与材料基体融为一体,形成坚固的焊接接头。

电阻焊机的工作原理简单有效,适用于多种金属的焊接,广泛用于制造业和维修领域。

电阻点焊原理

电阻点焊原理

电阻点焊原理电阻点焊是一种利用电流通过工件产生的热量来使两个金属接头在一定的压力下瞬间熔接的焊接方法。

它是利用电阻加热原理进行的一种特殊的电阻焊接工艺,通常用于焊接薄板和线材。

电阻点焊的原理是利用电流通过工件产生的热量,使两个金属接头在一定的压力下瞬间熔接。

在电阻点焊中,焊接电流通过电极传导到工件上,在接头处产生高温,使接头瞬间熔化并在一定的压力下熔接成为一个整体。

这种焊接方法具有焊接速度快、热影响区小、焊接变形小等优点,因此在工业生产中得到了广泛的应用。

电阻点焊的原理主要包括以下几个方面:1. 电流通过工件产生热量。

在电阻点焊中,焊接电流通过电极传导到工件上,由于金属的电阻导致电流通过工件时产生热量。

这种热量使接头处的金属瞬间升温,达到熔点并熔化,从而实现焊接。

2. 一定的压力。

在电阻点焊过程中,除了电流产生的热量外,还需要施加一定的压力。

这样可以确保接头在熔化的同时能够紧密结合,形成牢固的焊接。

3. 瞬间熔接。

电阻点焊的特点之一就是焊接速度快,焊接时间非常短,通常在几十毫秒到几百毫秒之间。

这种瞬间熔接的方式可以减少热影响区,避免对工件造成过多的热变形。

总的来说,电阻点焊的原理就是利用电流通过工件产生的热量,施加一定的压力,使接头在瞬间熔化并结合成为一个整体。

这种焊接方法适用于焊接薄板和线材,具有焊接速度快、热影响区小、焊接变形小等优点,因此在汽车制造、家电制造、金属加工等领域得到了广泛的应用。

在实际应用中,电阻点焊的原理需要结合具体的工件材料、厚度、形状等因素来确定焊接参数,包括焊接电流、焊接时间、压力等。

只有合理地控制这些参数,才能确保焊接质量,达到预期的焊接效果。

总之,电阻点焊作为一种利用电流产生的热量来实现瞬间熔接的焊接方法,其原理简单清晰,应用广泛,是现代工业生产中不可或缺的重要工艺之一。

通过对电阻点焊原理的深入理解和合理应用,可以提高焊接质量,提高生产效率,降低生产成本,推动工业制造的发展。

电阻焊接工艺

电阻焊接工艺

电阻焊接工艺
电阻焊接工艺是通过电阻热作用使两个或多个金属工件连接在
一起的方法。

该方法可以实现迅速高效的连接,并且焊接处强度高,接头不易拉断。

电阻焊接通常应用于金属制品的制造、维修和改装。

电阻焊接主要分为以下几个步骤:准备工作、定位工件、接地、压力焊接和冷却。

在焊接之前,需要准备焊接表面,确保金属表面
干净并且没有污垢和氧化物。

焊接时,将工件放置在电极板之间,
通入电流,产生电阻加热,使工件达到熔点,并施加压力,将两个
工件连接在一起。

焊接结束后,需要对焊接部位进行冷却处理,确
保焊接质量。

电阻焊接工艺具有以下优点:焊接速度快、焊接强度高、焊接
的工件具有良好的外观、焊接热影响区较小。

但同时也存在着一些
缺点:焊接质量容易受电阻和电流的变化影响、适用于特定的工件
结构、对焊接设备的选定有一定的要求。

总之,电阻焊接工艺在工程实践中应用非常广泛。

需要根据具体工件特点和要求来选择焊接工艺和设备,并尽可能降低工件在焊接过程中受到的热影响。

第三节 压焊与钎焊

第三节  压焊与钎焊

缝焊
缝焊主要用于要求密封 性好的薄壁结构。
缝焊只适用于3mm以下 的薄壁结构。
