三角函数的运用(解直角三角形的运用)
初三数学利用三角函数解直角三角形含答案
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。
解直角三角形及其应用
01 Chapter定义30度45度60度030201特殊角的三角函数值03利用三角函数分析物理现象01利用三角函数求解直角三角形02利用三角函数制作图表三角函数的应用02 Chapter直角三角形锐角三角形钝角三角形定义利用勾股定理利用三角函数利用面积法解直角三角形的方法几何学在工程学中,解直角三角形被广泛应用于测量、设计和建造建筑物和桥梁等结构。
工程学物理学应用03 Chapter面积三角形面积定义一般三角形面积计算公式直角三角形面积计算公式计算公式为进一步计算三角形周长、判断三角形形状等提供基础数据。
应用数学学科中实际生活中04 Chapter01 020102构。
架等。
梁、道路等。
05 Chapter三角形全等如果两个三角形完全相同,即它们的对应边和对应角都相等,则称这两个三角形全等。
全等符号在数学中,我们用“≌”表示两个三角形全等。
定义01020304边边边定理(SSS)角边角定理(ASA)边角边定理(SAS)角角边定理(AAS)判定方法应用证明几何命题全等三角形是证明几何命题的有力工具,通过证明两个三角形全等,可以得到一些线段或角相等的关系。
计算距离在解直角三角形中,全等三角形可以帮助我们计算距离、高度、角度等。
构造全等在数学竞赛中,常常需要构造全等三角形来解决问题。
06 Chapter定义相似三角形相似比定义法两角对应相等两边对应成比例且夹角相等平行线分线段成比例判定方法测量可以利用相似三角形的原理进行距离、高度的测量和计算。
证明利用相似三角形的性质可以证明一些几何命题,如等腰三角形的判定、直角三角形的勾股定理等。
建筑设计在建筑设计中,可以利用相似三角形的原理进行构图和设计。
应用THANKS。
解直角三角形及其应用--知识讲解
解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =. 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例1(1)-(3)】【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC是半圆⊙O的直径,D是AC的中点,四边形ABCD的对角线AC、BD交于点E,(1)求证:△ABE∽△DBC;(2)已知BC=52,CD=52sin∠AEB的值;(3)在(2)的条件下,求弦AB的长.【答案与解析】(1)∵AD CD,∴∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=5∴ BD =225BC CD -=, ∴ sin ∠AEB =sin ∠DCB=52552BD BC ==. (3)在Rt △BDC 中,BD =5,又∠1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DEDB AD=,∴ 2AD DE DB =. 又∵ 5CD AD ==,∴ CD 2=(BD -BE)·BD , 即25(5)5BE ⎛⎫=- ⎪ ⎪⎝⎭,∴ 35BE =. 在Rt △ABE 中,AB =BEsin ∠AEB =32355452⨯=. 【总结升华】本题综合了三角函数、相似三角形、勾股定理、圆等方面知识,尤其涉及三角函数问题,都是通过找出或构造直角三角形来解决问题. (1)根据圆周角定理易证△ABE ∽△DBC .(2)利用(1)的结论,将∠AEB 转化为Rt △BCD 中的DCB ∠.(3)在Rt △ABE 中求AB .举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例2】【变式】 (2015•河南模拟)如图,在等腰Rt △ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=,则AD 的长为多少?【答案与解析】解:作DE ⊥AB 于E ,如图, ∵∠C=90°,AC=BC=6,∴△ACB 为等腰直角三角形,AB=AC=6, ∴∠A=45°,在Rt △ADE 中,设AE=x ,则DE=x ,AD=x , 在Rt △BED 中,tan ∠DBE==,∴BE=5x ,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即355FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=180°-30°-60°=90°.∵ CD=10,∴ AC=12CD=5.在Rt△ACE中,AE=AC·sin∠ACE=5×sin 30°=52,CE=AC·cos ∠ACE=5×cos 30°=53 2,在Rt△BCE中,∵∠BCE=45°,∴5553(31)222AB AE BE=+=+=+≈6.8(米).∴雕塑AB的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。
初三数学利用三角函数解直角三角形
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.【例1】 如图是教学用直角三角板,边33090tan 3AC cm C BAC =∠=︒∠=,,,则边BC 的长为( )A .303cmB .203cmC .103cmD .53cm【巩固】如图,在ABC △中,9060C B D ∠=︒∠=︒,,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( )A .2B .433C .23D .43【巩固】如图,ABC △是等腰三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连接CE ,则sin ACE ∠= .例题精讲CBA3ED CBAEDCBA如图所示,O 的直径点作O 的切线,切点为七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵.(3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线FD CDCB A【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.O CA(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈和平路文化路中山路30°15°45°FEDCBA【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高.图1图2图3βαDCBA课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; ACB ∠= .课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).FE人行道DCB A。
解直角三角形的应用
图 1图4图3三角函数的应用 【知识要点】1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
6.方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角...。
