八年级数学下册第十六章分式知识点总结
华师大版八年级下册数学知识点总结
八年级华师大版数学(下)第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使BA =0的条件是:A=0,B ≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式 单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式的整式,分式的值不变。
用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
分式数学知识点归纳总结
分式数学知识点归纳总结一、分式的定义和基本性质1. 分式是由分子和分母组成的数,分子和分母都是整数,并且分母不为零。
2. 分式可以表示有理数,有理数包括整数和分数。
3. 分式可以看作是代数式的特殊形式,其中分母不为零。
4. 分式的分子和分母可以约分,即分子和分母同时除以一个相同的非零数。
5. 分式可以相加、相减、相乘和相除,也可以化简和合并。
6. 分式的大小比较可以用分式的加减乘除性质进行比较。
二、分式的化简和合并1. 化简分式:化简分式是指对分式的分子和分母进行约分,使分数的值保持不变的基础上,得到最简分数。
2. 合并分式:合并分式是指将两个分式相加或者相减,得到一个最简分式。
三、分式的加减乘除性质1. 分式的加法性质:分式相加时,首先要找到它们的公分母,然后将分子相加,分母保持不变。
2. 分式的减法性质:分式相减时,首先要找到它们的公分母,然后将分子相减,分母保持不变。
3. 分式的乘法性质:分式相乘时,分子相乘,分母相乘。
4. 分式的除法性质:分式相除时,将除数分子分母互换,再将所得的分式作为乘数分式进行运算。
四、分式的大小比较1. 分式的大小比较:分式大小的比较可以用分式的加减乘除性质进行比较。
对于两个分式a/b和c/d来说,若a/b<c/d,则ad<bc;若a/b>c/d,则ad>bc。
2. 分式的大小比较练习:比较分式大小时,可以将分式通分进行比较,也可以将分式转化为小数进行比较。
五、分式方程的解法1. 分式方程的定义:分式方程是含有分式的代数方程。
2. 分式方程的解法:对于分式方程的解法,首先要通过分式的化简和合并,将分式方程化为最简分式方程,然后可以通过分式方程的乘法性质和除法性质进行求解。
六、分式在实际应用中的问题求解1. 分式在应用问题中的运用:分式在实际生活中有着广泛的应用,包括比例、百分数、利率、比率、工程问题等。
2. 分式应用问题求解:在实际应用问题中,我们可以将问题中的条件转化为分式形式,然后通过分式的运算法则进行求解。
八年级下册数学《分式》分式的认识 知识点整理
15.1分式的认识一、本节学习指导这一节是学习本章节的基础,分式是比较繁琐的知识点,它和我们小学学的分数有很大的差别,难度也更大。
分式的有误意义是选择题和填空题的最爱,分式的化简却贯穿了整个初中数学的计算,希望同学们多做练习题,一定要牢牢的掌握这一节的知识。
二、知识要点1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
2、分式有意义、无意义的条件:①分式有意义的条件:分式的分母不等于0;例:若分式2x/(x-5)有意义,则x 的取值是?分析:根据上面的理论我们可以知道,分式没意义的条件是分母不为零,即此题中x-5≠0即可,那么很容易的出来x≠5。
结论:当x≠5时,分式2x/(x-5)有意义②分式无意义的条件:分式的分母等于0。
3、分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。
注:分式的值是在分式有意义的前提下才可以考虑的,所以使分式A/B为0的条件是A =0,且B≠0。
例:若分式x/(|x|-1)的值为零,则x的取值为?分析:根据上面的理论我们知道,分式的值为零,则分子为零即可。
此题中的分子 x=0,所以当x=0时,分式值为零。
结论:当x=0时,分式x/(|x|-1)值为零。
注意:分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。
首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
4、 分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为 (0≠C ),其中A 、B 、C 是整式注意:①“C 是一个不等于0的整式”是分式基本性质的一个制约条件;②应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;③若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C ;④分式的基本性质是分式进行约分、通分和符号变化的依据。
八年级数学下册第十六章分式知识点总结