三)、对焊
对焊是利用电阻热将两个工件的整个端面焊接起来的
一种焊接方法。
4.对焊
(1)电阻对焊
先将工件夹紧并加压,然后 通电使接触面温度达到塑性温度 (950~1000℃)。在压力下塑变和 再结晶形成固态焊接接头(图1277a)。电阻对焊要求对接处焊前 严格清理,所焊截面积较小,一般 用于钢筋的对接焊。
增加润湿性)。
软钎料主要应用于焊接受力不大的常温工作的仪表、 导电元件等。
钎料填充焊缝过程示意图
液态钎料和固态金属之间的相互作用
钎焊
钎焊的特点
(1)焊件加热温度低,金属组织和力学性能变化小,焊
件变形小,接头光滑平整,焊件尺寸精确。
(2)可以焊同种或异种金属。 (3)可焊由多条焊缝组成的复杂形状的焊件,生产率很 高。 (4)设备简单,投资少。
(2)闪光对焊
先通电,后接触,因个别点接触,个别点通过的电流密度很高, 可使其瞬间熔化或汽化,形成液态过梁。由于过梁上存在电磁收缩 力和电磁引力及斥力而使过梁爆破飞出,形成闪光。闪光一方面排 除了氧化物和杂质,另一方面使对口处的温度迅速升高。 闪光对焊主要用于钢轨、锚链、管子等的焊接,也可用于异种 金属的焊接。因接头中无过热区和铸态组织,所以性能高。
摩擦焊广泛用于圆形工件、棒料及管件 类焊接。实心焊件的直径为2mm~100mm,管 类焊件外径最大可达150mm。
摩擦焊
三、 钎焊
钎焊:是利用熔点比焊件低的钎料作填充金属,适 当加热后,钎料熔化而将处于固态的焊件连接起来的 一种焊接方法。
1.硬钎焊
钎料熔点在450℃以上,接头强度较高,都在200MPa 以上,属于这类的钎料有铜基、银基和镍基等。

什么是电阻焊_电阻焊原理详解_电阻焊焊接参数

什么是电阻焊_电阻焊原理详解_电阻焊焊接参数

什么是电阻焊_电阻焊原理详解_电阻焊焊接参数一、什么是电阻焊电阻焊,是指利用电流通过焊件及接触处产生的电阻热作为热源将想件局部加热,同时加压进行焊接的方法。

焊接时,不需要填充金属,生产率高,焊件变形小,容易实现自动化。

电阻焊是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。

电阻焊利用电流流经工件接触面及邻近区域产生的电阻热效应将其加热到熔化或塑性状态,使之形成金属结合的一种方法。

电阻焊方法主要有四种,即点焊、缝焊、凸焊、对焊。

二、电阻焊的分类电阻焊分为点焊、缝焊和对焊3种形式。

(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。

点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。

(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。

叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。

缝焊适宜于焊接厚度在3 mm以下的薄板搭接,主要应用于生产密封性容器和管道等。

(3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。

1)电阻对焊焊接过程是先施加顶锻压力(10~15 MPa),使工件接头紧密接触,通电加热至塑性状态,然后施加顶锻压力(30~50 MPa),同时断电,使焊件接触处在压力下产生塑性变形而焊合。

