高中数学求函数值域最值的10种经典例题和方法

合集下载

高中数学复习专题-函数值域的求法

高中数学复习专题-函数值域的求法

学习必备 欢迎下载专题四、函数及其性质(二)函数值域的求法1.求函数值域的数学思想:( 1)利用函数单调性求函数值域:( 2)利用函数图像求函数值域;注意: 求函数值域时要先关注函数定义域,时刻体现“定义域优先” 原则。

2.求函数值域的方法: 观察法、判别式法、双勾函数法、换元法、平方法、分离常数法、数形结合法、单调性法、构造法。

( 1)观察法:适合于常见的基本函数。

例 1.已知函数 f (x)e x1,g( x)x 24x3 ,若 a 、bR ,且存在有f (a)g(b) ,则b 的取值范围为()A. [22, 22]B. (22, 22)C.[1,3]D.(1,3)kx bdx 2exf的分式函数, 适用条件须函( 2)判别式法:适合于形如y或 yax2bx cax 2 bx c数的定义域应为 R ,即 ax 2bx c0 ,所以b 2 4ac0 。

例 2. 求函数 y2x 2 x3x 2的值域。

x 1( 3)双勾函数法:适合于高中阶段所有的分式函数,比判别式法具有更广泛的应用。

2例 3. 求函数 y2x11x7(0 x 1) 的值域。

x 3( 4)换元法:适合于含有根式的函数。

例 4.求函数 y2x 4 1 x 的值域。

( 5)平方法:适合于平方变形后具有简化效果的函数。

例 5.求函数 yx 3 5 x 的值域。

学习必备欢迎下载( 6)数形结合法:利用数形结合的方法,根据函数图像求得函数值域。

例 6.(2014 湖北 )已知函数 f( x)是定义在 R 上的奇函数,当 x ≥ 0 时, f(x)= 1(|x - a 2|+ |x - 2a 2|- 3a 2),若对于任意 x ∈ R , f( x -1)≤ f(x)恒成立,2则实数 a 的取值范围为( ) A. -1,1 B.- 6, 6 C. -1,1 D.-3, 36 6 6 6 3 3 3 3( 7)单调性法:确定函数在定义域上的单调性,求出函数的值域。