如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。
图2h【典型例题】1.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=5米,AB=7米,∠MAD=45°,∠MBC=30°,求警示牌的高CD为多少米?(结果保留根号)2.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.3.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,(1)BC= m,AC= m;(2)现在计划在斜坡AB的中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE,若斜坡BE的坡角为30°,求平台DE的长.(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)4.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼前面15米处要盖一栋高20米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°.(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市采光不受影响,两楼应至少相距多少米?(结果保留整数)5.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.(1)填空:AD AC(填“>”,“<”,“=”).(2)求旗杆AB的高度.(参考数据:≈1.41,≈1.73,结果精确到0.1m).6.如图,要在宽为28米的公路AB路边安装路灯,路灯的灯臂CD长为3米,且与灯柱BC 成150°角,路灯采用圆锥形灯罩,灯罩的轴线DE与灯臂CD垂直,当灯罩的轴线DE能过公路路面的中点时照效果最理想.问应设计多高的灯柱,才能取得最理想的照明效果.(结果保留根号)7.今年夏天我市出现厄尔尼诺现象极端天气,多地引发滑坡、山洪等严重自然灾害.如图所示,ON为水平线,斜坡MN的坡比为1:,斜坡上一棵大树树干AB(树干AB垂直于底面ON)被大风刮倾斜15°后折断倒在山坡上,树的顶部恰好接触到坡面,经测量,大树被折断部分与坡面所成的角∠ADC=30°,AD=8米,∠BAC=15°.(1)求这棵大树原来的高度;(参考数据:≈1.732.结果精确到0.1米)(2)某高速路段由于滑坡,需要在一定时间内进行抢修,若甲队单独做正好按时完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲乙两队合作2小时后,甲队又有新任务,余下的由乙队单独做,正好按期完成.求乙队单独完成全部工程需多少小时?8.如图,一楼房AB后有一假山,其坡面CE与水平地面的夹角为30°,在阳光的照射下,楼房AB落在地上的影长BC=25米,落在坡面上的影长CE=20米,已知小丽测得同一时刻1米高的竹竿在水平地面上的影长为0.8米,求楼房AB的高.(≈1.7)9.公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m,一辆拖拉机以3.6km/h的速度在公路MN上沿PN方向行驶,假设拖拉机行驶时,周围100m以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?10.如图,电线杆AB铅垂的竖立在坡角为30°的山坡上,太阳光线与水平线成60°时,电线杆AB的影子BC长为4米.(1)求电线杆AB的长;(2)同一时刻与AB高度相等的电线杆DE铅垂的竖立在平地上,电线杆DE的影子EF都在平地上,求影子EF的长.【经典练习】11.如图,小明家(点P)与限速60千米/小时的高速公路AB之间有一块巨型广告牌CD,已知小明家距离高速公路60米,在△ABP中,∠A=60°,∠B=45°,一辆车自西向东匀速行驶,小明从P处观察,看到它在A处消失9秒后又在B处出现,请问这辆车经过AB段是否超速?(参考数据:≈1.4,≈1.7)12.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为4米,落在广告牌上的影子CD的长为3米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).13.如图,山坡上有一颗大树AB与水平面EF垂直,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部D恰好接触到坡面AE.已知山坡的坡角∠AEF=24°,测得树干的倾斜角∠BAC=39°,大树被折断部分CD和坡面的夹角∠ADC=60°,AD=4米.(1)求∠DAC的度数;(2)求这棵大树折断前高是多少米?(结果精确到个位)(≈1.4,≈1.7,≈2.4)14.如图,一人行天桥的高是10米,坡面CA的坡角为30°,为了方便行人推车过桥,市政部门决定降低坡度,使新坡面CD的坡角为18°.(1)求新坡长CD;(精确到0.01米)(2)求原坡脚向外延伸后DA的长;(精确到0.01米)(3)若需留DE为4米的人行道,问离原坡脚A处15米的花坛E是否需要拆除?(参考数据sin18°=0.309;cos18°=0.951;tan18°=0.325)15.如图,坡面CD的坡比为1:,坡顶的平地BC上有一棵小树AB,当太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC=3米,斜坡上的树影CD=米,求小树AB的高.16.如图,高为110米的电视塔AB建在小山丘上,点O是电视塔AB的中点,小卫在地平面点C处利用测角仪测得电视塔的最高点A的仰角为33°,测得点O的仰角为21°,求小卫所在C点到电视塔AB所在直线的距离(精确到1m)【参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65;sin21°=0.36,cos21°=0.93,tan21°=0.38】17.地震后,全国各地纷纷捐款捐物,一架满载救援物资的飞机到达灾区的上空时,为了能准确空投救援物资,在A处测得空投动点C的俯角α=60°,测得地面指挥台的俯角β=30°,如果B、C两地间的距离是2000米,则此时飞机距地面的高度是多少米?(结果保留根号)18.如图所示,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:(1)C到AB的最短距离是多少?(2)救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)参考答案与试题解析1.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=5米,AB=7米,∠MAD=45°,∠MBC=30°,求警示牌的高CD为多少米?(结果保留根号)【解答】解:∵AM=5米,AB=7米,∠MAD=45°,∠MBC=30°,∴∠MAD=∠MDA=45°,BM=AM+AB=12米,∴AM=MD=5米,MC=BM•tan30°=12×=4米,∴CD=MC﹣MD=()米,答:警示牌的高CD为()米.2.