小学奥数题目-四年级-简单逻辑推理类-游戏策略
小学奥数---逻辑推理
小学奥数---逻辑推理一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.64.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.65.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.06.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第位是疯子.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃,红桃,方块,梅花.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?小学奥数---逻辑推理参考答案与试题解析一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁【分析】①根据如果甲去,那么乙也去,可得甲在,乙必然也在;②又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,同时满足①②的条件和“如果丙去;那么丁不去”只能是乙、丙参加了活动,据此解答即可.【解答】解:根据如果甲去,那么乙也去,可得甲在,乙必然也在,又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,如果丙去;那么丁不去,可得:如果丙不去;那么丁去,同时乙也不去,则根据“甲去,那么乙也去”可得甲也不去,这样只有丁去,这与两个人参加一项活动相矛盾.同时满足条件只能是乙、丙参加了活动.故选:B.2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象【分析】通过分析可知:从题意出发:(1)狮子去则老虎去,逆否命题:老虎不去则狮子也不去,(2)不派豹子则不派老虎,逆否命题:派老虎则要派豹子,(3)派豹子则大象不愿意去,逆否命题:大象去则不能派豹子从(2)出发可以看出答案为B.据此解答即可.【解答】解:题目要求有两个动物去,可以使用假设法,若狮子去,则老虎去,老虎去则豹子也去.三个动物去,矛盾,所以狮子不去.若豹子不去则老虎不去,那么只有大象去,矛盾,所以豹子去.豹子去则大象不去,由两种动物去得到结论,老虎要去.所以答案是B,豹子和老虎去.故选:B.3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.6【分析】6人参加乒乓球赛,每两人都要比赛一场,即每人都要与另外5人赛一场,又比赛是在两人之间进行的,所以共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分为一人五场全胜5×2=10分,又比赛结果有两人并列第二名,两人并列第5名,由于30=10+6+6+4+2+2,所以第四名是4分.【解答】解:共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分5×2=10分,由于30=10+6+6+4+2+2,所以第四名是4分.故选:B.4.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.6【分析】第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.【解答】解:第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.因此第一名得了胜五场,因此得2×5=10(分)故选:A.5.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.0【分析】四人比赛乒乓球,每两人要赛一场,则每人都要和其他三人赛一场,每人要赛三场,共比赛4×3÷2=6场,由于没有平局,则每场都有一队胜,一队负.由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.【解答】解:由题意可知,每人要赛三场,共比赛4×3÷2=6场,由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.故选:D.6.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁【分析】由题意知,一排1号至4号的座位上分别坐一人,由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;据此解答.【解答】解:由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;故选:B.二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是2314.【分析】4人都是诚实的好孩子,也就是4人都是说真话,丁说它的右边没有人,那么丁排在4号;再从甲乙的话可知甲乙都不排在1号,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号,从而求解.【解答】解:首先根据“丁:我右边没有人”可以得出丁在4号;再根据“甲:我左右两人都比我高.乙:我左右两人都比我矮.”可知,甲乙两边都有人,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号;剩下的乙排在3号;综上可知:甲、乙、丙、丁的编号按顺序组成的4位数是2314.故答案为:2314.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.【分析】若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则小光要的是鸡块,然后进一步解答即可.【解答】解:若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则根据(1)小光只要的是鸡块,那么小亮要的是汉堡,也可以是鸡块;所以,已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.故答案为:小亮.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第3位是疯子.【分析】按题意,运用假设法,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,最后不难得出结论.【解答】解:根据分析,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,所以第三位是疯子.故答案是:3.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃A,红桃Q,方块K,梅花J.【分析】由(1)(2)(3)先排出个别扑克牌的顺序,再根据它们之间的位置关系,推出问题的答案.【解答】解:由(1)可知顺序为:红桃,A,J;由(2)可知顺序:Q,K由(3)可知顺序:黑桃,J由(1)(3)知,A是黑桃.由(1)(2)(3)可知顺序:K,Q,A,J,由A的左边是红桃,可知Q是红桃.又因为黑桃与方块不相邻,因此J不是方块,只能是梅花,因此,K是方块.黑桃是A 红桃是Q,方块是K,梅花是J.故答案为:A,Q,K,J.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是乙.【分析】据题意,假设结论(即会开车的分别是甲、乙或丙),然后根据他们所说的话,推出与题意矛盾的即为错误结论,从而得出正确答案.【解答】解:假设甲会开车,那么,甲和乙说的是真话,所以和已知矛盾,所以甲不会开车,假设乙会开车,那么甲和乙说的是假话,丙说的是真话,符合题意,假设丙会开车,那么乙和丙说的是真话,也和题意矛盾,所以,乙会开车.故答案为:乙.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?【分析】小强比小杰大4岁,小虎比小杰大3岁,则小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,所以小虎大.【解答】解:小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,答:小虎大.13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.【分析】由小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”,我们用大于号进行排列,小鹿>小兔,小兔>乌龟,所以,小鹿>小兔>乌龟.据此解答即可.【解答】解:由题意可知:小鹿>小兔小兔>乌龟所以小鹿>小兔>乌龟.所以小鹿最高,乌龟最矮.答:小鹿最高,乌龟最矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?【分析】因为他们中只有一个人讲的话错了,也就是只有一个人说了假话,从题中分析,因为乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断是乙是罪犯.【解答】解:乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断乙是罪犯.综上所述,罪犯一定是乙.答:乙是罪犯.15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?【分析】这四人中只有丁说了实话,那么根据“乙说是丁打的”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个,然后根据甲和丙说的话进行判断(甲丙说谎),从而得出结论.【解答】解:这四人中只有丁说了实话,那么根据丁说:“乙说得不对.”、乙说:“是丁打的.”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个;又因为甲说谎,所以可能是甲或丙;又因为丙也说谎,且丙说:“不是我打的.”,从而可以肯定是丙打碎了玻璃.答:是丙打碎了玻璃.第11页(共11页)。
四年级奥数简单推理