高中数学函数求最值常用方法总结

高中数学函数求最值常用方法总结

高中数学中的函数最值求解问题是学习中的难点,在解决函数最值问题的时候要经过全方位的考虑,结合函数的定义域,将各种可能出现的结果进行分析,最终求得准确的计算结果。

在数学学习的过程中活跃的数学思维非常重要,它不仅可以改善学习方法,而且可以帮助学生掌握更多的解题技巧,进而提高解题速度和学习效率。

本文总结了一些求函数最值的常用方法如下:一、利用一次函数的单调性【例题1】 已知 x , y , z 是非负实数,且 x + 3y + 2z = 3 , 3x + 3y + z = 4 ,求函数 w = 2x - 3y + z 的最值 .解:得 y = 5/3 (1 - x), z = 2x - 1∴ w = 9x - 6又 x , y , z 非负,依一次函数 w = 9z - 6 的单调性可知当 x = 1/2 时,Wmin = -3/2 ,当 x= 1 时,Wmax = 3 .注:再求多元函数的条件最值时,通常是根据已知条件消元,转化为一元函数来解决问题.对于一次函数 y = kx + b ( k ≠ 0 ) 的最值,关键是指出自变量的取值范围,即函数的定义域,当一次函数的定义域是闭区间时,其最值在闭区间的端点处取得 .二、利用二次函数的性质【例题2】 设 α , β 是方程 4x^2 - 4kx + k + 2 = 0 的两个实数根,当 k 为何值时 α^2 + β^2 有最小值?解:∵ α , β 为方程的两个实数根,∴ α + β = k , αβ = 1/4 ( k + 2 ) ,令 y = α^2 + β^2 , 则有又由原方程由实数根可知,∴ k ≤ -1 或 k ≥ 2 .而二次函数的顶点 (1/4,-17/16)不在此范围内,根据二次函数的性质知,y 是以 k = 1/4 为对称轴,开口向上的,定义域为 (-∞,-1]∪[2,+∞)的抛物线,比较 k = -1 及 k = 2 时 y 的值知,当 k = -1 时,有 ymin = 1/2 .注:利用二次函数的性质求最值时,不能机械地套用最值在顶点处取得 . 首先要求出函数的定义域,然后在看顶点是否在函数的定义域内,最后再根据函数的单调性来判定 . 【例题3】 如图所示,抛物线 y = 4 - x^2 与直线 y = 3x 交于 A , B 两点,点 P 在抛物线上由 A 运动到 B,求 △APB 的面积最大时点 P 的坐标 .分析:由于 A , B 为定点,所以 AB 长为定值,欲使 △APB 的面积最大,须使 P 到 AB的距离最大 .解:设 P 点坐标为 (x0 , y0),∵ A , B 在直线 y = 3x 上,∴联立抛物线与直线方程,可得xA = -4 , xB = 1 ,∴ -4 ≤ x0 ≤ 1 ,则有∴当 x = -3/2 时,d 取最大值,△APB 面积最大,此时 P 点坐标为 (-3/2 , 7/4).注:在解决实际问题时要注意确定自变量取值范围的方法,本题是由直线与抛物线的交点来确定的,这样才能确定定义域内的最值 .三、利用二次方程的判别式欲求函数 y = f(x) ( x ∈ R ) 的极值,如果可以把函数式整理成关于 x 的二次方程, 注意到 x 在其定义域内取值,即方程有实根,所以可以通过二次方程的判别式 △ ≥ 0 来探求 y 的极大值与极小值 .【例题4】 已知 0 ≤ x ≤ 1 , 求的最值 .解: 原式可化为∵ x ∈ R ,∴解得 y ≤ 1/4 或 y ≥ 9/16 ,即函数 y 的值域为 y ≤ 1/4 或 y ≥ 9/16 ,∴ y极大 = 1/4,y极小 = 9/16 .当 y = 1/4 时,代入原函数解析式得 x = 1 ∈ [ 0 , 1 ] ;当 y = 9/16 时,代入原函数解析式得 x = -1 [ 0 , 1 ] .又 x = 0 时 , y = 2/3 ,∴ 当 x = 0 时,y 取极大值 2/3 .注:① 由判别式确定的是函数的值域,由值域得到的是函数的极值而不是最值;② 对有些函数来说,极值与最值相同,而有的函数就不一定,如本题中的极大值比极小值还小,这是因为极值是就某局部而言;③ 若要求函数在给定的定义域内的最值,一定要注意极值是否在此定义域内取得, 即要注意验根 .四、利用重要不等式【例题5】 设 x , y , z ∈ R+ , 且 2x + 4y + 9z = 16 .求 6√x + 4√y + 3√z 的最大值 .解:令 u = 6√x + 4√y + 3√z ,∴ u ≤ 4√23 ,( 其中当 9/x = 1/y = 1/9z 时,即当 x = 144/23 , y = 16/23 , z = 16/207 时取等号) 故注:这里是应用柯西不等式,在应用公式时,如何构造出已知条件等式 2x + 4y + 9z = 16,颇具技巧性和解题意义 .五、利用三角函数的有界性对于三角函数的极值,通常是利用三角函数的有界性来求解问题的,如正、余弦函数的最大(小)值很明显:y = asinx + bcosx (a , b ≠ 0)引入辅助角 θ,则其最值也一目了然 . 而对于其它的类型或用同角关系式、或用万能公式、或用正余弦定理作转化,变为二次函数问题来求解 .【例题6】 求的最值 .解法一: (利用降幂公式)解法二: (用判别式法)注: 本例还可以用万能公式等方法来求解 .六、利用参数换元对于有些函数而言,直接求极值比较复杂或不方便,这时可根据题目的特点作变量代换,然后运用前面的几种方法来解决问题.在换元时,一定要注意新的变量的取值范围 . 【例题7】 求函数 y = x + √( 1 - x ) 的极值 .解:原函数变为∵ t = 1/2 ∈ [ 0 , +∞ ) ,∴ 当 t = 1/2 ,即 x = 3/4 时,ymax = 5/4 .注: 这种换元虽然十分简单,但具有代表性 .七、利用复数的性质【例题8】 已知复数 z 满足 | z | = 2 , 求 | 1 + √3 i + z | 的极值 . 解法一:设 z = 2(cosθ + isinθ) (∵ | z | = 2)故 | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .解法二:依据 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | ,有 | 1 + √3 i | - | z | ≤ | 1 + √3 i + z | ≤ | 1 + √3 i | + | z | ,即 2 - 2 ≤ | 1 + √3 i + z | ≤ 2 + 2 ,∴ | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .注:求复数模的最值通常可用代数法,三角法(解法一),复数模的性质及其公式 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | , 此外还有数形结合方法等,但以上两种方法最为简捷.八、利用数形结合有些代数和三角问题,若能借助其几何背景,予以几何直观,这时求其最值常能收到直观、明快,化难为易得功效.【例题9】 求的最值 .解: 将函数式变形为其几何意义是在直角坐标系中,动点 P(cosx , sinx)和定点 A(-2 ,-1)连线的斜率,动点 P 的轨迹为单位圆,如下图所示:知 kAB 最小,kAC 最大,显然 kAB = 0 ,又 tgθ = |OB|/|AB| = 1/2 ,tg∠A = tg2θ = 2tgθ/(1 - tg^2 θ)= 4/3 ,即 kAC = 4/3 ,故 ymin = 0 , ymax = 4/3 .注:形如 [f(x) - a] / [g(x) - b] 的函数式,通常都可视作点 (g(x) ,f(x) ) 与点 (b , a)的连线的斜率 .运用数形结合的思想解题,关键是要进行合理的联想和类比,将代数式通过转化、变形、给予几何解释,通常这种转化与变形的过程常是一种挖掘和发现的过程,如本例需要挖掘 .。