分式的知识点解析与培优一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
二、判断分式的依据:例:下列式子中,y x +15、8a 2b 、-239a、y x b a --25、4322b a -、2-a 2、m1、65xy x 1、21、212+x 、πxy 3、yx +3、m a 1+中分式的个数为( )A 、 2B 、 3C 、 4D 、 5练习题:(1)下列式子中,是分式的有 .(1)275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--; ⑸22b b -;⑹. (7)78x π+(8)3y y (9)234x + 二、 分式有意义的条件是分母不为零;【B ≠0】 分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。
【B ≠0且A=0 即子零母不零】例2.注意:(12+x ≠0)例1:当x 时,分式51-x 有意义;例2:分式xx -+212中,当____=x 时,分式没有意义例3:当x 时,分式112-x 有意义。
例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A .122+x x B.12+x x C.133+x x D.25x x -例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x 例8:分式)3)(1(2-+-x x x 无意义,则x 的值为( )A. 2B.-1或-3C. -1D.3 三、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0时,看看是否使分母=0了,如果使分母=0了,那么要舍去。
例1:当x 时,分式121+-a a的值为0. 例2:当x 时,分式112+-x x 的值为0.例3:如果分式22+-a a 的值为零,则a 的值为( )A. 2±B.2C.-2D..以上全不对例4:能使分式122--x xx 的值为零的所有x 的值是 ( )A. x=0B.x-1C.x=0 或x=1D.0=x 或1±=x 例5:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3B.3C.-3 D 2 例6:若01=+aa,则a 是( ) A.正数 B.负数 C.零 D.任意有理数例9:当X= 时,分式2212x x x -+-的值为零。
数学八年级下册分式知识点总结
数学八年级下册分式知识点总结
在八年级下册的数学中,分式是一个重要的知识点。
以下是一些关键内容的总结:
1. 分式的定义:分式是由分子和分母组成的有理数。
2. 分式的基本性质:
- 分式的值是由分子除以分母得到的结果。
- 分式可以化简为最简形式,其中分子和分母没有公因数。
- 分式可以相加、相减、相乘和相除。
3. 分式的化简:
- 化简分式的关键是找到分子和分母的最大公因数,然后将其约简。
- 如果分式的分子和分母都是整数,可以直接约简。
- 注意分子和分母的符号,如果分子和分母都是负数,可以将它们写成正数形式。
4. 分式的运算:
- 分式相加和相减:要求分母相同,可以通过通分来实现。
- 分式相乘和相除:将分子乘或除以分母分别进行运算。
5. 分式的倒数:
- 一个分式的倒数可以通过将分子和分母交换位置得到。
- 分式的倒数乘以原分式等于1。
6. 分式的应用:
- 分式可以用于解决实际问题,如比例问题、混合液体的配比等。
以上是八年级下册数学中关于分式的重要知识点的总结。
掌握这些内容对于理解和解题都非常重要。
在学习分式时,要多做练习题,熟练掌握基本性质和运算法则,并且能够将分式应用到实际问题中。
八年级下册数学《分式》分式方程 知识点整理
分式方程一、本节学习指导解分式方程和我们前面学习的解方程有很多相似之处,期间会运用到很多分式的计算方式,就这一节来说并不难。
做适当练习即能掌握。
二、知识要点1、分式方程:含分式,并且分母中含未知数的方程叫做分式方程。
(1)、分式方程的解法:解分式方程的基本思想方法是:分式方程转化去分母整式方程.解分式方程的一般方法和步骤:①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;②解这个整式方程;③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。
注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;②解分式方程必须要验根,千万不要忘了!(2)、解分式方程的步骤:能化简的先化简;方程两边同乘以最简公分母,化为整式方程;解整式方程;验根.(3)、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