数学中的简单推理
逻辑推理:通过已 知条件,按照一定 的逻辑规则,推导 出结论的过程。
数学证明:运用逻 辑推理来证明数学 命题的过程,是数 学中最为基本的推 理形式之一。
问题解决:在解决 数学问题时,常常 需要运用简单推理 来分析问题,找到 解决方案。
数学归纳法:基于 归纳思想的推理方 法,是数学中一种 重要的证明方法。
排列与组合推理
排列推理:根据给定的条件,对不同元素进行排列,得出符合条件的排列方式。
组合推理:根据给定的条件,从给定的元素中选出符合条件的组合,得出所有可能的组合方式。
排列与组合推理的解题思路:先分析题目中的条件,确定需要排列或组合的元素;然后根据排列 或组合的规则,逐一尝试不同的方式,得出符合条件的答案。
06
如何提高简单推理能力
多做练习题
练习题是提高简单推理能力的有效途径,通过大量练习可以加深对推理的理解和掌握。 练习题的选择要多样化,包括不同难度和类型的题目,以全面提高推理能力。 练习题的过程中要注意总结经验和方法,不断优化解题思路和技巧。 练习题还可以帮助发现自己的不足和弱点,从而有针对性地进行改进和提高。
排列与组合推理的注意事项:注意元素的顺序和组合的限制条件,避免出现重复或遗漏的情况。
空间推理
定义:根据空间关系,通过观察、 分析和想象,确定物体在空间中 的位置和运动轨迹。
解题方法:利用空间想象、观察、 分析、比较和归纳等思维方法, 结合实际生活经验,确定物体的 空间位置和运动轨迹。
添加标题
添加标题
题技巧
04
简单推理的解题技巧
寻找线索
确定推理目标:明确问题要求, 确定需要推理的结论。
筛选线索:根据推理需要,筛选 出添加标题
四年级奥数讲义-简单逻辑推理附答案
知识精讲知识点(简单逻辑推理【知识梳理】小文比小林高,小林比小佳高,那我们可以推断,小文一定比小佳长得高,这也是一种推理。
与前面推理题不同的是,这种推理解答时不需要或很少用到计算,而要求我们根据题目中给出的已知条件,通过分析和判断,得出正确合理的结论。
做推理题时,要根据已知条件认真分析,为了找到突破口,有时先假设一个结论是正确的,然后验证它是不是符合所给的一切条件,若没有矛盾,说明推理正确,否则再换个结论来验证。
【例题精讲】【例1】晴晴比珊珊高,珊珊比惠惠高。
她们三人中,谁最高?【试一试】1.青青比林林重,林林比力力重。
他们三人中,谁最轻?谁最重?2.爷爷的年龄比奶奶大,奶奶的年龄比外婆大。
他们三人中,谁最大?谁最小?【例2】桌上有三盘苹果,小猫说:“第一盘比第三盘多3个。
”小狗说:“第三盘比第二盘少5个。
”猜一猜,哪盘苹果最多?哪盘苹果最少?【试一试】1.三个小朋友比大小,根据下面的两句话,请你猜一猜,谁最大?谁最小? (1)芳芳比阳阳大3岁,(2)宁宁比芳芳小1岁。
芳芳最大,阳阳最小2.有三种水果,请根据动物们的话,猜一猜,哪种水果最重?哪种水果最轻? 小猪:“香蕉比桃重”;小龟:“苹果比香蕉轻”;小鹿:“苹果比桃重。
”香蕉最重,桃最轻【例3】红红、聪聪和颖颖都戴着太阳帽去参加野炊活动,她们戴的帽子一个是红的,一个是黄的,一个是蓝的。
只知道红红没有戴黄帽子。
聪聪既不戴黄帽子,也不戴蓝帽子,请你判断红红、聪聪和颖颖分别戴的是什么颜色的帽子?红红:蓝聪聪:红颖颖:黄【试一试】1.爸爸买回3双袜子,其中2双是花袜子,1双是红袜子,爸爸塞了1双花袜子给妹妹,又塞了1双红袜子给哥哥,把剩下的1双袜子藏在自己手中,让兄妹猜是什么颜色的,谁猜对就把袜子给谁。
你们说,谁肯定会猜对?哥哥2.黄颖、李红和马娜都穿着新衣服,她们穿的衣服一个是花的,一个是粉红的,一个是蓝的。
已知黄颖穿的不是花衣服,李红既不穿蓝衣服,又不穿花衣服,她们分别穿的是什么颜色的衣服?李红:粉马娜:花【例4】一个正方体有六个面,每个面分别涂有红、绿、黄、白、蓝、黑六种颜色,你能根据这个正方体的三种不同的摆法,判断出这个正方体每一种颜色的对面是什么颜色吗?红--蓝绿—-白黄一黑八、、【试一试】1.有一个正方体,每个面上分别写着1, 2, 3, 4, 5, 6,有三个人从不同的角度观察,结果如下图:这个正方体每个数字的对面是什么数?1--52--43--62.有一个正方体,每个面上都画有。
逻辑推理四年级奥数专题
逻辑推理四年级奥数专题第一篇:逻辑推理四年级奥数专题逻辑推理之列表法、假设法(★★★)甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名,已知:⑴教师不知道甲的职业;⑶律师是丙的法律顾问;⑸乙和丙从未见过面。
(★★★)⑵医生曾给乙治过病;⑷丁不是律师;根据以上条件判断甲的职业是________,乙的职业是________。
甲、乙、丙在2011年高考中,分别考取了北大,清华和理工大学的数学系,物理系和化学系,现知道下列情况⑴甲不在北大;⑶在北大的不学数学;⑸乙不学化学。
⑵乙不在清华;⑷在清华的学物理;根据以上情况判断甲、乙、丙三人各在哪个学校?哪个系?(★★★★)有这样三个的职业人,他们分别姓李、蒋和刘,他们每人身兼两职,三个人的六种职业是作家、音乐家、美术家、话剧演员、诗人和工人,同时还知道以下的事实:⑴音乐家以前对工人谈论过对“古典音乐”的欣赏;⑵音乐家出国访问时,美术家和李曾去送行;⑶工人的爱人是作家的妹妹;⑷作家和诗人曾经在一起探讨“百花齐放”的问题;⑸美术家曾与姓蒋的看过电影;⑹姓刘的善下棋,姓蒋的和那作家跟他对奕时,屡战屡败。
请问他们的职业是什么?(★★)一个外地人路过一个小镇,此时天色已晚,于是他便去投宿。
当他来到一个十字路口时,他知道肯定有一条路是通向宾馆的,可是路口却没有任何标记,只有三个小木牌。
第一个木牌上写着:“这条路上有宾馆”。
第二个木牌上写着:“这条路上没有宾馆”。
第三个木牌上写着:“那两个木牌有一个写的是事实,另一个是假的。
相信我,我的话不会有错”。
假设你是这个投宿的人,按照第三个木牌的话为依据,你觉得你会找到宾馆吗?如果可以,哪条路上有宾馆?(★★★)在老北京的一个胡同的大杂院里,住着4户人家,巧合的是每家都有一对双胞胎女孩。
这四对双胞胎中,姐姐分别是甲、乙、丙、丁,妹妹分别是a、b、c、d。
一天,一对外国游人夫妇来到这个大杂院里,看到她们8个,忍不住问:“你们谁和谁是一家的啊?”乙说:“丙的妹妹是d。
四年级高思奥数之逻辑推理一含答案
第24讲逻辑推理一内容概述简单的逻辑推理问题,学会假设法和列表法.典型问题兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?2.有三只盒子,一只盒子里装有两个黑球,另一只盒子装有两个白球,还有一只盒子里装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从其中一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?3.费叔叔手里握有两个硬币,他让小悦、冬冬和阿奇猜哪只手握有硬币.小悦说:“左手没有,右手有.”冬冬说:“右手没有,左手有.”阿奇说:“不会两手都没有,我猜左手没有.”结果三个人的话都说对一句,说错一句.请问:费叔叔是怎么握住硬币的?4. 甲、乙、丙、丁四位同学的运动衫上印上了不同的号码:赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是1号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.请问:丙的号码是几号?5.A、B、C、D四人在争论今天是星期几.A说:“明天是星期五.”B说:“昨天是星期日.”C说:“你们俩说的都不对.”D说:“今天不是星期六.”实际上这四人中只有一人说对了.请问:今天是星期几?6.爱丽丝梦游仙境时,误入一片魔法森林——健忘森林.在森林中徘徊了很久以后,爱丽丝很想知道今天是星期几.这时她刚巧碰到了老山羊.爱丽丝赶忙问它:“请问您知道今天是星期几吗?”老山羊回答说:“真糟糕,我也不记得了!不过,你可以去问问狮子和独角兽.狮钢在星期一、二、三是说谎的;独角兽在星期四、五、六是说谎的;其余的日子,它们利会说真话.”于是,爱丽丝就去找狮子和独角兽,并问它们今天是星期几.独角兽回答说:“昨天是我说谎的日子.”狮子也回答说:“昨天是我说谎的日子.”请你帮爱丽丝想一想,今天到底是星期几呢?7. 甲、乙、丙三位老师分别教四年级三班的语文、数学和英语.已知:甲老师不教英语;英语老师是一个学生的哥哥;丙是一位女老师,她比数学老师活泼.请问:乙老师教什么课?8.甲、乙、丙、丁四名同学同在一间教室里.他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信.已知:①甲不在念英语,也不在看小说;②如果甲不在做数学题,那么丁不在念英语;③有人说乙在做数学题,或在念英语,但事实并非如此;④丙既不是在看小说,也不在念英语.请问:在写信的是谁?9. 小悦、冬冬、阿奇去参加一次奥运活动.他们三人分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服.已知:①帽子和衣服的颜色都只有红、黄、蓝三种;②小悦没戴红帽子,冬冬没戴黄帽子;③戴红帽子的那个人没有穿蓝衣服;④戴黄帽子的那个人穿着红衣服;⑤冬冬没有穿黄色衣服.请问:小悦、冬冬、阿奇各戴什么颜色的帽子,穿什么颜色的衣服?10. 甲、乙、丙、丁、戊五人各从图书馆借来一本小说,他们约定读完后互相交换.这五本书的厚度以及他们五人的阅读速度都差不多,因此五人总是同时交换书.经过数次交换后,他们都读完了这五本书.已知:①甲最后读的书是乙读的第二本;②丙最后读的书是乙读的第四本;③丙读的第二本书甲在一开始就读了;④丁最后读的书是丙读的第三本;⑤乙读的第四本是戊读的第三本;⑥丁第三次读的书是丙~开始读的那本.设甲、乙、丙、丁、戊五个人最后读的书分别为A、B、C、D、E,请根据以上条件确定这五个人读的第四本书分别是什么?拓展篇1. 甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“丙是牧师.”乙说:“甲是赌棍”丙说:“乙是骗子.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?2. 期末考试结束后,甲、乙、丙、丁四名同学在一起议论.甲说:“自然成绩第一名是丁.”乙说:“数学成绩第一名是丙.”丙说:“语文成绩第一名不是甲.”丁说:“英语成绩第一名是乙.”成绩公布后发现,这四名同学确实分别取得了语文、数学、英语、自然的第一名,但只有取得语文和自然第一名的学生做出的猜测是正确的.