求函数值域(最值)的方法

求函数值域(最值)的方法

求函数值域(最值)方法汇总一.单调性法例1.求函数x 53x y ---=的值域 例2.求函数11--+=x x y 的值域例3.求函数x x y -+-=53的值域解一:例4.已知函数.2]2,0[34)(2的值,求实数上有最大值在区间a x ax x f -+= 解:(1)当0=a 时,max ()(2)4232,f x f ==⨯-≠舍去; (2)当↑⇒〈-=〉上在时,对称轴方程为]2,0[)(020x f ax a 舍去,043254)2(〈-=⇒=+=⇒a a f ;(3)当时,0〈a 02〉-=ax 对称轴方程为, ①]1,(]0,1[1]2,0[2--∞∈⇒-∈⇒∈-a a a 1542384)2(-〉-=⇒=--=-⇒a a a a f ,舍去②122-〉⇒〉-a a ↑⇒上在]2,0[)(x f 43-=⇒a纵上,43-=a例5.已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。

解:0)0()0()0()00(=⇒+=+f f f f为奇函数则令)()()()()()(,x f x f x f x f x f x x f x y ⇒-=-⇒-+=--= )()()()()(0)(0,121112121221x f x f x f x f x x f x x f x x x x 〉⇒〉+-⇒〉-⇒〉-〈则令422)1()1()11()2(-=--=-+-=--=-f f f f ,2)1()1(=--=f f()[-2,1][-4,2]f x ⇒在上的值域为:二.判别式(∆)法:用于自然定义域下的二次分式形式的函数,变形为关于x 的方程,讨论2x 的系数,当系数为0时,判断方程左边是否等于0;当系数不为0时,得0≥∆。

综上,求出y 的范围。

如:,,222211221121c x b x a b x a y b x a c x b x a y +++=+++=22221121c x b x a c x b x a y ++++=等。

高中数学函数值域的八大求法专题辅导

高中数学函数值域的八大求法专题辅导

高中数学函数值域的八大求法专题辅导X 俊求函数值域是高考的热点,同时也是大家学习中的一个难点,在求函数值域时本人总结以下八种方法,供大家参考。

方法一:观察法例1. 求函数2x 4y -=的值域。

解析:由]2,0[x 4,0x 40x 222∈-≥-≥知及。

故此函数值域为]2,0[。

评注:此方法适用于解答选择题和填空题。

方法二:不等式法 例2. 求函数)0x (x )1x (y 222≠+=的值域。

解析:4x 1x 2x 1x 2x x )1x (y 22224222≥++=++=+= , ∴此函数值域为),4[+∞。

评注:此方法在解答综合题时可屡建奇功!方法三:反函数法例3. 求函数)4x (2x 1x y -≥+-=的值域。

解析:由2x 1x y +-=得y 11y 2x -+=。

由4x -≥,得4y 11y 2-≥-+,解得1y 25y <≥或。

∴此函数值域为),25[)1,(+∞⋃-∞。

评注:此方法适用X 围比较狭窄,最适用于x 为一次的情形。

方法四:分离常数法例4. 求函数6x 13x 6)1x (6y 2422+++=的值域。

解析::6x 13x 66x 12x 66x 13x 6)1x (6y 24242422++++=+++= 25242511x613x 6116x 13x 6x 122242=-≥++-=++-=。

从而易知此函数值域为]1,2524[。

评注:此题先分离常数,再利用不等式法求解。

注意形如)ad bc ,0a (bax d cx y ≠≠++=的值域为),ac ()a c ,(+∞⋃-∞。

方法五:判别式法例5. 求函数1x x 1x y 22--+=的值域。

解析:原式整理可得0)1y (yx x )1y (2=+---。

当01y =-即1y =时,2x -=原式成立。

当01y ≠-即1y ≠时,0)]1y ()[1y (4y 2≥+---=∆,解得552y 552y -≤≥或。

高中数学函数值域的求法(9种)

高中数学函数值域的求法(9种)

函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。

常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。

(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。

如函数211xy +=的值域{}10|≤<y y 。

(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。

例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。

(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。

如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。

(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。

(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。

例如:12--+=x x y 。

(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。

如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。

高中数学:求函数值域的方法十三种

高中数学:求函数值域的方法十三种

高中数学:求函数值域的十三种方法一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性八、函数单调性法(☆)九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、一一映射法 十三、 多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。

【例1】求函数1y x =+的值域。

【解析】∵0x ≥,∴11x +≥, ∴函数1y x =+的值域为[1,)+∞。

【例2】求函数x 1y =的值域。

【解析】∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。

二. 配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

【例1】 求函数225,[1,2]y x x x =-+∈-的值域。

【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。

【解析】由已知,可得,即函数是定义在区间上的二次函数。

将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。

显然其顶点横坐标不在区间内,如图2所示。

函数的最小值为,最大值为。

图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t(2)当∈t [-3,-2]时,求g(t)的最值。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法:求函数解析式 1、换元法: 例1.已知 题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