电阻对焊操作简便,接头外形光滑,但对焊件端面加工和清理要求较高,否则会造成接触面加热不均匀,产生氧化物夹杂、焊不透等缺陷,影响焊接质量。

因此,电阻对焊一般只用于焊接直径小于20 mm、截面简单和受力不大的工件。

2)闪光对焊焊接过程是先通电,再使两焊件轻微接触,由于焊件表面不平,使接触点通过的电流密度很大,金属迅速熔化、气化、爆破,飞溅出火花,造成闪光现象。

继续移动。

电阻焊的原理

电阻焊的原理

单片机系统 (CPU、RAM、 EPROM)及其接口
可控硅触 发电路
相位同步及控制 电路、脉冲形成 电路、相位比较 电路
其基本原理,首先我们把需要焊接电流编入RAM(随机存储 器)里,当焊机开始工作时,控制箱首先自发出一个晶闸管120o 控制角(60o导通角)的脉冲(导通角过大,易拱闸)如图A点: 在上半周,通过电流,电压反馈电路 U.I 运算放大器、模拟开关、A/D转换器和 RAM里存储的数据,通过单片机进行 B D 比较计算,得出晶闸管需要的导通角 能达到RAM里存储的数据(我们需要 wt A C 的焊接电流),纠正结果如图下半周B, 下一个上半周又采样如图C点和RAM的 数据进 行比较计算,下半周又纠正如图D点。这样周而复之,就可尽量克服由 外界因素变化引起的电流波动,达到恒流的目的。恒流的精度可达到 3%。比如我们需要1万安的电流,通过恒流后可达到9700 ~ 10300之 间,我们曾测试过在电网 10%波动时电流波动近似零。 当由于外界的原因(比如电缆损坏过于严重)而控制箱又无法纠正, 其误差负值超过10%或正值(电压突然变得很高)超过20%时,控制箱 自动报警。
对于座式焊机,其压力可以通过空气压力调节器来改变气缸 压力,这里要说明一点,对于凸焊螺母,压力不能大,压力过大, 凸点在焊接瞬间就压平,造成螺母整个面和工件相接,也就是由 三个(或四个)点的面积,变成整个螺母的面积,电流密度瞬时 下降,造成凸焊螺母焊接不牢。

4、在焊接过程中,焊钳除了电极和工件相接触外,其他部份都 不要和工件相接触,以免产生分流,手动焊钳在工作中要注意上 下臂绝缘套和气缸绝缘套损坏分流。
一、电阻焊的原理

电阻焊接的是利用了电流通过金属所产生的电阻热,同时加 压使其结合,这时产生热量可用下式表示:

焊工工艺学第五版教学课件第十章 电阻焊

焊工工艺学第五版教学课件第十章 电阻焊
螺杆压紧。 (4)送给机构 送给机构的作用是使焊件同夹具一起沿导轨移动,并提供必要的顶
锻力,动作应平稳、无冲击。
25 第 十 章 电 阻 焊
§10-2 电阻焊设备
三、缝焊机和凸焊机
缝焊、凸焊与点焊相似,仅 是电极不同,凸焊多采用平面电极, 而缝焊则以旋转的滚盘代替点焊时 的圆柱形电极。缝焊机和凸焊机的 外形Βιβλιοθήκη 图所示。§10-2 电阻焊设备
1.点焊机 (3)控制装置 控制装置是由开关和同步控制两部分组成的。
22 第 十 章 电 阻 焊
§10-2 电阻焊设备
2.对焊机
对焊机的结构和外形如图所示。 它由机架、焊接变压器、活动电极、 固定电极、送给机构、夹紧机构等 部分组成。
23 第 十 章 电 阻 焊
对焊机 a)结构图 b)外形图 1—固定夹具 2—电极与夹紧机构 3—活动夹具 4—导轨 5—送给机构 6—调节闸刀 7—机架 8—电源进线
2.电阻焊电极 电极用于导电与加压,并决定
主要散热量,所以,电极材料、形 状、工作端面尺寸和冷却条件对焊 接质量及生产效率都有很大影响。
标准电极(即直电极)有五种 形式,如图所示。
19 第 十 章 电 阻 焊
标准电极的形式 a)锥形电极 b)夹头电极 c)球形电极
d)偏心电极 e)平面电极 1—端部 2—主体 3—尾部 4—冷却水孔
35 第 十 章 电 阻 焊
§10-3 电阻焊工艺
5.点焊焊接参数
(1)焊接电流 焊接电流是决定产热大小的关键因素,将直接影响熔核直径与焊透率, 必然影响到焊点的强度。 (2)焊接时间 焊接时间对产热与散热均产生一定的影响,在焊接时间内,焊接区产 出的热量除部分散失外,将逐步积累,用来加热焊接区,使熔核扩大到所 要求的尺寸。