请问:数学成绩第一名是谁?3.甲、乙、丙、丁四人对A先生的藏书数目作了一个估计.甲说:“A先生有500本书.”乙说:“A先生至少有1000本书.”丙说:“A先生的书不到2000本.”丁说:“A先生最少有1本书.”实际上这四个人的估计中只有一句是对的.问:A先生究竟有多少本书?4.法官在审理一起盗窃案的过程中,对四名犯罪嫌疑人甲、乙、丙、丁进行审问.甲说:“罪犯在乙、丙、丁三人之中.”乙说:“我没有作案,是丙偷的.”丙说:“甲、丁之中有一个是罪犯.”丁说:“乙说的是事实.”如果这四个人中有两人说的是真话,另外两人说了假话,而且只有一个罪犯.请你判断:罪犯是谁?5.某参观团根据下列条件从A、B、C、D、E这五个地方中挑选参观地点:①若去A地,则必须去B地;②B、C两地中至多去一地;③D、E两地中至少去一地;④C、D两地都去或者都不去;⑤若去E地,一定要去A、D两地.请问:参观团所去的地点有哪些?6.某校数学竞赛,A、B、C、D、E、F、G、月这8位同学获得前八名.老师让他们猜一下谁是第一名.A 说:“F或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A 说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.问:第一名是谁?7.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷.已知:①木工只和车工下棋,而且总是输给车工;②王、陈两位师傅和木工经常一起看球;③陈师傅与电工下棋互有胜负;④徐师傅比赵师傅下的好.问:徐、王、陈、赵四位师傅各是什么工种?8.甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名.已知:①教师不知道甲的职业;②医生曾给乙治过病;③律师是丙的法律顾问;④丁不是律师;⑤乙和丙从未见过面.请你根据上面的条件判断甲、乙、丙、丁的职业分别是什么?9.有三户人家,父亲分别姓王、张、陈,母亲分别姓刘、李、胡,每家一个孩子,分别叫明明(女)、宁宁(女)、松松(男).已知:①王爸爸和李妈妈的孩子都参加了女子体操队;②张爸爸的女儿不叫宁宁;③陈和胡不是一家.请问:哪些人是一家?10.甲、乙、丙、丁四位老师各教两门不同的课.已知:①甲在星期二没课;②乙在星期一不给一班上课;③丙星期二前两节都有课;④物理老师星期一前两节没课.请你根据上面的课程表判断他们各教哪两门课.11.甲、乙两校举行象棋比赛.两校各选五名选手进行循环赛,即每名选手都与对方五名选手各赛一盘,每天赛五场,共赛五天.甲校的五名选手是丁一、胡二、张三、李四、王五.已知:①丁一第一天的对手第二天与胡二相遇;②第三天被李四打败的选手第四天胜了王五:③王五第四天的对手第五天与胡---T成和棋;④第五天胜了张三的选手第三天败给胡二;⑤王五第二天的对手最后一天与丁一对阵.请问:第三天与丁一比赛的选手,最后一天与谁比赛?12. 在国际饭店的宴会桌旁,甲、乙、丙、丁4位朋友进行有趣的交谈.他们分别用了汉语、英语、法语、日语4种语言.并且还知道:①甲、乙、丙各会两种语言,丁只会一种语言;②有一种语言4人中有3人都会;③甲会日语,丁不会日语,乙不会英语;④甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈;⑤没有人既会日语,又会法语.请根据上面的条件,判断他们各会什么语言.超越篇1.如图24-1所示,8张相同大小的正方形纸片摆放在桌子上,其中正方形纸片A可以完全看到,其他7张正方形纸片由于互相重叠而只露出一部分.这些纸片从上到下的摆放次序是怎样的?2.五年级有四个班,每个班有两个班长,召开年级班长会议时每班都有一名班长参加.参加第一次会议的是A、B、C、D;参加第二次会议的是B、D、E、F;参加第三次会议的是A、B、E、G.又已知日三次会议都没参加.请问:和A、B、C、D同班的分别是谁?3.赛马比赛前,五位观众给A、B、C、D、E五匹赛马预测名次.甲说:“B第三,C第五.”乙说:“E 第四,D第五.”丙说:“A第一,E第四.”丁说:“C第一,B第二.”戊说:“A第三,D第四.”结果每个名次都有人猜中,请求出各匹马的名次.4.房问里有12个人,其中有些人总说假话,其余的人总说真话.其中一个人说:“这里没有一个老实人.”第二个人说:“这里至多有一个老实人.”第三个人说:“这里至多有两个老实人.”如此往下,至第十二个人说:“这里至多有11个老实人.”请问:房间里究竟有多少个老实人?5.在一列国际列车上,有A、B、C、D四位不同国籍的旅客,他们分别穿蓝、黑、灰、褐色的大衣,坐在一张桌子的两边.桌子每边坐两个人,而且他们正好与另一边的某人面对面.已知:①英国旅客坐在B先生左侧;②A先生穿褐色大衣;③穿黑色大衣的坐在德国旅客右侧;④D先生的对面坐着美国旅客;⑤俄国旅客穿着灰色大衣.问:A、B、C、D分别是哪国人?分别穿什么颜色的大衣?6. A、B、C、D四人分别到甲、乙、丙、丁四个单位办事.已知甲单位星期一不接待,乙单位星期三不接待,丙单位星期四不接待,丁单位只在星期二、四、六接待,星期日四个单位都不办公.一天,他们议论起哪天去办事A说:“你们可别像我前天那样,在人家不接待的日子去.”B说:“我今天必须去,明天人家就不接待了.”C说:“我和B正相反,今天不能去,明天去.”D说:“我从今天起,连着四天哪天去都行.”问:这天是星期几?他们分别去哪个单位办事?7. 一次羽毛球邀请赛,来自湖北、广东、福建、北京和上海的五名运动员相遇在一起,据了解:①李平仅和另外两名运动员比赛过;②上海运动员和另外三名运动员比赛过;③陈兵和广东运动员是好朋友,但他们从未比赛过;④福建运动员和林华比赛过;⑤赵新仅与一名运动员比赛过;⑥广东、福建、北京的三名运动员都相互交过手.请问:张强是哪个省/市的运动员?8. 有甲、乙、丙、丁、戊五个人,每个人都非常有特点,他们来自不同的城市,开不同品牌的车子,喝不同种类的茶,穿不同颜色的衬衫.一次聚会上他们遇到一起,把车从左到右排成了一行.已知:①甲开奔驰;②乙穿绿衬衫;③丙喝碧螺春;④宝马车紧挨在奥迪车的左边;⑤宝马车的主人喝铁观音;⑥北京人穿蓝衬衫;⑦丰田主人来自天津;⑧中问那辆车的主人喝龙井茶;⑨丁的车在最左边;⑩上海人的车在穿红衬衫人的车旁边;⑾穿白衬衫人的车在天津人的车旁;⑿广州人喝菊花茶;⒀戊是重庆人;⒁丁的车在别克车的旁边;⒂上海人的车挨着喝乌龙茶的人的车.请问:谁穿黑衬衫?他是哪里人?他开什么车?喝什么茶?第24讲逻辑推理一兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?答;甲是牧师,乙是赌棍,丙是骗子。
四年级奥数数字游戏中的规律探索
四年级奥数数字游戏中的规律探索数字游戏一直是孩子们喜欢的活动之一,除了能够娱乐之外,数字游戏也可以培养孩子的逻辑思维和数学能力。
在四年级奥数课程中,数字游戏中的规律探索成为了一项重要的训练内容。
本文将围绕四年级奥数数字游戏中的规律探索展开讨论,探索其中的数学奥秘。
1. 游戏一:找规律这是一个简单的数字游戏,要求孩子找出数列中的规律,然后预测下一个数字。
例如,给出数列2,4,6,8,孩子们可以发现规律是每次加2,因此下一个数字应该是10。
通过这个游戏,可以培养孩子的观察力和逻辑思维能力。
2. 游戏二:奇偶变换在这个游戏中,孩子们需要将给定数列中的奇数和偶数进行位置变换。
例如,给出数列1,3,4,6,9,孩子们需要将奇数1和3与偶数4和6进行位置交换,得到新的数列3,1,6,4,9。
通过这个游戏,孩子们可以加深对奇偶数的理解,并锻炼他们的数学操作能力。
3. 游戏三:找规律填空这个游戏需要孩子们在给定的数列中填入符合规律的数字。
例如,给出数列1,2,4,7,11,孩子们可以发现每个数字与前一个数字的差依次增加了1,因此可以填入数列为1,2,4,7,11,16。
通过这个游戏,孩子们可以培养观察规律和推断的能力。
4. 游戏四:错位排序在错位排序这个游戏中,孩子们需要将给定的数列按照一定的规律进行排序。
例如,给出数列3,7,1,5,9,孩子们可以发现每次按照大小顺序排列两个数字,再将得到的数列组合起来,因此可以得到排序后的数列1,3,5,7,9。
通过这个游戏,孩子们可以提高数学操作和排序的技能。
在以上的数字游戏中,通过找规律、奇偶变换、填空和排序等方式,孩子们可以逐渐熟悉数列中的规律,并运用这些规律进行逻辑推理。
这些游戏不仅可以培养孩子的数学能力,还可以提高他们的注意力和思维灵活性。
总结起来,四年级奥数数字游戏中的规律探索是一个寓教于乐的过程,通过游戏的方式激发孩子们对数学的兴趣和学习动力。
同时,这些数字游戏也是锻炼孩子逻辑思维和数学能力的良好途径。
最新版 四年级奥数 逻辑推理
逻辑推理例1:卢刚、丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。
现在只知道:卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大。
问:谁是工程师、谁是医生、谁是飞行员?练习1:(1)有三个小朋友们在谈论谁做的好事多。
冬冬说:“兰兰做的比静静多。
”兰兰说:“冬冬做的比静静多。
”静静说:“兰兰做的比冬冬少。
”这三位小朋友中,谁做的好事最多?谁做的好事最少?(2)小李、小徐和小张是同学,大学毕业后分别当了教师、数学家和工程师。
小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。
谁是教师、谁是数学家、谁是工程师?例2:有一个正方体,每个面分别写上汉字:数学奥林匹克。
三个人从不同角度观察的结果如下图所示。
这个正方体的每个汉字的对面各是什么字?(1)奥匹林(2)数奥学(3)林数克练习2:(1)下面三块正方体的六个面都是按相同的规律涂有红、黄、蓝、白、绿、黑六种颜色。
请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?(2)一个正方体,六个面分别写上A 、B 、C 、D 、E 、F ,你能根据这个正方体不同的摆法,求出相对的两个面的字母是什么吗?例3:甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。
”乙说:“我没有打碎破璃。
”丙说:“是乙打碎的。
”他们当中有一个人说了谎话,到底是谁打碎了玻璃?练习3:(1)已知甲、乙、丙三人中,只有一人会开汽车。