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【解答】解:∵迎水坡坡比(DE与AE的长度之比)为1:0.6,DE=30m,∴AE=18米,在RT△ADE中,AD==6米∵背水坡坡比为1:2,∴BF=60米,在RT△BCF中,BC==30米,∴周长=DC+AD+AE+EF+BF+BC=6+10+30+88=(6+30+98)米,面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(6+30+98)米,面积是1470平方米.3.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,(1)BC= 50 m,AC= 120 m;(2)现在计划在斜坡AB的中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE,若斜坡BE的坡角为30°,求平台DE的长.(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)【解答】解:(1)∵AB长130米,坡度i=1:2.4,∴设BC=xm,AC=2.4xm,则x2+(2.4x)2=1302,解得:x=50,则2.4x=120m,故BC=50m,AC=120m.故答案是:50,120;(2)延长DE到BC于点F,∵D为AB的中点,∴可得F是BC的中点,∴BF=25m,∴DF=25×2.4=60(m),∵∠BEF=30°,∴EF==25,∴DE=DF﹣EF=60﹣25≈16.8,答:平台DE的长约为16.8米.4.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼前面15米处要盖一栋高20米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°.(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市采光不受影响,两楼应至少相距多少米?(结果保留整数)【解答】解:(1)沿着光线作射线AF交CD于点F,过点F作FG⊥AB于点G,由题意,在Rt△AFG中,GF=BC=15,∠AFG=29°,∴AG=GF•tan29°=15×0.55=8.25米,∴GB=FC=20﹣8.25=11.75米,∵11.75>6,∴居民住房会受影响;(2)沿着光线作射线AE交直线BC于点E.由题意,在Rt△ABE中,AB=20,∠AEB=29°,∴BE=米,∴至少要相距37米.5.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.(1)填空:AD <AC(填“>”,“<”,“=”).(2)求旗杆AB的高度.(参考数据:≈1.41,≈1.73,结果精确到0.1m).【解答】解:(1)由图形可得:AD<AC;(2)设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•sin60°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),答:旗杆AB的高度为8.7m.故答案为:<.6.如图,要在宽为28米的公路AB路边安装路灯,路灯的灯臂CD长为3米,且与灯柱BC 成150°角,路灯采用圆锥形灯罩,灯罩的轴线DE与灯臂CD垂直,当灯罩的轴线DE能过公路路面的中点时照效果最理想.问应设计多高的灯柱,才能取得最理想的照明效果.(结果保留根号)【解答】解:延长BC、ED交于点F.∵∠DCB=150°,∴∠DCF=30°.∵∠CDE=90°,∴∠F=60°.∵在Rt△DCF中,DC=3,∠DCF=30°,∴,∴米,∵AB=28米,E为AB的中点,∴BE=14米.∵在Rt△EBF中,BE=14,∠F=60°,∴,∴米,∴米.答:当灯柱高为米时能取得最理想的照明效果.7.今年夏天我市出现厄尔尼诺现象极端天气,多地引发滑坡、山洪等严重自然灾害.如图所示,ON为水平线,斜坡MN的坡比为1:,斜坡上一棵大树树干AB(树干AB垂直于底面ON)被大风刮倾斜15°后折断倒在山坡上,树的顶部恰好接触到坡面,经测量,大树被折断部分与坡面所成的角∠ADC=30°,AD=8米,∠BAC=15°.(1)求这棵大树原来的高度;(参考数据:≈1.732.结果精确到0.1米)(2)某高速路段由于滑坡,需要在一定时间内进行抢修,若甲队单独做正好按时完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲乙两队合作2小时后,甲队又有新任务,余下的由乙队单独做,正好按期完成.求乙队单独完成全部工程需多少小时?【解答】解:(1)过点A作AH⊥CD,垂足为H,∵在Rt△ADH中,∠ADH=30°,AD=8米,∴AH=AD=4米,DH=AH=4米.∵斜坡MN的坡比为1:,∴tan∠MNO=1:=,∴∠MNO=30°,∴∠M=60°=∠BAM,∵∠BAC=15°,∴∠CAD=180°﹣∠BAM﹣∠BAC=180°﹣60°﹣15°=105°,∴∠C=180°﹣∠CAD﹣∠ADC=180°﹣105°﹣30°=45°.∵在Rt△ACH中,∠C=45°,∴CH=AH=4米,AC=AH=4米.∴AB=AC+CD=4+4+4≈16.6(米).答:这棵大树原来的高度约16.6米;(2)设乙队单独完成需要x小时,则甲队单独完成需要(x﹣3)小时,根据题意得(+)×2+×(x﹣3﹣2)=1,解得x=9.经检验,x=9是原方程的解,也符合题意.答:乙队单独完成全部工程需9小时.8.如图,一楼房AB后有一假山,其坡面CE与水平地面的夹角为30°,在阳光的照射下,楼房AB落在地上的影长BC=25米,落在坡面上的影长CE=20米,已知小丽测得同一时刻1米高的竹竿在水平地面上的影长为0.8米,求楼房AB的高.(≈1.7)【解答】解:延长AE交BC的延长线于F,作EG⊥CF,∵CE=20米,∠ECG=30°,∴EG=10米,CG=10≈17(米),又∵,∴,∴GF=8米,∴BF=25+17+8=50(米),∵,∴,∴AB=62.5米.即楼房的高度约为62.5米.9.公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m,一辆拖拉机以3.6km/h的速度在公路MN上沿PN方向行驶,假设拖拉机行驶时,周围100m以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?【解答】解:(1)作AB⊥MN于B,则AB为A到道路的最短距离.在Rt△APB中,AB=APsin30°=80<100,∴会影响;(2)过A作AB⊥MN,以A为圆心,100m为半径画弧,与MN交于C、D,如图所示,在Rt△ABD中,BD==60(米),∴受影响的时间为:=120s=2(分钟),∴会受影响2分钟.10.如图,电线杆AB铅垂的竖立在坡角为30°的山坡上,太阳光线与水平线成60°时,电线杆AB的影子BC长为4米.(1)求电线杆AB的长;(2)同一时刻与AB高度相等的电线杆DE铅垂的竖立在平地上,电线杆DE的影子EF都在平地上,求影子EF的长.【解答】解:(1)由已知得:AE⊥ED,∠ADE=60°,∴∠A=30°,又∠F=30°,∴∠EBF=60°,∴∠ABC=60°,∴∠ACB=90°,∴根据直角三角形的性质得:AB=2BC=2×4=8,答:电线杆AB的长为8米.