心) X t 解:设 2 f (x ) X X X ,则1,x 1 。

x 2 X 1 x 2 ,试求 f (X )。

1 t 1,代入条件式可得: f (t )t 2 t 1,t ≠ 1。

故得: 说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出 另一个程,联立求解。

f (X) 例2. ( 1)已知 (2)已知 f (X) 2f(2f(1) 3X 24X 5 XX)3X 2解:(1)由条件式,以 • 1 消去 X ,则得: X 代2_ X X,则得 8 3x4X 5f(1) X X 24x 3(2) 由条件式,以一 X 代X 则得: X 24x -3。

f( 去说明: 定义域由解析式确定,不需要另外给出。

例4.求下列函数的解析式: (1) (2) (3) ,试求f (X);f(x).3厶 X试求 2f(x)5 3OX) 2f (X)3X 24X5,与条件式联立,,与条件式联立,消,则得: 本题虽然没有给出定义域,但由于变形过程一直保持等价关系, 故所求函数的 已知 已知 已知 f (X )是二次函数,且f (0) f (∙一 X 1) 心) X 3f (x ) 2, f (X 1) f(X) X 1 ,求 f(X); 2 X ,求 f (x), f (x 1), f (x 2) 1 1 亠 2 ,求 X X f (X);(4) 【题意分析】(1) 设法求出a,b,c 即可。

若能将X 2 - X 适当变形,用.XX 1 设 为一个整体,不妨设为 X X , 已知 2 f ( x) X 3 ,求 f (x)。

由已知f (X)是二次函数,所以可设 f(X) ax 2 bx c(a 0),(2) (3) 1的式子表示就容易解决了。

高中数学:求函数值域的10种常见方法

高中数学:求函数值域的10种常见方法

求函数的值域(常用)一、用非负数的性质例1:求下列函数的值域:(1)y=-3x 2+2;(2)≥-1).练1:函数2()1f x x x =+-的最小值是_________________.练2:求函数y =练3:求函数的值域。

练4:(1)232+-=x x y (2)]8,5[,452∈+-=x x x y(3)2234x x y -+-=]2,1[x ,5x 2x y 2-∈+-=二、分离常数法对某些分式函数,可通过分离常数法,化成部分分式来求值域.例1:求下列函数的值域:(1)y=21x x ++(2)y=2211x x -+.练1:求下列函数的值域:(1)13222++=x x y (2)3214222++++=x x x x y三、利用函数单调性已知函数在某区间上具有单调性,那么利用单调性求值域是一种简单的方法. 例1:求函数y=3x+x 3的值域.练1:求函数122+-=xx y ()0>x 的值域.练2:求函数x x y 213--=的值域.四、利用判别式特殊地,对于可以化为关于x 的二次方程a(y)x 2+b(y)x+c(y)=0的函数y=f(x),可利用0()0,a y y x ∆≥≠且求出的最值后,要检验这个最值在定义域是否具有相应的值. 例1:求函数y =234x x +的最值.练1:利用判别式方法求函数222231x x y x x -+=-+的值域.五、利用换元法求值域有时直接求函数值域有困难,我们可通过换元法转化为容易求值域的问题考虑. 例1:求函数的值域。

练1:求()6log 62log 2222++=x x y 的值域.1x x y -+=练2:设02x ≤≤,求函数1()4321x x f x +=-+的值域.练3:求函数的值域.练4:求函数x x y 213--=的值域.六:判别式法例1:求函数的值域。

七、利用数形结合数形结合是解数学问题的重要思想方法之一,求函数值域时其运用也不例外. 例1:若62--=x x y ,求y 的最大、最小值.练1:求函数342+-=x x y 的值域.22x 1x x 1y +++=练2:求函数186122+-++=x x x y 的值域.练3:若(求x-y 的最大、最小值.八、利用已知函数的有界性. 例1:求函数y=25243x x -+的值域.练1:求函数的值域。

高中数学函数值域的种求法总结

高中数学函数值域的种求法总结

高中数学函数值域的种求法总结高中数学中,函数值域是指函数在定义域内所有可能的取值的集合。

求函数值域是解决各类函数问题的重要方法之一、下面将总结高中数学中常用的求函数值域的11种方法。

1.利用定义法:根据函数的定义,直接求解函数的取值范围。

例如,对于函数f(x)=x^2,由于平方永远非负,所以其值域为[0,+∞)。

2. 利用图像法:通过绘制函数的图像,观察图像的上下界即可求得函数的值域。

例如,对于函数 f(x) = sin(x),由于正弦函数的取值范围在[-1, 1]之间,故其值域为[-1, 1]。

3.利用对称性:对于一些具有对称性的函数,可以利用函数的对称性来快速求解其值域。

例如,对于奇函数f(x)=x^3,由于x^3关于原点对称,故其值域为整个实数轴。

4.利用函数的性质:通过函数的特点和性质来求解其值域。

例如,对于指数函数f(x)=a^x,由于指数函数永远大于0,所以其值域为(0,+∞)。

5. 利用最值的求解方法:对于具有最值的函数,可以通过求解最值来确定函数的值域。

例如,对于二次函数 f(x) = ax^2 + bx + c,其中a > 0,由于 a > 0,故二次函数的开口向上,函数的最小值为顶点的 y坐标,可以通过求解顶点坐标来确定函数的值域。