甲说:“我会开汽车。
”乙说:“我不会开。
”丙说:“甲不会开汽车。
”如果三人中只有一人讲的是真话,那么谁会开汽车?(A )黄黑白(B )红白绿(C )红蓝黄D A FA CBCD E(2)某学校为表扬好人好事核实一件事,老师找了A、B、C三个学生。
A说:“是B做的。
”B说:“不是我做的。
”C说:“不是我做的。
”这三个学生中只有一人说了实话,这件好事是谁做的?例4:A、B、C、D与小强五个同学一起参加象棋比赛,每两人都赛一盘,比赛一段时间后统计:A赛了4盘,B赛了3盘,C赛了2盘,D赛了一盘。
四年级高思奥数之逻辑推理一含答案
第24讲逻辑推理一内容概述简单的逻辑推理问题,学会假设法和列表法.典型问题兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?2.有三只盒子,一只盒子里装有两个黑球,另一只盒子装有两个白球,还有一只盒子里装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从其中一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?3.费叔叔手里握有两个硬币,他让小悦、冬冬和阿奇猜哪只手握有硬币.小悦说:“左手没有,右手有.”冬冬说:“右手没有,左手有.”阿奇说:“不会两手都没有,我猜左手没有.”结果三个人的话都说对一句,说错一句.请问:费叔叔是怎么握住硬币的?4. 甲、乙、丙、丁四位同学的运动衫上印上了不同的号码:赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是1号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.请问:丙的号码是几号?5.A、B、C、D四人在争论今天是星期几.A说:“明天是星期五.”B说:“昨天是星期日.”C说:“你们俩说的都不对.”D说:“今天不是星期六.”实际上这四人中只有一人说对了.请问:今天是星期几?6.爱丽丝梦游仙境时,误入一片魔法森林——健忘森林.在森林中徘徊了很久以后,爱丽丝很想知道今天是星期几.这时她刚巧碰到了老山羊.爱丽丝赶忙问它:“请问您知道今天是星期几吗?”老山羊回答说:“真糟糕,我也不记得了!不过,你可以去问问狮子和独角兽.狮钢在星期一、二、三是说谎的;独角兽在星期四、五、六是说谎的;其余的日子,它们利会说真话.”于是,爱丽丝就去找狮子和独角兽,并问它们今天是星期几.独角兽回答说:“昨天是我说谎的日子.”狮子也回答说:“昨天是我说谎的日子.”请你帮爱丽丝想一想,今天到底是星期几呢?7. 甲、乙、丙三位老师分别教四年级三班的语文、数学和英语.已知:甲老师不教英语;英语老师是一个学生的哥哥;丙是一位女老师,她比数学老师活泼.请问:乙老师教什么课?8.甲、乙、丙、丁四名同学同在一间教室里.他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信.已知:①甲不在念英语,也不在看小说;②如果甲不在做数学题,那么丁不在念英语;③有人说乙在做数学题,或在念英语,但事实并非如此;④丙既不是在看小说,也不在念英语.请问:在写信的是谁?9. 小悦、冬冬、阿奇去参加一次奥运活动.他们三人分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服.已知:①帽子和衣服的颜色都只有红、黄、蓝三种;②小悦没戴红帽子,冬冬没戴黄帽子;③戴红帽子的那个人没有穿蓝衣服;④戴黄帽子的那个人穿着红衣服;⑤冬冬没有穿黄色衣服.请问:小悦、冬冬、阿奇各戴什么颜色的帽子,穿什么颜色的衣服?10. 甲、乙、丙、丁、戊五人各从图书馆借来一本小说,他们约定读完后互相交换.这五本书的厚度以及他们五人的阅读速度都差不多,因此五人总是同时交换书.经过数次交换后,他们都读完了这五本书.已知:①甲最后读的书是乙读的第二本;②丙最后读的书是乙读的第四本;③丙读的第二本书甲在一开始就读了;④丁最后读的书是丙读的第三本;⑤乙读的第四本是戊读的第三本;⑥丁第三次读的书是丙~开始读的那本.设甲、乙、丙、丁、戊五个人最后读的书分别为A、B、C、D、E,请根据以上条件确定这五个人读的第四本书分别是什么?拓展篇1. 甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“丙是牧师.”乙说:“甲是赌棍”丙说:“乙是骗子.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?2. 期末考试结束后,甲、乙、丙、丁四名同学在一起议论.甲说:“自然成绩第一名是丁.”乙说:“数学成绩第一名是丙.”丙说:“语文成绩第一名不是甲.”丁说:“英语成绩第一名是乙.”成绩公布后发现,这四名同学确实分别取得了语文、数学、英语、自然的第一名,但只有取得语文和自然第一名的学生做出的猜测是正确的.请问:数学成绩第一名是谁?3.甲、乙、丙、丁四人对A先生的藏书数目作了一个估计.甲说:“A先生有500本书.”乙说:“A先生至少有1000本书.”丙说:“A先生的书不到2000本.”丁说:“A先生最少有1本书.”实际上这四个人的估计中只有一句是对的.问:A先生究竟有多少本书?4.法官在审理一起盗窃案的过程中,对四名犯罪嫌疑人甲、乙、丙、丁进行审问.甲说:“罪犯在乙、丙、丁三人之中.”乙说:“我没有作案,是丙偷的.”丙说:“甲、丁之中有一个是罪犯.”丁说:“乙说的是事实.”如果这四个人中有两人说的是真话,另外两人说了假话,而且只有一个罪犯.请你判断:罪犯是谁?5.某参观团根据下列条件从A、B、C、D、E这五个地方中挑选参观地点:①若去A地,则必须去B地;②B、C两地中至多去一地;③D、E两地中至少去一地;④C、D两地都去或者都不去;⑤若去E地,一定要去A、D两地.请问:参观团所去的地点有哪些?6.某校数学竞赛,A、B、C、D、E、F、G、月这8位同学获得前八名.老师让他们猜一下谁是第一名.A 说:“F或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A 说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.问:第一名是谁?7.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷.已知:①木工只和车工下棋,而且总是输给车工;②王、陈两位师傅和木工经常一起看球;③陈师傅与电工下棋互有胜负;④徐师傅比赵师傅下的好.问:徐、王、陈、赵四位师傅各是什么工种?8.甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名.已知:①教师不知道甲的职业;②医生曾给乙治过病;③律师是丙的法律顾问;④丁不是律师;⑤乙和丙从未见过面.请你根据上面的条件判断甲、乙、丙、丁的职业分别是什么?9.有三户人家,父亲分别姓王、张、陈,母亲分别姓刘、李、胡,每家一个孩子,分别叫明明(女)、宁宁(女)、松松(男).已知:①王爸爸和李妈妈的孩子都参加了女子体操队;②张爸爸的女儿不叫宁宁;③陈和胡不是一家.请问:哪些人是一家?10.甲、乙、丙、丁四位老师各教两门不同的课.已知:①甲在星期二没课;②乙在星期一不给一班上课;③丙星期二前两节都有课;④物理老师星期一前两节没课.请你根据上面的课程表判断他们各教哪两门课.11.甲、乙两校举行象棋比赛.两校各选五名选手进行循环赛,即每名选手都与对方五名选手各赛一盘,每天赛五场,共赛五天.甲校的五名选手是丁一、胡二、张三、李四、王五.已知:①丁一第一天的对手第二天与胡二相遇;②第三天被李四打败的选手第四天胜了王五:③王五第四天的对手第五天与胡---T成和棋;④第五天胜了张三的选手第三天败给胡二;⑤王五第二天的对手最后一天与丁一对阵.请问:第三天与丁一比赛的选手,最后一天与谁比赛?12. 在国际饭店的宴会桌旁,甲、乙、丙、丁4位朋友进行有趣的交谈.他们分别用了汉语、英语、法语、日语4种语言.并且还知道:①甲、乙、丙各会两种语言,丁只会一种语言;②有一种语言4人中有3人都会;③甲会日语,丁不会日语,乙不会英语;④甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈;⑤没有人既会日语,又会法语.请根据上面的条件,判断他们各会什么语言.超越篇1.如图24-1所示,8张相同大小的正方形纸片摆放在桌子上,其中正方形纸片A可以完全看到,其他7张正方形纸片由于互相重叠而只露出一部分.这些纸片从上到下的摆放次序是怎样的?2.五年级有四个班,每个班有两个班长,召开年级班长会议时每班都有一名班长参加.参加第一次会议的是A、B、C、D;参加第二次会议的是B、D、E、F;参加第三次会议的是A、B、E、G.又已知日三次会议都没参加.请问:和A、B、C、D同班的分别是谁?3.赛马比赛前,五位观众给A、B、C、D、E五匹赛马预测名次.甲说:“B第三,C第五.”乙说:“E 第四,D第五.”丙说:“A第一,E第四.”丁说:“C第一,B第二.”戊说:“A第三,D第四.”结果每个名次都有人猜中,请求出各匹马的名次.4.房问里有12个人,其中有些人总说假话,其余的人总说真话.其中一个人说:“这里没有一个老实人.”第二个人说:“这里至多有一个老实人.”第三个人说:“这里至多有两个老实人.”如此往下,至第十二个人说:“这里至多有11个老实人.”请问:房间里究竟有多少个老实人?5.在一列国际列车上,有A、B、C、D四位不同国籍的旅客,他们分别穿蓝、黑、灰、褐色的大衣,坐在一张桌子的两边.桌子每边坐两个人,而且他们正好与另一边的某人面对面.已知:①英国旅客坐在B先生左侧;②A先生穿褐色大衣;③穿黑色大衣的坐在德国旅客右侧;④D先生的对面坐着美国旅客;⑤俄国旅客穿着灰色大衣.问:A、B、C、D分别是哪国人?分别穿什么颜色的大衣?6. A、B、C、D四人分别到甲、乙、丙、丁四个单位办事.已知甲单位星期一不接待,乙单位星期三不接待,丙单位星期四不接待,丁单位只在星期二、四、六接待,星期日四个单位都不办公.一天,他们议论起哪天去办事A说:“你们可别像我前天那样,在人家不接待的日子去.”B说:“我今天必须去,明天人家就不接待了.”C说:“我和B正相反,今天不能去,明天去.”D说:“我从今天起,连着四天哪天去都行.”问:这天是星期几?他们分别去哪个单位办事?7. 一次羽毛球邀请赛,来自湖北、广东、福建、北京和上海的五名运动员相遇在一起,据了解:①李平仅和另外两名运动员比赛过;②上海运动员和另外三名运动员比赛过;③陈兵和广东运动员是好朋友,但他们从未比赛过;④福建运动员和林华比赛过;⑤赵新仅与一名运动员比赛过;⑥广东、福建、北京的三名运动员都相互交过手.请问:张强是哪个省/市的运动员?8. 有甲、乙、丙、丁、戊五个人,每个人都非常有特点,他们来自不同的城市,开不同品牌的车子,喝不同种类的茶,穿不同颜色的衬衫.一次聚会上他们遇到一起,把车从左到右排成了一行.已知:①甲开奔驰;②乙穿绿衬衫;③丙喝碧螺春;④宝马车紧挨在奥迪车的左边;⑤宝马车的主人喝铁观音;⑥北京人穿蓝衬衫;⑦丰田主人来自天津;⑧中问那辆车的主人喝龙井茶;⑨丁的车在最左边;⑩上海人的车在穿红衬衫人的车旁边;⑾穿白衬衫人的车在天津人的车旁;⑿广州人喝菊花茶;⒀戊是重庆人;⒁丁的车在别克车的旁边;⒂上海人的车挨着喝乌龙茶的人的车.请问:谁穿黑衬衫?他是哪里人?他开什么车?喝什么茶?第24讲逻辑推理一兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?答;甲是牧师,乙是赌棍,丙是骗子。