(2)由已知,DE⊥EF,∠DFE=60°,DE=8,∴在直角三角形DEF中,EF=DE•cot60°=8×=,答:影子EF的长为米.11.如图,小明家(点P)与限速60千米/小时的高速公路AB之间有一块巨型广告牌CD,已知小明家距离高速公路60米,在△ABP中,∠A=60°,∠B=45°,一辆车自西向东匀速行驶,小明从P处观察,看到它在A处消失9秒后又在B处出现,请问这辆车经过AB段是否超速?(参考数据:≈1.4,≈1.7)【解答】解:作PE⊥AB于E,在Rt△ABE中,∵∠A=60°,AB=60米,∠AEP=90°,∴AE=PE÷tan30°=20米,在Rt△PEB中,∵∠PEB=90°,∠B=45°,∴BE=PE=60米,∴AB=AE+EB=20+60≈94米,∴这辆车的速度为米/秒=×3600千米/小时=37.6千米/小时,∵37.6<60,∴这辆车经过AB段没有超速.12.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为4米,落在广告牌上的影子CD的长为3米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).【解答】解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F,在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==,∵BD=4,∴DF=2,BF=2,∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=2(米)∵四边形BFCE为矩形,BF=CE=2.则CF=BE=CD﹣DF=1,在Rt△ACE中,∠ACE=45°,∴AE=CE=2米,∴AB=2+1.即:铁塔AB的高为(2+1)米.13.如图,山坡上有一颗大树AB与水平面EF垂直,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部D恰好接触到坡面AE.已知山坡的坡角∠AEF=24°,测得树干的倾斜角∠BAC=39°,大树被折断部分CD和坡面的夹角∠ADC=60°,AD=4米.(1)求∠DAC的度数;(2)求这棵大树折断前高是多少米?(结果精确到个位)(≈1.4,≈1.7,≈2.4)【解答】解:(1)延长BA交EF于点G.在Rt△AGE中,∠E=24°,∴∠GAE=66°.又∵∠BAC=39°,∴∠CAE=180°﹣66°﹣39°=75°.(2)过点A作AH⊥CD,垂足为H.在△ADH中,∠ADC=60°,AD=4,cos∠ADC=,∴DH=2.sin∠ADC=,∴AH=2.在Rt△ACH中,∵∠C=180°﹣75°﹣60°=45°,CH=AH=2,∴AC=2,CH=AH=2.∴AB=AC+CD=2+2+2≈10(米).答:这棵大树折断前高约10米.14.如图,一人行天桥的高是10米,坡面CA的坡角为30°,为了方便行人推车过桥,市政部门决定降低坡度,使新坡面CD的坡角为18°.(1)求新坡长CD;(精确到0.01米)(2)求原坡脚向外延伸后DA的长;(精确到0.01米)(3)若需留DE为4米的人行道,问离原坡脚A处15米的花坛E是否需要拆除?(参考数据sin18°=0.309;cos18°=0.951;tan18°=0.325)【解答】解:(1)在Rt△ABC中sin18°=(1分)CD==≈32.36(米)(3分)∴新坡长约为32.36米.(4分)(2)在Rt△ABC中tan30°=(1分)AB===10≈17.32(米)(3分)在Rt△CDB中tan18°=(4分)DB==≈30.77(米)(5分)DA=DB﹣AB≈30.77﹣17.32=13.45(米)∴原坡脚向外延伸约13.45米.(6分)(3)在Rt△ABC中tan30°=(1分)AB==10≈17.32(米)(3分)在Rt△CDB中tan18°=(4分)DB==≈30.77(米)(6分)DA=DB﹣AB≈30.77﹣17.32=13.45(米)(7分)4+DA=17.45>15(米)∴离原坡脚15米的花坛应拆除.(8分)15.如图,坡面CD的坡比为1:,坡顶的平地BC上有一棵小树AB,当太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC=3米,斜坡上的树影CD=米,求小树AB的高.【解答】解:如图,过D作水平线DF,与AB的延长线交于F,过C作CE⊥DF于E,得:∠ADF=60°,FE=BC,BF=CE,在Rt△CED中,设CE=x,由坡面CD的坡比为1:,得:DE=x,则根据勾股定理得:x2+(x)2=()2,得x=±,﹣不合题意舍去,所以,CE=米,则ED=米,那么,FD=FE+ED=BC+ED=3+=米,在Rt△AFD中,由三角函数得:=tan∠ADF,∴AF=FD•tan60°=×=米,∴AB=AF﹣BF=AF﹣CE=﹣=4 米,答:小树AB的高为4米.16.如图,高为110米的电视塔AB建在小山丘上,点O是电视塔AB的中点,小卫在地平面点C处利用测角仪测得电视塔的最高点A的仰角为33°,测得点O的仰角为21°,求小卫所在C点到电视塔AB所在直线的距离(精确到1m)【参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65;sin21°=0.36,cos21°=0.93,tan21°=0.38】【解答】解:延长AB交水平线于H.设CH=xm,BH=ym.在Rt△ACH中,tan∠ACH=,即0.65=①,在Rt△CHO中,tan∠OCH=,即0.38=②,由①②得到:x≈204(m),答:小卫所在C点到电视塔AB所在直线的距离204m17.地震后,全国各地纷纷捐款捐物,一架满载救援物资的飞机到达灾区的上空时,为了能准确空投救援物资,在A处测得空投动点C的俯角α=60°,测得地面指挥台的俯角β=30°,如果B、C两地间的距离是2000米,则此时飞机距地面的高度是多少米?(结果保留根号)【解答】解:作AH⊥BC交BC的延长线于H,由题意得,∠ACH=60°,∠ABC=30°,∴∠BAC=30°,∴∠ABC=∠BAC,∴AC=BC=2000米,∴AH=AC•sin∠ACH=1000米,答:此时飞机距地面的高度是1000米.18.如图所示,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:(1)C到AB的最短距离是多少?(2)救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)【解答】解:(1)如右图所示,延长BC交AN于点D,则BD⊥AN,在Rt△ADC中,∠DAC=30°,AC=20海里,∴CD=10海里,∴AD=10海里,在Rt△BDA中,∠DAB=68°,sin∠B=,AD=10,∴AB=≈46.81,BD=AB•cos∠B=46.81×0.93=43.53,∴BC=BD﹣CD=43.53﹣10=33.53,即C到AB的最短距离是33.53海里;(2)救生船到达B处大约需要:33.53÷20≈1.7(小时),答:救生船到达B处大约需要1.7小时.。
中考数学 考点系统复习 第四章 三角形 第六节 锐角三角函数与解直角三角形的实际应用
模型三:拥抱型
【模型突破】如图①,BF+FC+CE=BE;如图②,BC+CE=BE;如图③, AB=GE,AG=BE,BC+CE=AG,DG+AB=DE.