6.利用函数的递增性或递减性:对于递增函数或递减函数,可以根据函数递增性或递减性来求解其值域。

例如,对于递增函数f(x)=2x+1,由于斜率大于零,函数单调递增,故值域为(-∞,+∞)。

7. 利用函数的周期性:对于具有周期性的函数,可以利用函数的周期性来求解其值域。

例如,对于正弦函数 f(x) = sin(x),由于正弦函数的值在一个周期内是重复的,故其值域为 [-1, 1]。

8. 利用函数的复合性:对于复合函数,可以将函数拆解成多个简单的函数,然后求解每个简单函数的值域,最后将值域组合起来得到复合函数的值域。

例如,对于函数 f(x) = sqrt(x^2 + 1),可以拆解成 f(x) = g(h(x)), 其中 g(x) = sqrt(x) 和 h(x) = x^2 + 1,然后求解 g(x) 和h(x) 的值域,最后得到 f(x) 的值域。

如何用判别式法求高中函数值域?另有10种方法和典型例题精讲讲解

如何用判别式法求高中函数值域?另有10种方法和典型例题精讲讲解

如何用判别式法求函数值域
用判别式法求值域是求函数值域的常用方法,但在教学过程中,很多学生对用判别式求值域掌握不好。

一是不理解为什么可以这样做,二是学生对哪些函数求值域可以用判别式法,哪些函数不能也比较模糊。

下面是洪老师的高考必备资料库结合数学老师的教学实践进行探讨一下用判别式法求高中函数值域!
一、判别式法求值域的理论依据
二、判别式法求值域的适用范围
更多方法解高中函数值域!
在洪老师的高考必备资料库里,有一套63套解题方法大全!
其中,针对常见函数值域或最值的经典求法归纳汇总了10种方法。

如有需要完整的一套63套数学解题方法大全,可以发送私信063!
不会私信的有简单方式,直接点头像,然后看到底下有个(洪粉必看)的按钮,点进里面会有具体的操作提示。

下面通览一下 常见函数值域或最值的经典求法的10种方法。

高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全高中数学求函数值域解题方法大全一、观察法:从自变量x的范围出发,推出y=f(x)的取值范围。

例1:求函数y=x+1的值域。

解析:由于x≥-1,所以x+1≥0,因此函数y=x+1的值域为[1,+∞)。

例2:求函数y=1/x的值域。

解析:显然函数的定义域为(-∞,0)∪(0,+∞),当x>0时,y>0;当x<0时,y<0.因此函数的值域是:例3:已知函数y=(x-1)-1,x∈{-1,1,2},求函数的值域。

解析:因为x∈{-1,1,2},而f(-1)=f(3)=3,f(2)=-1,f(1)=-∞,所以:y∈{-1,3}。

注意:求函数的值域时,不能忽视定义域,如果该题的定义域为x∈R,则函数的值域为{y|y≥-1}。

二、配方法:配方法式求“二次函数类”值域的基本方法。

形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法。

例1:求函数y=x2-2x+5,x∈[-1,2]的值域。

解析:将函数配方得:y=(x-1)2+4,当x=1∈[-1,2]时,y取得最小值4,当x=-1或x=2时,y取得最大值8,因此函数的值域是:[4,8]。

变式:已知f(x)=ax2+bx+c,其中a>0,且在区间[-1,1]内的最小值为1,求函数在[-2,2]上的最值。

解析:由已知,可得a>0,且f(x)在x=0处取得最小值1,即b=0.又因为在区间[-1,1]内的最小值为1,所以a≤4.将f(x)配方得:f(x)=a(x-1)2+1,当x=-2或x=2时,f(x)取得最大值5a+1;当x=1时,f(x)取得最小值1.因此,当a=4时,函数在[-2,2]上的最值分别为9和17.当a<4时,函数在[-2,2]上的最值分别为1和5a+1.三、其他方法:对于一些特殊的函数,可以采用其他方法求解。