四年级奥数— 逻辑推理
四年级奥数—逻辑推理一、拓展提优试题1.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.2.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.3.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?4.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.5.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.6.两数相除,商是12,余数是3,被除数最小是.7.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?8.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?9.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.10.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.11.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.12.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.13.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.14.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.15.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…16.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.17.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.18.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.19.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.20.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.21.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.22.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.23.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.24.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.25.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.26.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.27.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.28.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.29.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.30.如果今天是星期五,那么从今天算起,57天后的第一天是星期.31.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.32.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.33.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.34.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.35.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.36.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.37.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.38.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…39.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.40.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.【参考答案】一、拓展提优试题1.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.2.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.3.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.4.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.5.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.6.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.7.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.8.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..9.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.10.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.11.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.12.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.13.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.14.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.15.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.16.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.17.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.18.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.19.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天20.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.21.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.22.【分析】本题主要考察等差数列.解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.23.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.24.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.25.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.26.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.27.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.28.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.29.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).30.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.31.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).32.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.33.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.34.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.35.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.36.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.37.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.38.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.39.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.40.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.。
小学四年级奥数题大全:逻辑推理
小学四年级奥数题大全:逻辑推理专题简析:解答推理问题常用的方法有:排除法、假设法、反证法。
一般能够从以下几方面考虑:1,选准突破口,分析时综合几个条件实行判断;2,根据题中条件,在推理过程中,持续排除不可能的情况,从而得出要求的结论;3,对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是准确的;4,遇到比较复杂的推理问题,能够借助图表实行分析。
例1:有三个小朋友们在谈论谁做的好事多。
冬冬说:“兰兰做的比静静多。
”兰兰说:“冬冬做的比静静多。
”静静说:“兰兰做的比冬冬少。
”这三位小朋友中,谁做的好事最多?谁做的好事最少?分析与解答:我们用“>”来表示每个小朋友之间做好事多少的关系。
兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少。
练习一1,卢刚、丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。
现在只知道:卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大。
问:谁是工程师、谁是医生、谁是飞行员?2,小李、小徐和小张是同学,大学毕业后分别当了教师、数学家和工程师。
小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。
谁是教师、谁是数学家、谁是工程师?3,江波、刘晓、吴萌三个老师,其中一位教语文,一位教数学,一位教英语。
已知:江波和语文老师是邻居;吴萌和语文老师不是邻居;吴萌和数学老师是同学。
请问:三个老师分别教什么科目?练习三1,已知甲、乙、丙三人中,只有一人会开汽车。
甲说:“我会开汽车。
”乙说:“我不会开。
”丙说:“甲不会开汽车。
”如果三人中只有一人讲的是真话,那么谁会开汽车?2,某学校为表扬好人好事核实一件事,老师找了A、B、C三个学生。
A说:“是B做的。
”B说:“不是我做的。
”C说:“不是我做的。
”这三个学生中只有一人说了实话,这件好事是谁做的?3,A、B、C、D四个孩子踢球打碎了玻璃。
小学四年级奥数教程-逻辑推理
小学四年级奥数教程-逻辑推理
3.李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门。现知道: (1)顾锋最年轻; (2)李波喜欢与体育老师、数学老师交谈; (3)体育老师和图画老师都比政治老师年龄大; (4)顾锋、音乐老师、语文老师经常一起去游泳; (5)刘英与语文老师是邻居。 问:各人分别教哪两门课程?
问:小亮、小红、小娟各在哪个学校读书和各自的爱好是什么?
练习提升
小学四年级奥数教程-逻辑推理
1
2
3
4
5
6
练习提升
小学四年级奥数教程-逻辑推理
小学四年级奥数教程-逻辑推理
7.学校新来了一位老师,五个学生分别听到如下的情况: (1)是一位姓王的中年女老师,教语文课; (2)是一位姓丁的中年男老师,教数学课; (3)是一位姓刘的青年男老师,教外语课; (4)是一位姓李的青年男老师,教数学课; (5)是一位姓王的老年男老师,教外语课。 他们每人听到的四项情况中各有一项正确。问:真实情况如何?
分析与解
因为甲、乙都说“丙住在天津”,我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。所以假设不成立,即“丙住在天津”是真话。 因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的。由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话。 所以,何伟住在南京。
01
02
小学四年级奥数教程-逻辑推理
小学四年级奥数教程-逻辑推理
在解答逻辑问题时,有时需要将列表法与假设法结合起来。一般是在使用列表法中,出现不可确定的几种选择时,结合假设法,分别假设检验,以确定正确的结果。
20XX【经典】小学四年级奥数— 逻辑推理
20XX【经典】小学四年级奥数—逻辑推理一、拓展提优试题1.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b 最大是,a﹣b最小是,a﹣b最大是.2.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.3.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.4.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.5.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.6.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.7.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?8.如果,那么=.9.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.10.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.11.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…12.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..13.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.14.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.【参考答案】一、拓展提优试题1.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.2.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.3.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.4.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.5.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.6.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.7.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.8.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.9.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.10.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.11.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.12.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.13.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.14.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.15.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.。
四年级逻辑推理题目
四年级逻辑推理题目
一、简单的人物关系推理
1. 题目
- 甲、乙、丙三人分别是医生、教师和警察。
已知甲不会看病,丙不会上课,乙经常抓小偷。
请你判断甲、乙、丙三人的职业。
2. 解析
- 根据“乙经常抓小偷”,可以直接判断出乙是警察。
- 然后,因为甲不会看病,那么甲就不是医生,又因为乙已经是警察了,所以甲只能是教师。
- 丙不是教师(甲是教师),也不是警察(乙是警察),所以丙是医生。
二、数字推理中的逻辑
1. 题目
- 在下面的数列中,1,3,6,10,15,(),28。
请找出括号里的数字。
2. 解析
- 观察这个数列,可以发现:
- 3 - 1 = 2;
- 6 - 3 = 3;
- 10 - 6 = 4;
- 15 - 10 = 5。
- 由此可以推断出这个数列的规律是相邻两个数的差依次递增1。
那么括号里的数与15的差应该是6。
- 所以括号里的数是15 + 6 = 21。
三、关于物体特征的逻辑推理
1. 题目
- 有红、黄、蓝三个盒子,其中一个盒子里有一个苹果。
红盒子上写着“苹果不在我这里”,黄盒子上写着“苹果在红盒子里”,蓝盒子上写着“苹果不在我这里”。
已知只有一个盒子上写的是真话,那么苹果在哪个盒子里?