7.(2015·昆明第 20 题 6 分)如图,两幢建筑物 AB 和 CD,AB⊥BD,CD ⊥BD,AB=15 m,CD=20 m,AB 和 CD 之间有一景观池,小南在 A 点测得 池中喷泉处 E 点的俯角为 42°,在点 C 测得 E 点的俯角为 45°(点 B,E, D 在同一直线上),求两幢建筑物之间的距离 BD.(结果精确到 0.1 m,参 考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)
主义教育基地后,先从基地门口 A 处向正南方向走 300 米到达革命纪念 碑 B 处,再从 B 处向正东方向走到党史纪念馆 C 处,然后从 C 处向北偏 西 37°方向走 200 米到达人民英雄雕塑 D 处,最后从 D 处回到 A 处.已 知人民英雄雕塑在基地门口的南偏东 65°方向,求革命纪念碑与党史纪 念馆之间的距离(cos 37° ≈0.80,tan 37°≈0.75,sin 65°≈0.91,cos 65°≈0.42,tan 65° ≈2.14)
模型二:子母型
【模型突破】BC 为公共边,如图①,AD+DC=AC; 如图②,DC-BC=DB.
【模型演变】
【模型突破】如图③,DF=EC,DE=FC,BF+DE=BC, AE+DF=AC;如图④,AF=CE,AC=FE,BC+AF=BE.
6.(2016·昆明第 20 题 8 分)如图,大楼 AB 右侧有 一障碍物,在障碍物的旁边有一幢小楼 DE,在小楼 的顶端 D 处测得障碍物边缘点 C 的俯角为 30°,测 得大楼顶端 A 的仰角为 45°(点 B,C,E 在同一水平 直线上),已知 AB=80 m,DE=10 m,求障碍物 B,C 两点间的距离.(结果精确到 0.1 m.参考数据: 2≈1.414, 3≈1.732)
28章 锐角三角函数专题 解直角三角形实际应用的基本模型初中数学模型
(2)“母子”型 模型 已知三角形中的两角(∠1 和∠2)及其中一边, 模型分 在三角形外边作高 BC,构造两个直角三角形求 析 解,以高 BC 为桥梁是解题的关键
3.(成都中考)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极 落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面 的高度.如图,已知测倾器的高度为 1.6 米,在测点 A 处安置测倾器,测得点 M 的 仰角∠MBC=33°,在与点 A 相距 3.5 米的测点 D 处安置测倾器,测得点 M 的仰角 ∠MEC=45°(点 A,D 与 N 在一条直线上),求电池板离地面的高度 MN 的长.(结 果精确到 1 米,参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65)
ME x+25 5 公楼 AB 的高度约为 20 米
(2)一般梯形模型 模型
模型 过较短的底 AD 作梯形的两条高 AE 和 DF,构造一个长方 分析 形和两个直角三角形,分别解两个直角三角形再加减求解
7.某轮滑特色学校准备建立一个如图①的轮滑技巧设施,从侧面看如图②,横 截面为梯形,高 1 米,AD 长为 2 米,坡道 AB 的坡度为 1∶1.5,DC 的坡度为 1∶2.