(4)、含有字母的分式方程的解法:在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。
计算结果是用已知数表示未知数,不要混淆。
2、列分式方程解应用题(1)列分式方程解应用题的步骤:①审:审清题意;②找: 找出相等关系;③设:设未知数;④ 列:列出分式方程;⑤ 解:解这个分式方程;⑥ 验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;⑦ 答:写出答案。
(2)应用题有几种类型;基本公式是什么常见的有以下五种:①行程问题 基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题. ②数字问题:在数字问题中要掌握十进制数的表示法.③工程问题 基本公式:工作量=工时×工效.④顺水逆水问题 v v v v v v =+•=-顺水静水水逆水静水水3、科学记数法:把一个数表示成的形式10n a ⨯(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.(1)、用科学记数法表示绝对值大于1的数时,应当表示为10n a ⨯的形式,其中1≤︱a ︱<10,n 为原整数部分的位数减1;(2)、用科学记数法表示绝对值小于1的数时,则可表示为10n a -⨯的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10.三、经验之谈:这一节考点比较多的应该是分式方程的应用题和科学计数法,但应用题基本不会单独命题,步骤虽繁琐,但是难度并不大。
八年级下册数学知识点分式
八年级下册数学知识点分式八年级下册数学知识点——分式一、定义分式是指由分子和分母以及分割符号(如:横线或斜线等)组成的算式,通常表示为a/b的形式,其中a、b均为整数,b不为0。
二、基本概念1. 真分数:分子小于分母的分式称为真分数,如1/2、2/3等。
2. 假分数:分子大于或等于分母的分式称为假分数,如5/3、9/4等。
3. 通分:对于分母不同的分式,将它们的分母约分至相同,即将它们化为相同分母的分式,这个过程称为通分。
4. 约分:对于分子分母有公共因数的分式,可以将它们约分成最简分式,即分子分母同时除以它们的公共因数,得到的分式称为最简分式。
三、分式的四则运算1. 加减法分式的加减法其实就是先通分,再将分子按照加减法的规则相加减,然后将结果约分为最简分式。
例如:7/10 + 5/6 = 21/30 + 25/30 = 46/30 = 23/152. 乘法分式的乘法就是将两个分式的分子和分母分别相乘,然后将结果约分为最简分数。
例如:2/3 × 3/4 = 6/12 = 1/23. 除法分式的除法相当于将分式的乘数乘上被除数的倒数,即将分子与被除数的分母相乘,分母与被除数的分子相乘,得到的结果再约分为最简分数。
例如:3/4 ÷ 2/3 = 3/4 × 3/2 = 9/8四、分式的应用1. 分式在比例问题中的应用分式在比例问题中的应用非常广泛,例如在解题时需要求出比例中某一部分的值,在这种情况下,就可以通过分式的运算来求解。
例如:若三个数的比例为a : b : c,且a = 3/4,b = 1/2,求c的值。
根据比例的定义,可得a : b = 3/4 : 1/2 = 3/2,那么c : a = 3/2 : 1,即c = (3/2) ÷ 1 × a = (3/2) × (3/4) = 9/8。
因此c = 9/8。
2. 分式在解方程中的应用在解方程中,有时需要将方程变形成分式的形式,然后进行分式的运算,最后再将分式恢复为方程,从而得到方程的解。
八年级16章分式知识点
八年级16章分式知识点在数学学科中,分式是一个重要的概念。
在初中阶段,分式的具体内容通常在高年级进行学习,比如八年级第16章就是分式知识点的学习内容。
在这一章节中,学生将学习如何理解分式的概念,如何用分式解决实际问题,以及分式的简化和运算等知识点。
本文将详细介绍八年级第16章分式知识点的内容。
1. 章节概述在八年级第16章,学生需要掌握以下四个方面的内容:1.1 分式的概念分式是一个形如“a/b”的表达式,其中“a”和“b”是数。
分式的意义是将一个数“a”分为“b”份。
例如,“3/4”表示将数3分成4份,每一份为“3/4”。
1.2 分式的运算对于两个分式“a/b”和“c/d”,我们可以进行加、减、乘、除这四种运算。
具体来说,加法和减法可以通过通分实现,乘法可以直接相乘分子和分母,而除法则通过取倒数来实现。
1.3 分式的简化当分子和分母没有公因数时,分式就已经简化了。
但如果存在公因数,则需要通过约分来简化分式。
约分的过程是将分子和分母同时除以它们的最大公因数。
1.4 分式的应用分式在实际生活中有着广泛的应用,比如在化学中用于计算化学反应中物质的量,或者在经济学中用于计算利率等。
2.分式的概念分式是数学中非常重要的一个概念。
在具体的表达式中,分式通常表示将一个整体分为若干份的比例关系。
在八年级的16章中,学生需要掌握分式的基本概念,包括如何理解分式的意义,以及如何将分式表示为最简形式等。