2. 解析
- 红盒子说“苹果不在我这里”,黄盒子说“苹果在红盒子里”,这两句话相互矛盾。
- 因为矛盾关系必有一真一假,而题目中说只有一个盒子上写的是真话,所以真话就在红盒子和黄盒子的话中。
- 那么蓝盒子上写的“苹果不在我这里”就是假话,所以苹果在蓝盒子里。
强烈推荐) 小学奥数 逻辑推理
强烈推荐) 小学奥数逻辑推理小学奥数培优:以德为先,以礼育人,以知建树,以生为本,善研究会思考,懂生活知做人,勤实践能创造。
逻辑推理(一)数字游戏在数学学科的研究中,培养少年儿童的逻辑推理能力是一种非常好的途径。
为了让同学们在思考问题时更加严密和合理,需要有据可依地思考问题,而不是凭空猜想。
因此,我们专门讨论一些有关逻辑推理的问题。
解答这类问题,首先需要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。
例1:公路上按一路纵队排列着五辆大客车。
每辆车的后面都贴上了该车的目的地的标志。
每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志。
调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断。
他先让第三个司机猜猜自己的车是开往哪里的。
这个司机看看前两辆车的标志,想了想说“不知道”。
第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道。
第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。
请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?解析:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市(否则,如果第一、二辆车都开往A市,那么第三辆车的司机立即可以断定他的车一定开往B市)。
再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A市的(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市)。
运用以上分析推理,第一辆车的司机可以判断,他一定开往B市。
例2:XXX、XXX、XXX三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定,兄妹二人不许搭伴。
第一盘,XXX和XXX对XXX和XXX;第二盘,XXX和XXX对XXX和XXX的妹妹。
小学四年级数学游戏挑战数学逻辑题
小学四年级数学游戏挑战数学逻辑题在小学四年级的数学学习中,学生们常常会遇到各种乐趣横生的数学游戏来提高他们的数学能力。
数学游戏不仅能够激发孩子们学习数学的兴趣,还能培养他们的逻辑思维与解决问题的能力。
本文将为大家介绍一道有趣的数学游戏,来挑战小学四年级的数学逻辑题。
这个数学游戏的题目是:小明、小红和小杰三个人拿到了一组数字牌,分别是3、5、7、9、11、13、15。
他们需要使用其中的四个数来组成一个七位数,要求这个七位数在1000000到9999999之间,并且能够被7整除。
请问,他们有多少种组合方式,可以满足这个条件?对于这个数学问题,我们可以通过逐个尝试法来解决。
首先,我们要确定一个基本的思路,即这个组成的七位数的千位数只能是3、5或者7,因为这样才能保证在1000000到9999999之间。
接下来,我们可以使用排列组合的方式,枚举所有可能的组合情况,然后判断是否满足题目给定的条件。
首先,我们需要确定千位数是3,那么剩下的三个数字就是5、7和9。
我们可以将这三个数字进行全排列,得到三个不同的组合,分别是3579、3759和3957。
然后,我们需要确定千位数是5,那么剩下的三个数字就是3、7和9。
同样地,我们进行全排列,得到三个不同的组合,分别是5379、5739和5937。
最后,我们需要确定千位数是7,那么剩下的三个数字就是3、5和9。
再次进行全排列,我们得到三个不同的组合,分别是7359、7539和7935。
通过以上计算,我们共得到了9个满足题目条件的组合方式。
这些组合分别是3579、3759、3957、5379、5739、5937、7359、7539和7935。
这就是为小明、小红和小杰能够使用其中的四个数字组成的七位数,且满足题目条件的所有可能方式。
通过这道数学游戏,小学四年级的学生们不仅可以锻炼他们的逻辑思维,还可以提高他们的数学运算技巧。
这道题目要求学生们能够对给定的数字进行排列组合,并且判断满足题目条件的组合方式。
培养小学四年级学生的逻辑思维逻辑推理游戏设计
培养小学四年级学生的逻辑思维逻辑推理游戏设计培养小学四年级学生的逻辑思维:逻辑推理游戏设计在当今这个信息爆炸的时代,培养儿童的逻辑思维能力变得尤为重要。
逻辑思维是指通过分析、归纳、推理等思维活动来解决问题和理解世界的一种能力。
作为教育者和家长,我们应该关注如何培养小学四年级学生的逻辑思维能力,为他们未来的学习和生活打下坚实的基础。
在培养逻辑思维能力上,设计适合学生的逻辑推理游戏是一种很有效的方法。
逻辑推理游戏通过积极的互动和思维训练,可以激发学生的思考能力和合作精神,从而培养出优秀的逻辑思维能力。
下面我将介绍一些适合小学四年级学生的逻辑推理游戏设计。
1. 数学谜题游戏数学是培养逻辑思维的重要工具之一。
设计一些与数学有关的谜题游戏可以促使学生运用逻辑推理能力解决问题。
例如,设计一个数学公式大作战的游戏,要求学生通过推理和计算找出隐藏在一系列公式中的规律,并解决相应的数学问题。
这样的游戏能够增强学生的数学思维能力和逻辑推理能力。
2. 迷宫探险游戏迷宫游戏不仅能培养学生的空间思维能力,还能锻炼他们的逻辑推理能力。
设计一个迷宫探险游戏,学生需要根据提示和逻辑推理,找到迷宫的出口。
在游戏中,可以设置一些陷阱和障碍物,要求学生通过分析和推理找到正确的路径。
这样的游戏能够激发学生解决问题的潜力,并提高他们的逻辑思维能力。
3. 推理故事解谜游戏推理故事解谜游戏可以培养学生的逻辑思维和推理能力。
设计一个情节紧凑、推理难度适宜的故事情节,让学生通过阅读和思考,推理出真相或找到正确的解谜方法。
这样的游戏能够激发学生的逻辑思维,提高他们的分析和推理能力。
4. 逻辑拼图游戏逻辑拼图游戏是培养学生逻辑思维的经典游戏之一。
设计一些适合小学四年级学生的逻辑拼图,要求他们按照一定的规则和逻辑,将拼图正确地组合起来。
在这个过程中,学生需要观察、推理和分析,以找到正确的组合方式。
逻辑拼图游戏能够锻炼学生的空间认知能力和逻辑思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
游戏策略本视频学习起来比较轻松,主要通过玩几个游戏,1、农夫、狼、羊、菜过河,2、牧羊人过河,3、倒水游戏,让我们知道这几个如何操作才能够取胜。
当然这些游戏都是可以在网上找到的,我们也可以自己试着玩一下,看你是不是会玩。
后边的几个例题也会教我们如何玩这些游戏,当然也还有其他操作类型的问题,包括称金币辨真假问题、遗产分牛问题和烧绳计时问题等,通过学习这些问题的解决办法,锻炼我们的思维,让我们思维更加的开阔。
农夫、狼、羊、菜过河游戏假设有一个池塘,里面有无穷多的水。
现有2个空水壶,容积分别为A升和B升(A < B)。
问题是如何只用这2个水壶从池塘里取得 X 升的水?1.1.据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。
聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?(回答能或者不能)2.2.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?(回答能或者不能)3.3.假设有一个池塘,里面有无穷多的水。
现有2个空水壶,容积分别为5升和6升。
问题是如何只用这2个水壶从池塘里取得3升的水。
(回答能或者不能)有一个装满葡萄酒的8升罐子,另有一个3升,一个5升的空罐子,问怎么倒可以把葡萄酒分成两个4升的?1.1.两位妇人分别拿着4斤的奶瓶和5斤的奶瓶去奶店各买2斤奶,适逢店的称坏了,这时店里只有两大满奶桶和一些不均匀的空桶(空桶能装奶的重量大于5斤,但是不知道具体能装多少),但聪明的店老板却成功地凭借现有的条件满足了两位妇人的要求。