+40 3 .∴小山 BC 的高度为(10+40 3 )米
模型二:四边形模型 (1)直角梯形模型
模型
模型 过较短的底 AB 作直角梯形的高 BE,构造一个矩形和一
分析
个直角三角形,先解直角三角形再加减求解
6.如图,某办公楼 AB 的后面有一建筑物 CD,当光线与地面的夹角是 22°时, 办公楼在建筑物的墙上留下高 2 米的影子 CE,而当光线与地面夹角是 45°时,办公 楼顶 A 在地面上的影子 F 与墙角 C 有 25 米的距离(点 B,F,C 在一条直线上).求办 公楼 AB 的高度.(参考数据:sin 22°≈25 ,cos 22°≈1156 ,tan 22°≈25 )
解直角三角形的实际应用题的解题步骤
解直角三角形的实际应用题的解题步骤一、引言在数学中,直角三角形是研究的重要对象之一,其特殊的性质和广泛的应用使其成为数学学习中的重要内容。
解直角三角形的实际应用题,是数学知识与实际问题相结合的体现,也是数学运用能力的考验。
在本文中,我们将探讨解直角三角形的实际应用题的解题步骤,希望能帮助读者更深入地理解这一内容。
二、实际应用题的解题步骤1. 理解问题解题的第一步是要充分理解问题。
在解直角三角形的实际应用题时,我们需要明确问题的背景和要求,理解其中涉及的相关知识点。
如果题目是要求求解某个角的值或某条边的长度,我们需要明确所给信息和要求,以便有针对性地进行求解。
2. 标注已知量和未知量解题的第二步是要标注已知量和未知量。
在直角三角形中,我们通常会遇到三边、三角或边角关系的已知量和未知量,标注清楚有助于我们更清晰地把握问题的本质。
通过标注已知量和未知量,我们可以更好地运用三角函数关系进行求解。
3. 应用三角函数关系接下来,我们需要应用三角函数关系进行求解。
根据已知量和未知量的不同组合,我们可以选择使用正弦、余弦或正切等三角函数来建立方程,然后通过解方程来求解未知量。
这一步需要我们熟练掌握三角函数的性质和运用技巧,以便准确地进行计算和推导。
4. 检验和解答问题我们需要检验和解答问题。
在求解过程中,我们得到的答案可能是角的大小或边的长度,需要通过检验来验证我们的答案是否符合题意。
在解答问题时,我们也需要根据问题的要求给出完整的答案和解释,以便清晰地呈现解题过程和结果。
三、个人观点和总结解直角三角形的实际应用题需要我们熟练掌握三角函数的运用和技巧,也需要我们对实际问题有较强的理解和分析能力。
在解题过程中,我们要善于应用已知信息,创造性地建立方程,以及正确地运用三角函数关系,才能得到准确的答案。
通过解直角三角形的实际应用题,我们不仅能够巩固数学知识,还能培养解决实际问题的能力,这对我们的学习和生活都具有重要意义。
三角函数解直角三角形
三角函数解直角三角形
解直角三角形的三角函数主要有正弦函数、余弦函数和正切函数。
在一个直角三角形中,我们通常将直角所在的角定义为角A,以直角的斜边为对边,斜边与直角边的交点为顶点B,直角边上的另一点叫作顶点C。
根据三角形内角和为180度的性质,我们知道直角边与斜边之间的另一个角定义为角C。
由此,可以得出以下三角函数的定义:
1. 正弦函数(sin):在直角三角形中,角A的正弦值定义为直角边
AC的长度与斜边AB的长度的比值,即sin(A) = AC / AB。
2. 余弦函数(cos):在直角三角形中,角A的余弦值定义为直角边
BC的长度与斜边AB的长度的比值,即cos(A) = BC / AB。
3. 正切函数(tan):在直角三角形中,角A的正切值定义为直角边
AC的长度与直角边BC的长度的比值,即tan(A) = AC / BC。
这些三角函数在解直角三角形的过程中起到了重要的作用。
我们可以
通过已知两个角度和一个边长,或者已知一个角度和两个边长,利用
三角函数的关系式来求解直角三角形的其他未知边长或角度。
需要注意的是,三角函数的值都是有范围的,比如正弦函数和余弦函
数的值域在[-1, 1]之间,而正切函数的值域则是全体实数。
因此,在
解直角三角形的过程中,我们需要根据具体的问题来判断解的合理性,并进行适当的推理和计算。
总的来说,三角函数解直角三角形是一种重要的数学应用,可以帮助
我们理解和解决涉及直角三角形的各种实际问题。
第07讲 解直角三角形及其应用(教师版)
第二十八章锐角三角函数28.2 解直角三角形及其应用课程标准课标解读能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
能够利用锐角三角函数的边角关系,求解直角三角形角或者边,从而解决实际问题知识点01 解直角三角形1.解直角三角形:在直角三角形中,由已知元素求未知元素的过程叫作解直角三角形.2.直角三角形的边角关系在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c。
(1)三边之间的关系:a²+b²=c².(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=bc,cosB=ac,tanB=ba.【即学即练1】已知ABC中,90C∠=︒,1tan2A=,D是AC上一点,CBD A∠=∠,则cos CDB∠的值为()目标导航知识精讲A .12 B C D .35【答案】B【分析】根据tan tan DCA CBD BC==∠∠求得BC =2DC ,再在Rt ∠DCB 中,运用勾股定理求得BD =,即可作答.【详解】∠∠C =90°,∠A =∠CBD , ∠tan tan DCA CBD BC==∠∠, ∠1tan 2A ∠=, ∠12DC BC =, ∠BC =2DC ,∠在Rt ∠DCB 中,BD =,∠cosCD CDB DB ∠==, 故选:B .知识点02 解直角三角形的应用1.解直角三角形的几种类型及解法(1)已知一条直角边和一个锐角(如a ,∠A ),其解法为 ∠B =90∘−∠A,c =a sinA ,b =atanA (或 b =√c 2−a 2).(2)已知斜边和一个锐角(如c ,∠A ),其解法为∠B =90°-∠A ,a =c·sin A ,b =c·cos A (或 b =√c 2−a 2). (3)已知两直角边a ,b ,其解法为 c =√a 2+b 2,由 tanA =ab 得∠A ,∠B =90°-∠A .(4)已知斜边和一直角边(如c ,a ),其解法为b = √c 2−a 2,由 sinA =ac 求出∠A ,∠B =90°-∠A .2.解直角三角形的应用(1)仰角与俯角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角;当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.(2)坡角与坡度:坡角是坡面与水平面所成的角;坡面的铅直高度与水平宽度的比称为坡度(或坡比),常用i 表示,也就是坡角的正切值,坡角越大,坡度越大,坡面越陡。
九年级数学人教版下册第二十八章锐角三角函数 解直角三角形及其应用 解直角三角形课件
=20,解这个直角三角形(结果保留小数点后一位).