电阻焊接材料第一章 电阻焊

电阻焊接材料第一章 电阻焊

2.1 物理本质
本质:利用焊接区本身的电阻热和大量塑 性变形能量,使两个别离外表的金属原子 之间接近到晶格距离形成金属键,在结合 面上产生足够量的共同晶粒而得到焊点, 焊缝或对接接头。
电阻焊接头是在热-机械〔力〕联合作用 下形成的。
2.2 电阻焊的热源
1、电阻焊的热源
电阻焊的热源——电阻热:
Q=I2Rt
塑性温度范围越小,对工艺参数波动越敏感, 焊接性越差。 4、材料对热循环的敏感性
敏感性越强,焊接性越差。
2.8 电阻焊热源的特点
三、点焊时的电阻及加热
3.1 点焊时的电阻 3.2 点焊时的加热特点 3.3 点焊的热平衡
3.1 点焊时的电阻
点焊时 R = Rc+2Rew+2Rw
式中:Rc —焊件间接触电阻的动态值; Rew — 电极与焊件间接触电阻; Rw —焊件内部电阻的动态值。
t3 4〕休止时间t4
2.5 焊接循环
2.6 焊接电流的种类和适用范围
• 交流电和直流电都可以用于点焊、缝焊和凸焊,其适用 范围有所不同。
• 1). 交流电:

单相50Hz,电压为1~25V,电流为1~100kA。

交流电可通过调幅是电流缓升与缓降,以到达预
热和缓冷的作用。另外,交流电还可以用于多脉冲点焊,
缝焊(seam welding)
凸焊〔 Projection Welding〕
对焊〔 Butt Resistance Welding〕
按电源种类分:
电阻焊
交流
二次整流
脉冲











  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电阻焊原理和工艺
电阻焊是一种常见的金属材料连接方法,在制造业中被广泛应用。

本文将详细介绍电阻焊的原理和工艺,旨在让读者对电阻焊有更深入
的了解。

一、电阻焊原理
电阻焊原理是利用电流通过电阻加热金属材料,使其表面达到熔化
点从而实现材料连接的过程。

具体操作时,将待连接的两个金属部件
夹持在电极之间,当通电时,电流通过电极和工件产生电阻加热效应。

工件表面的温度升高,到达熔化点后,通过施加适当的压力将金属部
件连接在一起。

电阻焊原理的优点在于焊接速度快、两个金属部件的连接牢固可靠,并且不需要额外的填充材料。

同时,电阻焊的加热效率高,可以在短
时间内完成一次焊接过程。

二、电阻焊工艺
1. 设备准备
进行电阻焊前,首先需要确保焊接设备正常工作。

检查电极和电缆
的接触是否良好,排除各种可能的故障。

2. 工件准备
将待焊接的金属部件准备好。

确保工件表面光洁无杂质,确保接触
电阻正常。

如果工件表面存在氧化物,可以通过清洁和打磨来去除。

3. 焊接参数设置
根据具体的焊接材料和工件的要求,设置合适的焊接参数。

这包括
电流大小、焊接时间和压力等参数。

正确设置参数可以保证焊接质量
的稳定和可靠性。

4. 焊接操作
将待焊接的金属部件夹持在电极之间,保持适当的压力。

在确保焊
接区域接触电阻正常的情况下,通电进行焊接。

焊接时间一般很短,
通常在毫秒级别。

焊接完成后,停止通电,等待焊接区域冷却。

5. 检查和质量控制
焊接完成后,对焊接区域进行检查。

检查焊接部位是否均匀,是否
达到连接的要求。

同时,还可以进行拉伸等质量检测,确保焊接质量
的可靠性和稳定性。

电阻焊工艺的优点在于焊接速度快、连接牢固可靠,并且适用于不
同类型的金属材料。

但是也需要注意,电阻焊操作过程中存在一定的
安全风险,需要操作人员具备相应的操作技能和安全意识。

总结:电阻焊作为一种常用的焊接方法,具有快速、可靠的特点,
被广泛应用于制造业中。

通过电阻效应加热金属材料,实现金属部件
的连接。

但在实际操作中需要注意安全性,并遵循合适的工艺步骤。

只有掌握焊接原理和正确的工艺,才能保证焊接质量的稳定和可靠性。

相关文档
最新文档