3.分式的运算分式的运算分为四种,包括加法、减法、乘法和除法。
4种运算的具体规则如下:3.1 加法和减法在分式加法和减法中,需要先使两个分母相同,然后再将两个分式的分子进行相加或相减,最后化简得到最简分式。
具体来说,假设分式为a/b和c/d,则它们的和为(ad+bc)/bd,差为(ad-bc)/bd。
3.2 乘法分式的乘法比较简单,只需要将两个分式的分子和分母分别相乘,然后约分即可。
具体来说,假设分式为a/b和c/d,则它们的积为ac/bd。
华师大版八年级下册数学知识点总结知识讲解
华师大版八年级下册数学知识点总结八年级华师大版数学(下)第16章分式§ 16.1分式及基本性质一、分式的概念1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A叫做分式。
B2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使-=0的条B件是:A=0, B M 0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
单项式整式单项式分类:有理式多项项分式 -单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
一 A AM A宁M用式子表示为:B =丽二,其中M (M工0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幕、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幕;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
分式八年级下册数学知识点归纳总结
分式八年级下册数学知识点归纳总结
分式八年级下册数学知识点归纳总结
1.分式的有关概念
设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义
分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简
2、分式的基本性质
(M为不等于零的.整式)
3.分式的运算(分式的运算法则与分数的运算法则类似).
(异分母相加,先通分);
4.零指数
5.负整数指数
注意正整数幂的运算性质
可以推广到整数指数幂,也就是上述等式中的m、n可以是O或负整数.
6、解分式方程的一般步骤:
在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.
7、列分式方程解应用题的一般步骤:
(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。
八年级下册数学分式知识点
八年级下册数学分式知识点分式是初中数学重要的知识点之一,也是学习高中数学和其他学科的基础。
在八年级下册数学教学中,分式作为一个重要的知识点,将持续出现。
一、分式的概念分式是指一个数可以表示为非整数的两个整数的比值,分子和分母。
分式一般写作a/b,其中a为分子,b为分母。
分子表示分式的被除数,分母表示除数。
例如,7/3是一个分式,其中7是分子,3是分母。
二、分式的化简化简分式是指将分式化为最简整数形式。
最简整数形式是指分子和分母不含公因数(除了1)的分式。
取出分子和分母的公因数,并将其约掉,即可将分式化简为最简整数形式。
例如,将12/20化简为最简整数形式,步骤如下:- 取出公因数,得到12=2×2×3, 20=2×2×5- 约掉公因数2×2,得到12/20 = 3/5三、分式的四则运算分式的四则运算是指分式间的加、减、乘、除运算。
1. 加减运算若要对分式进行加减运算,则需要先将分式化为通分分式,即将分母相同的分式合并到一起。
例如,将2/3和1/4相加,步骤如下:- 将2/3表示为8/12,将1/4表示为3/12- 将8/12和3/12相加,得到11/122. 乘法运算若要对分式进行乘法运算,则将分式的分子、分母分别相乘即可。
例如,将2/3和3/4相乘,步骤如下:- 分子相乘,得到2×3=6- 分母相乘,得到3×4=12- 将6/12化简为最简整数形式,得到1/23. 除法运算若要对分式进行除法运算,则需要将除数的分子和分母调换位置,再将被除数与调换后的除数相乘。
例如,将3/4除以2/5,步骤如下:- 将除数调换位置得到5/2- 将3/4和5/2相乘,得到15/8四、分式的应用分式在实际生活和工作中有广泛的应用,如商业折扣、物品配方、工作效率计算等。
例如,某商场举办打折活动,若某商品原价为60元,打8折后价格为多少?- 打八折后,商品价格为60×0.8=48元- 商品的打折折扣为原价和打折后价格的比值,即8/10或4/5五、分式的重要性学习分式对于初中数学知识和高中数学知识的学习来说,都具有重要的作用。
八年级数学《分式》知识点