解: A = 9 0 º - B = 9 0 º - 3 5 º = 5 5 º ,A
∵ tanB=b ,
c
b
a
20
∴ a = tan bB = tan 20 35°≈ 28. 6 . C
35° a
B
二、探究新知
∵ sinB=b , c
A. b=a·tan A
B. b=c·sin A
C. b=c·cos A
D. a=c·cos A
四、课堂训练
3.如图,在菱形 ABCD 中,AE⊥BC 于点 E,EC=4, sin B= 4 ,则菱形的周长是( C ).
5 A.10 B.20 C.40 D.28
A
D
B
EC
四、课堂训练
4.如图,已知 AC=4,求 AB 和 BC 的长.
一般地,由直角三角形中的已知元素,求出其余未知元 素的过程,叫做解直角三角形.
二、探究新知
(1)在直角三角形中,除直角外还有哪几个元素? (2)结合右图说一说这几个元素之间有哪些关系? (3)知道这几个元素中的几个,就可以求其余元素? 解:(1)在 Rt△ABC 中除直角外还有五个元素,三边: AB,AC,BC 或 a,b,c 两锐角:∠A ,∠B.
∴ c= sin bB = sin 23 05°≈ 34. 9. 注意:选取函数关系求值时尽可能用原始数据,减少因 为近似产生的累积误差.
二º,∠B=72º,c=14,解这个
直角三角形. A
解: A = 9 0 º - 7 2 º = 1 8 º ,
, B
二、探究新知
在 Rt△ABC 中,∠C=90º,a=30,b=20.解这个直 角三角形. 在 Rt△ACD 中,
28.2.2解直角三角形应用举例(教案)
(1)在直角三角形中,已知一个锐角和一条直角边,求另一条直角边和另一个锐角。
(2)在直角三角形中,已知两条直角边,求锐角。
(3)运用解直角三角形的方法,解决实际问题。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过解直角三角形的练习,让学生掌握逻辑推理的方法,能够从已知条件出发,逐步推导出未知角度和边长。
2.学生在将实际问题转化为数学模型方面的能力。在实践活动和小组讨论中,部分学生对于如何将实际问题抽象为直角三角形模型感到困惑。为了提高学生的这一能力,我计划在后续教学中加入更多实际情境的案例分析,引导学生学会从问题中提取关键信息,构建数学模型。
3.课堂互动的充分性。在今天的课堂上,我尽量让每个学生都能参与到课堂讨论和实践中,但仍有部分学生显得较为沉默。为了提高课堂互动的充分性,我将在今后的教学中更加关注这些学生,鼓励他们积极参与,表达自己的观点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解解直角三角形的基本概念。解直角三角形是指通过已知条件求解直角三角形中未知角度或边长的方法。它在几何学中具有重要地位,广泛应用于现实生活中的测量问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用解直角三角形的方法测量建筑物的高度。通过这个案例,大家可以看到解直角三角形在实际中的应用。
2.提高学生的几何直观能力:通过观察和分析直角三角形的图形,让学生能够直观地理解直角三角形的性质,并运用这些性质解决问题。
3.增强学生的应用意识:结合实际生活中的例子,培养学生将数学知识应用于解决实际问题的意识,提高学生的数学应用能力。
中考数学复习专题课件 锐角三角函数与解直角三角形的实际应用
6.(2021·遵义)小明用一块含有 60°(∠DAE=60°)的直角三角尺测量 校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂 直高度 AB 为 1.62 m,小明与树之间的水平距离 BC 为 4 m,则这棵树的 高度约为 88..55 m.(结果精确到 0.1 m,参考数据: 3≈1.73)
(1)证明:∵AB=AC=AD, ∴点 B,C,D 在以点 A 为圆心,BD 为直径的圆上. ∴∠BCD=90°,即 DC⊥BC.
(2)解:过点 E 作 EF⊥BC,垂足为 F.
在 Rt△BCD 中,
BC cos B=BD,BC=1.8.
BC
1.8
∴BD=cos B=cos 55°≈3.16.
∴BE=BD+DE≈3.16+2=5.16.
13.(2022·安顺)随着我国科学技术的不断发展,5G 移动通信技术日趋完善,某市政府为了实现 5G 网络 全覆盖,2021~2025 年拟建设 5G 基站 3 000 个,如 图,在斜坡 CB 上有一建成的 5G 基站塔 AB,小明在 坡脚 C 处测得塔顶 A 的仰角为 45°,然后他沿坡面 CB 行走了 50 m 到达 D 处,D 处离地平面的距离为 30 m 且在 D 处测得塔顶 A 的仰角 53°.(点 A,B,C,D,E 均在同一平面内, CE 为地平线,参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43) (1)求坡面 CB 的坡度; (2)求基站塔 AB 的高.
4 10+4a ∴3= 4a ,解得 a=7.5, ∴AB=AF-BF=10+a=17.5 m.
答:基站塔 AB 的高为 17.5 m.