例:已知函数f(x)=sinx+cosx,求函数的值域。

求函数最值与值域的常用方法

求函数最值与值域的常用方法

ʏ甄新锋求函数的最值与值域是高中数学的重要内容㊂函数的值域就是全体函数值的集合,是由其定义域㊁对应法则共同决定的㊂求函数的最值与值域在解法上是相通的㊂下面举例分析,供同学们学习与参考㊂方法一:函数的单调性法例1 已知函数f (x )=a x +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),则g (a )的最大值为㊂函数f (x )=a -1a()x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,所以g (a )=f (0)=1a;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,所以g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1㊂由上可得函数g (a )=a ,0<a <1,1a,a ȡ1,{所以g (a )在(0,1)上为增函数,在[1,+ɕ)上为减函数㊂因为当a =1时,a =1a=1,所以当a =1时,g (a )取最大值为1㊂评注:利用单调性法求最值,先确定函数的单调性,再由单调性求最值㊂方法二:判别式法例2 设非零实数a ,b 满足a 2+b 2=4,若函数y =a x +bx 2+1存在最大值M 和最小值m ,则M -m =㊂由y =a x +bx 2+1,可得y x 2-a x +y -b =0,由题意知此方程有实根,所以Δ=a 2-4y (y -b )ȡ0,即4y 2-4yb -a 2ɤ0㊂因为a 2+b 2=4,所以4y 2-4y b +b 2-4ɤ0,即[2y -(b +2)][2y -(b -2)]ɤ0,解得b -22ɤy ɤb +22,所以m =b -22,M =b +22,可得M -m =2㊂评注:形如分子㊁分母的最高次数为二次的分式函数,可利用判别式法求函数的最值㊂方法三:二次函数的性质法例3 已知函数f (x )=4x 2-m x +1在(-ɕ,-2)上单调递减,在[-2,+ɕ)上单调递增,则f (x )在[1,2]上的值域为㊂因为f (x )在(-ɕ,-2)上单调递减,在[-2,+ɕ)上单调递增,所以函数f (x )=4x 2-m x +1的对称轴方程为x =m8=-2,可得m =-16㊂又[1,2]⊆[-2,+ɕ),且f (x )在[-2,+ɕ)上单调递增,所以f (x )在[1,2]上单调递增㊂所以当x =1时,f (x )取得最小值f (1)=4-m +1=21;当x =2时,f (x )取得最大值f (2)=16-2m +1=49㊂故f (x )在[1,2]上的值域为[21,49]㊂评注:二次函数y =a x 2+b x +c (a ʂ0),当a >0时,顶点为图像的最低点,即当x =-b2a 时,y 的值最小;当a <0时,顶点为图像的最高点,即当x =-b 2a时,y 的值最大㊂方法四:基本不等式法例4 已知幂函数f (x )的图像过点2,14(),则函数g (x )=f(x )+x 24的最小值为㊂设幂函数f (x )=xα,因为f (x )的图像过点2,14(),所以2α=14,解得α=-2,所以幂函数f (x )=x -2,其中x ʂ0㊂因为函数g (x )=f (x )+x24=1 数学部分㊃知识结构与拓展 高一使用 2022年1月Copyright ©博看网. All Rights Reserved.1x 2+x 24ȡ21x2㊃x 24=1,当且仅当x =ʃ2时 = 成立,所以函数g (x )取得最小值为1㊂评注:利用基本不等式求最值时,必须满足的三个条件:一正㊁二定㊁三相等㊂ 一正 就是各项必须为正数; 二定 就是要求和的最小值,必须把构成和的二项之积转化成定值,要求积的最大值,必须把构成积的因式的和转化成定值; 三相等 就是检验等号成立的条件,判断等号能否取到,只有等号能成立,才能利用基本不等式求最值㊂方法五:分离常数法例5 当-3ɤx ɤ-1时,函数y =5x -14x +2的最小值为㊂由函数y =5x -14x +2,可得y =54-74(2x +1)㊂因为-3ɤx ɤ-1,所以720ɤ-74(2x +1)ɤ74,所以85ɤy ɤ3㊂故所求函数的最小值为85㊂评注:求形如y =c x +d a x +b (a c ʂ0)的函数的值域或最值,常用分离常数法求解㊂方法六:反解法例6 函数y =1-|x |1+|x |的值域为㊂由函数y =1-|x |1+|x |,可得|x |=1-y 1+y ㊂因为|x |ȡ0,所以1-y 1+y ȡ0,所以-1<y ɤ1㊂故所求函数的值域(-1,1]㊂评注:反解法求函数的值域,先由已知函数式解出x ,再根据x 的取值范围列不等式求出值域㊂方法七:换元法例7 函数y =x +1-x 2的值域是㊂由1-x 2ȡ0得-1ɤx ɤ1㊂设x =c o s α,αɪ[0,π],则原函数等价于函数f (α)=c o s α+s i n α=2㊃s i n α+π4(),且α+π4ɪπ4,5π4[],所以s i n α+π4()ɪ-22,1éëêêùûúú㊂故所求函数的值域为[-1,2]㊂评注:求形如y =a x +b +(c x +d )(a c ʂ0)或y =a x +b ʃc 2-x 2(c ʂ0)的函数值域或最值,常用代数换元法或三角换元法,再结合函数的相关性质求解㊂方法八:绝对值不等式法例8 函数y =|x +1|+|x -3|的值域为㊂因为y =|x +1|+|x -3|ȡ|x +1+3-x |=4,所以此函数的值域为[4,+ɕ)㊂评注:含有绝对值的不等式的性质:|a |-|b |ɤ|a ʃb |ɤ|a |+|b |㊂方法九:数形结合法例9 函数f (x )=|x -1|+x 2的值域为㊂把函数f (x )化为分段函数求值域㊂函数f (x )=|x -1|+x 2=x 2+x -1,x ȡ1,x 2-x +1,x <1{=x +12()2-54,x ȡ1,x -12()2+34,x <1㊂ìîíïïïï作出分段函数f (x )的图像(图略)㊂由图知函数f (x )=|x -1|+x 2的值域为34,+ɕ[)㊂评注:数形结合法包含 以形助数 和 以数辅形 两个方面,其应用大致可以分为两种情形:一是借助于形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,如利用函数的图像来直观地说明函数的性质;二是借助于数的精确性和严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质㊂作者单位:浙江省绍兴市新昌县新昌技师学院大市聚校区(责任编辑 郭正华)11数学部分㊃知识结构与拓展高一使用 2022年1月Copyright ©博看网. All Rights Reserved.。