八年级数学《分式》知识点一、分式的概念形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子叫做分式。
其中 A 叫做分子,B 叫做分母。
理解分式的概念时,需要注意以下几点:1、分式的分母中必须含有字母。
例如:5/x 是分式,而 5/3 就不是分式,因为它的分母 3 是常数。
2、分母的值不能为 0。
如果分母 B 的值为 0,那么分式就没有意义。
3、分式是两个整式相除的商,其中分子是被除式,分母是除式。
4、整式和分式统称为有理式。
二、分式有意义的条件分式有意义的条件是分母不等于 0。
即:对于分式 A/B,当B≠0 时,分式有意义。
例如:对于分式 2/(x 1),要使其有意义,则x 1≠0,即x≠1。
三、分式的值为 0 的条件分式的值为 0 时,需要同时满足两个条件:1、分子等于 0,即 A = 0。
2、分母不等于 0,即B≠0。
例如:对于分式(x 2)/(x + 1),当 x 2 = 0 且 x +1≠0 时,分式的值为 0。
由 x 2 = 0 得 x = 2,又因为 x +1≠0,即x≠ 1,所以当 x = 2 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。
即:A/B = A×M/B×M,A/B = A÷M/B÷M(M 为不等于 0 的整式)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。
利用分式的基本性质,可以进行分式的约分和通分。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
例如:在分式 8x/12 中,8 和 12 的最大公约数是 4,所以分子分母同时除以 4 进行约分。
2、字母:取分子和分母相同字母的最低次幂。
例如:在分式 x²y/xy²中,相同字母是 x 和 y,x 的最低次幂是 1,y 的最低次幂是 1,所以公因式是 xy,约分后为 x/y。
初中数学·分式知识点归纳全总结
分式知识点归纳一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 分式学问点及典型例子
一、分式的定义:假如A 、B 表示两个整式,并且B 中含有字母,那么式子B
A 叫做分式。
例1.下列各式a π,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。
二、 分式有意义的条件是分母不为零;【B ≠0】
分式没有意义的条件是分母等于零;【B=0】
分式值为零的条件分子为零且分母不为零。
【B ≠0且A=0 即子零母不零】
例2.下列分式,当x 取何值时有意义。
(1)2132
x x ++; (2)2323x x +-。
例3.下列各式中,无论x 取何值,分式都有意义的是( )。
A .121x +
B .21x x +
C .231x x
+ D .2221x x + 例4.当x______时,分式2134
x x +-无意义。
当x_______时,分式2212x x x -+-的值为零。
例5.已知1
x -1y =3,求5352x xy y x xy y
+---的值。
三、分式的根本性质:分式的分子与分母同乘或除以一个不等于0的整式,
分式的值不变。
(0≠C )
四、分式的通分与约分:关键先是分解因式。
例6.不变更分式的值,使分式115101139
x y x y -+的各项系数化为整数,分子、分母应乘以(• )。
C B C A B A ⋅⋅=C
B C A B A ÷÷=
例7.不变更分式2323523
x x x x -+-+-的值,使分子、分母最高次项的系数为正数,则是(• )。
例8.分式434y x a +,2411x x --,22x xy y x y
-++,2222a ab ab b +-中是最简分式的有( )。
例9.约分:(1)22699x x x ++-; (2)2232m m m m
-+- 例10.通分:(1)
26x ab ,29y a bc ; (2)2121a a a -++,261
a - 例11.已知x 2+3x+1=0,求x 2+21x 的值. 例12.已知x+1x
=3,求2421x x x ++的值. 五、分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则: 分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
混合运算:运算依次与以前一样。
能用运算率简算的可用运算率简算。
例13.当分式
211x --21x +-11
x -的值等于零时,则x=_________。
例14.已知a+b=3,ab=1,则a b +b a
的值等于_______。
例15.计算:222x x x +--2144x x x --+。
例16.计算:21
x x --x-1 例17.先化简,再求值:3a a --263a a a +-+3a ,其中a=32。