她是如何做的?(回答能或者不能)2.2.现在有两个空壶,容积分别为65升和78升,能够用这两个空壶到池塘取得38升水吗?能够取得39升水吗?(回答“38”、“39”、“38和39”或者不能)3.3.现在有三个壶,容积分别为6升,10升和45升,能够用这三个空壶到池塘取得31升水吗?(回答能或者不能)对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2;这算一次操作。
现在对231连续进行这种操作,在操作过程中是否可能出现1000?为什么?1.1.对于任意一个自然数n,当n为奇数时,加上121;当n为偶数时,除以2;这算一次操作。
现在对253连续进行这种操作,在操作过程中是否可能出现1011?为什么?(只需回答能或者不能)2.2.对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。
如对18和42可进行这样的连续变换:18,42—→18,24—→18,6—→12,6—→6,6。
直到两数相同为止。
问:对12345和54321进行这样的连续变换,最后得到的两个相同的数是几?(只需回答即可,例如:5)3.3.右图是一个圆盘,中心轴固定在黑板上。
开始时,圆盘上每个数字所对应的黑板处均写着0。
然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上。
问:经过若干次后,黑板上的四个数是否可能都是999?(回答能或者不能)视频描述话说有十二个金币,其中11个是真币,有1个是假币,已知假币比较轻,现要求用无砝码的天平称三次,称出哪个是假币,能够做到吗?如何操作?1.1.13个球和一个天平,现知道只有一个比其它的轻,问怎样称才能用三次就找到那个球?回答是否能够做到即可(能或者不能)有9个乒乓球中有一个因超重关系不合格,现有一架天平,要求称两称,用怎样的称法找出超重的乒乓球。
(回答“能”或“不能”)3.3.18个金币中只有一个假币,已知假币比真币轻,现在有,你能够用一个没有砝码的天平找出假币吗?最少用_____步就能保证一定能够找出.(只需回答几步即可,例如:5)10箱黄金,每箱100块,每块一两。
有贪官,把某一箱的每块都磨去一钱,现在有一个带有砝码的天平,请称一次找到不足量的那个箱子。
你有四个装药丸的罐子,其中有一瓶被污染了,已知每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1。
只称量一次,如何判断哪个罐子的药被污染了?(回答能或者不能)2.2.有5瓶药,每瓶里都装有100片药,其中有3瓶里的药每片重10克,另有2瓶里的药每片重9克。
用一个蛮精确的小秤,只称一次,如何找出份量较轻的那两个药瓶?(回答能或者不能)古印度有一位老人,临终前留下遗嘱要把17头牛分给3个儿子。
他在遗嘱里写明:老大得总数的二分之一,老二得总数的三分之一,老三得总数的九分之一。
你认为应该怎么分呢?1.1.11只羊,老大得1/2,老2得1/4,老3得1/6,问怎么分?(按照老大、老二、老三得羊的只数回答,中间用一个空格分隔,例:老大3只,老二4只,老三5只,则回答3 4 5)2.2.19匹马,老大得1/2,老2得1/4,老3得1/5,问怎么分?(按照老大、老二、老三得马的匹数回答,中间用一个空格分隔,例:老大3匹,老二4匹,老三5匹,则回答3 4 5)3.3.23头牛,老大得1/2,老2得1/3,老3得1/8,问怎么分?(按照老大、老二、老三得牛的只数回答,中间用一个空格分隔,例:老大3头,老二4头,老三5头,则回答3 4 5)有一位老人去世后,留下了7头耕牛,他在遗嘱上写明:“长子得一半;余下的次子得一半;再余下的,小儿子得;不得杀牛,不得剩余。
”应该如何分这几头牛?1.1.41头猪,老大得1/2,老二得1/3,老三得1/7,问怎么分?(按照老大、老二、老三得猪的只数回答,中间用一个空格分隔,例:老大3只,老二4只,老三5只,则回答3 4 5)2.2.7头牛,老大得1/2,老2得1/4,老3得1/8,问怎么分?(按照老大、老二、老三得牛的头数回答,中间用一个空格分隔,例:老大3头,老二4头,老三5头,则回答3 4 5)3.3.23间房子,老大得1/2,老2得1/3,老3得1/8,问怎么分?(按照老大、老二、老三得房子的数量回答,中间用一个空格分隔,例:老大3间,老二4间,老三5间,则回答3 4 5)烧一根不均匀的绳要用一个小时,如何用它来判断半个小时?现在有若干条材质相同的绳子,问最少用多少根绳子可以计时一个小时十五分钟呢?如何计时?1.1.烧一根不均匀的绳要用一个小时,现在有2根同样的绳子,如何用它来判断15分钟?(回答能或者不能)2.2.烧一根不均匀的绳要用一个小时,现在有2根同样的绳子,如何用它来判断45分钟?(回答能或者不能)3.3.烧一根不均匀的绳要用一个小时,现在有3根同样的绳子,如何用它来判断7.5分钟?(回答能或者不能)游戏策略测试卷A1、玩牧羊人过河游戏(回答“过关了”或者“没有过关”)规则:1、牧羊人不在,狼会吃羊2、大黑羊不在,大白羊会欺负小黑羊3、大白羊不在,大黑羊会欺负小白羊4、能驾驶木筏的只有牧羊人、大黑羊、大白羊5、木筏一次只能载其中的两个2、如果你有无穷多的水,一个8公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?(回答能或者不能)3、如果你有无穷多的水,一个8公升的提捅,一个13公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出6公升的水?(回答能或者不能)4、如果你有无穷多的水,一个8公升的提捅,一个5公升的提捅,一个20公升的提桶,三只提捅形状上下都不均匀,问你如何才能准确称出18公升的水?(回答能或者不能)5、对于任意一个自然数n,当n为奇数时,加上143;当n为偶数时,除以2;这算一次操作。
现在对195连续进行这种操作,在操作过程中是否可能出现1000?为什么?(回答能或者不能)6、15个球和一个天平,现知道只有一个比其它的轻,问怎样称才能用三次就找到那个球?(回答能或者不能)7、19个球和一个天平,现知道只有一个比其它的轻,问怎样称才能用三次就找到那个球?(回答能或者不能)8、你有8个装药丸的罐子,其中有一瓶被污染了,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1。
只称量一次,如何判断哪个罐子的药被污染了?(回答能或者不能)9、19匹马,老大的1/2,老2的1/4,老3的1/5,问怎么分?(按照老大/老二/老三得形式回答,例:老大分14头,老二分4头,老三分1头,则回答14/4/1)10、烧一根不均匀的绳要用一个小时,现在有2根同样的绳子,如何用它来判断45分钟?(回答能或者不能)游戏策略测试卷B1、玩人鬼过河游戏(回答“过关了”或者“没有过关”)规则:1、船一次最多能载两个人2、当某一岸上的鬼的数量大于人的数量时,鬼会把人吃掉2、假设有一个池塘,里面有无穷多的水。
现有3个空水壶,容积分别为6升、18升和32。
问题是能否使用这三个水桶取得25升水?如果能,取水的过程是什么?(回答能或者不能)3、在黑板上任意写一个大于1的自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作。
问:最多经过_____次操作,黑板上就会出现2?4、对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。
如对18和42可进行这样的连续变换:18,42→18,24→18,6→12,6→6,6。
直到两数相同为止。
问:对209和407进行这样的连续变换,最后得到的两个相同的数是_____?5、有19个乒乓球中有一个因超重关系不合格,现有一架天平,要求称三称,用怎样的称法找出超重的乒乓球?(回答能或者不能)6、20个箱子,每个箱子100个苹果,其中一个箱子的苹果是9两/个,其他的都是1斤/个。
要求利用一个秤,只秤一次,找出那个装9两/个的箱子。
只需回答能不能做到即可(回答能或者不能)7、有7克、2克砝码各一个,天平一只,如何只用这些物品,称三次,将140克的盐分成50、90克各一份?(回答能或者不能)8、41头猪,老大的1/2,老2的1/3,老3的1/7,问怎么分?(两个答案之间用一个空格分隔,例:老大分14头,老二分4头,老三分1头,则回答14 4 1)9、有101元钱,现在要分给A同学总数的二分之一,分给B同学剩下的二分之一,最后剩下的分给C同学,如何分这101元钱?(两个答案之间用一个空格分隔,例:A分到50元,B分到40元,C分到11元,则回答50 40 11)10、烧一根不均匀的绳要用一个小时,现在有2根同样的绳子,如何用它来判断45分钟?(回答能或者不能)。