高中数学求值域的10种方法

高中数学求值域的10种方法

求函数值域的十种方法一.直接法(察看法):对于一些比较简单的函数,其值域可经过察看获得。

例 1.求函数y x1的值域。

【分析】∵ x0 ,∴x11,∴函数 y x1的值域为[1,) 。

【练习】1.求以下函数的值域:① y 3x 2( 1 x 1) ;② f ( x)2 4 x ;x;○4y21,0,1,2 。

③ y x 1 1 , xx1【参照答案】① [ 1,5];② [2,);③ (,1)(1,) ;{1,0,3} 。

4二.配方法:合用于二次函数及能经过换元法等转变为二次函数的题型。

形如F (x) af 2 ( x) bf ( x) c 的函数的值域问题,均可使用配方法。

例 2.求函数y x24x 2( x[ 1,1] )的值域。

【分析】y x24x 2( x2)2 6 。

∵ 1 x 1 ,∴ 3 x2 1 ,∴1 (x2)29,∴ 3(x 2)2 6 5 ,∴ 3 y 5。

∴函数 y x24x 2 ( x[ 1,1])的值域为 [3,5]。

例 3 .求函数y2x24x( x0, 4 ) 的值域。

【分析】本题中含有二次函数可利用配方法求解,为便于计算不如设:f (x)x2 4 x( f (x)0) 配方得: f (x)(x2)24(x0, 4 ) 利用二次函数的有关知识得f (x)0, 4,从而得出: y0,2 。

说明:在求解值域 (最值 ) 时,碰到分式、根式、对数式等种类时要注意函数自己定义域的限制,本题为:f ( x)0 。

例 4 .若x 2 y4, x0, y0,试求 lg x lg y 的最大值。

【剖析与解】 本题可当作第一象限内动点P(x, y) 在直线 x 2 y 4 上滑动时函数 lg x lg y lg xy 的最大值。

利用两点(4,0) , (0,2) 确立一条直线,作出图象易得:x (0,4), y (0,2), 而 lg x lg y lg xy lg[ y(4 2y)] lg[ 2( y 1)2 2] ,y=1 时, lg xlg y 取最大值 lg 2 。

值域_求值域的方法大全及习题加详解

值域_求值域的方法大全及习题加详解

求值域方法函数值域的求法方法有好多,主要是题目不同,或者说稍微有一个数字出现问题,对我们来说,解题的思路可能就会出现非常大的区别.这里我主要弄几个出来,大家一起看一下吧. 函数的值域取决于定义域和对应法则,求函数的值域要注意优先考虑定义域常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。

例1、求函数1,[1,2]y x x =∈的值域。

(★★)例2、 求函数x 3y -=的值域。

(★★) 答案:值域是:]3,[-∞ 【同步练习1】函数221xy+=的值域. (★★)解:}210{≤<y y(2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。

例1、求函数225,y x x x R =-+∈的值域。

(★★)例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

(★★★)解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]例3、求()()22log 26log 62log 222222-+=++=x x x y 。

(★★★★)(配方法、换元法)解:………所以当41=x 时,y 有最小值-2。

故所求函数值域为[-2,+∞)。

例4、设02x ≤≤,求函数1()4321xx f x +=-+g 的值域.解:12()4321(23)8xx x f x +=-+=--g,02x ∵≤≤,24x 1∴≤≤.∴当23x =时,函数取得最小值8-;当21x =时,函数取得最大值4-,∴函数的值域为[84]--,. 评注:配方法往往需结合函数图象求值域. 例5、求函数13432-+-=x x y 的值域。

高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法
一、显函数法:
须先将函数写成显函数的形式,然后通过分析函数表达式的特征,确定其值域。