六、 任何一个不等于零的数的零次幂等于1 即)0(10≠=a a ;
当n 为正整数时,n n a
a 1=- ()0≠a 七、正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)
(1)同底数的幂的乘法:n m n m a a a +=⋅;
(2)幂的乘方:mn n m a a =)(;
(3)积的乘方:n n n b a ab =)(;
(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);
(5)商的乘方:n n
n b
a b a =)((b ≠0) 八、科学记数法:把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法。
1、用科学记数法表示肯定值大于10的n 位整数时,其中10的指数是1-n 。
2、用科学记数法表示肯定值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。
例18.若25102=x ,则x -10等于( )。
A.51
- B.51 C.501 D.625
1 例19.若31=+-a a ,则22-+a a 等于( )。
A. 9
B. 1
C. 7
D. 11
例20.计算:(1)10123)326(34--⎪⎭⎫ ⎝⎛⋅-⋅- (2)()32132----xy b a
例21.人类的遗传物质就是DNA,人类的DNA 是很长的链,最短的22号染色体也长达3000000个核苷酸,这个数用科学记数法表示是___________。
例22.计算()()___________1031032
125=⨯÷⨯--。
例23.自从扫描隧道显微镜独创后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为_________。
例24.计算
34x x y -+4x y y x +--74y x y -得( ) A .-264x y x y +- B .264x y x y
+- C .-2 D .2
例25.计算a-b+22b a b +得( ) A .22a b b a b -++ B .a+b C .22a b a b ++ D .a-b
九、分式方程:含分式,并且分母中含未知数的方程——分式方程。
1、解分式方程的过程,本质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
2、解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程肯定要验根。
3、解分式方程的步骤:
(1)、在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)、解这个整式方程。
(3)、把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必需舍去。
(4)、写出原方程的根。
增根应满意两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
4、分式方程检验方法:将整式方程的解带入最简公分母,假如最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
例26.解方程。
(1)623-=x x
(2)1613122-=-++x x x (3)01152=+-+x x (4)x
x x 38741836---=- 例27. X 为何值时,代数式x x x x 231392---++的值等于2? 例28.若方程122423=+-+x x 有增根,则增根应是( )
十、列方程应用题
(一)、步骤(1)审:分析题意,找出探讨对象,建立等量关系;(2)设:选择恰当的未知数,留意单位;(3)列:依据等量关系正确列出方程;(4)解:细致细致;
(5)检:不要遗忘检验;(6)答:不要遗忘写。
(二) 应用题的几种类型:
1、行程问题:根本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题。
例29.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度与骑自行车的速度.
2、工程问题 根本公式:工作量=工时×工效。
例30.一项工程要在限期内完成.假如第一组单独做,恰好按规定日期完成;假如第二组单独做,须要超过规定日期4天才能完成,假如两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?
3、顺水逆水问题 v 顺水=v 静水+v 水; v 逆水=v 静水-v 水。
例31.已知轮船在静水中每小时行20千米,假如此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间一样,那么此江水每小时的流速是多少千米?。