三角函数的运用(解直角三角形的运用)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20题图
课题:解直角三角形的运用
【学习目标】1、理解锐角三角函数的概念。2、掌握30°、45°、60°的三角函数值。3、能熟练的运用锐角三角函数解决实际问题 【学习重点】能熟练的运用锐角三角函数解决实际问题 【教学难点】能熟练的运用锐角三角函数解决实际问题 【学习过程】 一、课堂前置
1、锐角三角函数的概念 :如图,在△ABC 中,∠C =90° ①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即c a
sin
=∠=斜边的对边A A
②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c b
cos =∠=
斜边的邻边A A
③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b
a
tan =∠∠=
的邻边的对边A A A
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数 2、特殊角的三角函数值
3.如图(2)仰角是____________,俯角是____________.
4.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 5.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tan α=i =____.
图(2) 图(3) 图(4)
二、小组交流
(2011年楚雄)20.(本小题8分)如图,甲、乙两船同时从港口A 出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏
西30°方向航行,半小时后甲船到达C 点,乙船正好到达甲船正西方向的B
1.7≈).
O A B
C
60°30°
F
E M
D C
B
A
M
C
A B
N
B
(2013年楚雄)20.(6分)如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A 的距离最近?
三、分享表达:
(2014年云南)21.(6分)如图,小明在M 处用高为1米(DM=1米)的测角仪测得旗杆AB 的顶端B 的仰角为30°,再向旗杆方向前进10米到F 处,又测得旗杆的顶端B 的仰角为60°,请求出旗杆AB 的高度。(取3≈1.73,结果保留整数。)
(2012年云南)20.(本小题6分)如图,某同学在楼房的A 处测得荷塘的一端B 处的俯角为30°,荷塘另一端D
与点C 、B 在同一直线
上,已知AC=32米,CD=16米,求荷塘宽BD 1.73≈,结果保留整数)
四、拓展提升
(2015年云南)19.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB=30°,沿河岸AB 前行
30米后到达B 处,在B 处测得∠CBA=60°
.请你根据以上测量数据求出河的宽度. 1.41≈ 1.73≈;结果保留整数)
(2010年楚雄)20.(本小题8分)如图,河流的两岸PQ 、MN 互相平行,河岸PQ 上有一排小树,已知相邻两树之间的距离CD=50米,
某人在河岸MN 的A 处测得∠DAN = 35°,然后沿河岸走了120米到达B 处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).
(参考数据: sin35°≈ 0.57, cos35°≈ 0.82, tan35°≈ 0.70
sin 70°≈ 0.94, cos70°≈ 0.34, tan70°≈ 2.75 )