二、图像法:
一般通过函数的图像来确定其值域,可以在纸上绘制函数的图像,或者利用数学软件进行绘图分析。

三、函数增减性:
通过函数的增减性来确定其值域,即分析函数在定义域上的单调性。

四、函数的周期性:
若函数具有周期性,则值域受周期性的限制。

五、函数的有界性:
若函数在定义域上有上下界,则其值域也受到该有界性的限制。

六、反函数法:
通过求函数的反函数,获得原函数的值域。

七、导数法:
通过求函数的导数,分析其在定义域内的极值和拐点,得出值域的上下界。

八、极限法:
通过求函数在定义域两端的极限,确定函数值域的范围。

九、变量替换法:
可将复杂的函数转化为简单的函数,通过分析简单函数的值域,确定复杂函数的值域。

十、函数值的性质:
根据函数的性质和定义,通过推理和证明,确定函数值域。

以上是求函数值域的十种常见方法,根据不同的题目和函数形式,我们可以选择适用的方法来解决问题。

在实际应用中,经常需要综合运用多种方法来确定函数的值域。

高中数学求值域的10种方法

高中数学求值域的10种方法

求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。

例1.求函数1y =的值域。

【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。

【练习】1.求下列函数的值域:①32(11)y x x =+-≤≤; ②x x f -+=42)(;③1+=x xy ;○4()112--=x y ,{}2,1,0,1-∈x 。

【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞;○4{1,0,3}-。

二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

例2.求函数242y x x =-++([1,1]x ∈-)的值域。

【解析】2242(2)6y x x x =-++=--+。

∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。

∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。

例3.求函数][)4,0(422∈+--=x x x y 的值域。

【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:)0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ⎡∈⎣。

说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。

例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。

利用两点(4,0),(0,2)确定一条直线,作出图象易得:2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。

例1. 已知,试求、解:设,则,代入条件式可得:,t ≠1、故得:。

说明:要注意转换后变量围得变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。

例2。

(1)已知,试求;(2)已知,试求;解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以-x 代x 则得:,与条件式联立,消去,则得:。

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。

例4、 求下列函数得解析式:(1)已知就是二次函数,且,求;(2)已知,求,,;(3)已知,求;(4)已知,求。

【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用得式子表示就容易解决了、(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,得两个程就行了。

【解题过程】⑴设,由得,由,得恒等式,得。

故所求函数得解析式为。

(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f ,又。

(3)设, 则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。

(4)因为 ①用代替得 ②解①②式得。

【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3);(3)函数程问题,需建立关于得程组,如本例(4)、若函数程中同时出现,,则一般将式中得用代替,构造另一程。

函数求值域的常用解法,绝对经典!

函数求值域的常用解法,绝对经典!

求值域的方法一、定义法通过值域的定义求值域是最简单直接的一种方法,但是有时也是我们最常忽略的一种方法,因为它的简单,所以是在学习值域中最早接触过的一种方法,但是在一些考查思维能力的大题中,伴随着一些阅读信息出现时,往往会给我们造成一些困扰。

今天的学习希望大家就从定义出发,理解函数值域。

先看例题:1.已知函数2,y x x A =∈,其中{|||2,}A x x x Z =≤∈且则函数的值域是_____ 先看x 的取值:{2,1,0,1,2}A =--所以函数值域为{4,2,0,2,4}--注意:定义域是有限集,值域也是有限集2.若函数24y x x =-的定义域是{|15,}x x x N ≤≤∈则其值域为________将x =1,2,3,4分别代入函数,得y =-3,-4,-3,0由集合的互异性可知,函数值域为{-4,-3,0} 求函数||x y x= 的值域 注意定义域x≠0,10||=10x x y x x >⎧=⎨-<⎩ 注意:定义域不是有限集,值域可能是有限集总结:函数值域是函数值的集合它是由定义域和对应法则共同给确定的求值域时要注意函数的定义域二、分离常数法分离常数,是高中数学的常用方法,分离常数的思路是将变量和常量分开研究,是解决矛盾的一种重要思路。

该方法在求函数值域中也有非常广泛的应用,今天我们就一起来看看如何用分离常数的方法求函数值域。

先看例题:1.函数2211x y x -=+的值域为____ 先将分离常数:2222211221111x x y x x x -+-===-+++ 接下来只需研究分母的取值范围即可:22211,021x x +≥<≤+ 22201x -≤-<+ 所以,函数值域为11y -≤<2.求函数312x y x +=-的值域 先分离常数: 313(2)773,222x x y x x x +-+===+--- 770,3 3.22x x ≠∴+≠-- 31{|3}.2x y y y R y x +∴=∈≠-的值域为且 我们发现,如果一个函数形如(0)cx d y a ax b +=≠+,这时可以考虑使用分离常数的方法,来求其值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学求函数值域最值的10种经典例题和方法
函数的值域在函数的应用中占有非常重要的地位.因此,准确选择恰当的方法显得十分重要.本文结合具体的经典例题说明了求函数值域和最值方法.
洪老师的高考必备资料库平台针对高中数学整理了63个考点的解题方法和万能模板,对于高中生的提分学习非常的有帮助的,而今天下面的这个高中数学求函数值域最值的几种经典例题和方法均在里面。

如有需要完整的一套高中数学万能解题方法大全,可以向洪老师申请资料服务(付费),本资料编号是:063
高中数学求函数值域最值的几种经典例题和方法
方法一观察法
方法二分离常数法
方法三配方法
方法四反函数法
方法五换元法
方法六判别式法
方法七基本不等式法
方法八单调性法
方法九数形结合法
方法十导数法。

相关文档
最新文档