解直角三角形(三角函数应用)
1、如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60º,又从A 点测得D 点的俯角β为30º,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( A )A .20米B .米C .米D .米2、在Rt△ABC 中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( B )A .B .C .D .3、如图,马路的两边CF 、DE 互相平行,线段CD 为人行横道,马路两侧的A 、B 两点分别表示车站和超市。
CD 与AB 所在直线互相平行,且都与马路两边垂直,马路宽20米,A ,B 相距62米,∠A=67°,∠B=37°(1)求CD 与AB 之间的距离;(2)某人从车站A 出发,沿折线A →D →C →B 去超市B ,求他沿折线A →D →C →B 到达超市比直接横穿马路多走多少米24 (参考数据:131267sin ≈︒,13567cos ≈︒,51267tan ≈︒, 5337sin ≈︒,5437sin ≈︒,4337tan ≈︒)4某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A 、B 两个探测点探测到C 处有生命迹象.已知A 、B 两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C 的深度.(精确到0.1米,参考数据:)5.55、如图,伞不论张开还是收紧,伞柄AP 始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D 与点M 重合,且点A 、E 、D 在同一条直线上,已知部分伞架的长度如下:(2)当∠BAC=104°时,求AD 的长(精确到1cm )44.备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.6李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m。
解直角三角形的应用
解直角三角形的应用利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题】【例1】 如图,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成45°,∠A =60°,CD =4m,BC =(2264-)m,则电线杆AB 的长为 .【例2】 如图,在四边形ABCD 中,AB=24-,BC -1,CD=3,∠B=135°,∠C =90°,则∠D 等于( )A .60°B .67.5°C .75°D .无法确定注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】 如图,在△ABC 中,∠=90°,∠BAC=30°,BC=l,D 为BC 边上一点,tan ∠ADC 是方程2)1(5)1(322=+-+x x xx 的一个较大的根?求CD 的长.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.练习巩固1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 . 2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH=34,四边形EFGH 的周长为40cm,则矩形ABCD 的面积为 .3.如图,旗杆AB,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m,达到D,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC,CE=31BC,则∠1和∠2的大小关系是( ) A .∠1>∠2 B .∠1<∠2 C .∠1=∠2 D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).。
第18讲 锐角三角函数与解直角三角形
.
[变式2]如图所示,在由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经
过点C和点D,则tan∠ADC=
.
考点二
特殊角的三角函数值
[例2] (2022燕山一模)计算:
3tan 30°-tan245°+2sin 60°.
2
解:3tan 30°-tan 45°+2sin 60°
第18讲
知识点一
锐角三角函数与解直角三角形
锐角三角函数的概念
在 Rt△ABC 中,∠C=90°,AB=c,BC=a,AC=b
正弦
余弦
正切
∠的对边
sin A=
斜边
∠的邻边
cos A=
斜边
∠的对边
tan A=
∠的邻边
=
=
=
知识点二
特殊角的三角函数值
三角
函数
sin α
30°
45°
在 Rt△BCD 中,∠BDC=90°-53°=37°,CD=90 米,
∴BD=CD·cos 37°≈90×0.80=72(米).
在 Rt△ABD 中,∠A=37°,BD≈72 米,∴AB=
°
答:A,B 两点间的距离约 96 米.
≈
=96(米).
.
[变式7](2022海南)无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人
位于 B 的北偏西 45°方向,则从 B 到达 C 需要多少小时?
解:如图所示,过点 C 作 CD⊥AB 于点 D.由题意,得 AE∥CD,BF∥CD,
∴∠ACD=∠CAE=60°,∠BCD=∠CBF=45°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20题图
课题:解直角三角形的运用
【学习目标】1、理解锐角三角函数的概念。
2、掌握30°、45°、60°的三角函数值。
3、能熟练的运用锐角三角函数解决实际问题 【学习重点】能熟练的运用锐角三角函数解决实际问题 【教学难点】能熟练的运用锐角三角函数解决实际问题 【学习过程】 一、课堂前置
1、锐角三角函数的概念 :如图,在△ABC 中,∠C =90° ①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即c a
sin
=∠=斜边的对边A A
②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c b
cos =∠=
斜边的邻边A A
③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b
a
tan =∠∠=
的邻边的对边A A A
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数 2、特殊角的三角函数值
3.如图(2)仰角是____________,俯角是____________.
4.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 5.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tan α=i =____.
图(2) 图(3) 图(4)
二、小组交流
(2011年楚雄)20.(本小题8分)如图,甲、乙两船同时从港口A 出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏
西30°方向航行,半小时后甲船到达C 点,乙船正好到达甲船正西方向的B
1.7≈).
O A B
C
60°30°
F
E M
D C
B
A
M
C
A B
N
B
(2013年楚雄)20.(6分)如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A 的距离最近?
三、分享表达:
(2014年云南)21.(6分)如图,小明在M 处用高为1米(DM=1米)的测角仪测得旗杆AB 的顶端B 的仰角为30°,再向旗杆方向前进10米到F 处,又测得旗杆的顶端B 的仰角为60°,请求出旗杆AB 的高度。
(取3≈1.73,结果保留整数。
)
(2012年云南)20.(本小题6分)如图,某同学在楼房的A 处测得荷塘的一端B 处的俯角为30°,荷塘另一端D
与点C 、B 在同一直线
上,已知AC=32米,CD=16米,求荷塘宽BD 1.73≈,结果保留整数)
四、拓展提升
(2015年云南)19.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB=30°,沿河岸AB 前行
30米后到达B 处,在B 处测得∠CBA=60°
.请你根据以上测量数据求出河的宽度. 1.41≈ 1.73≈;结果保留整数)
(2010年楚雄)20.(本小题8分)如图,河流的两岸PQ 、MN 互相平行,河岸PQ 上有一排小树,已知相邻两树之间的距离CD=50米,
某人在河岸MN 的A 处测得∠DAN = 35°,然后沿河岸走了120米到达B 处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).
(参考数据: sin35°≈ 0.57, cos35°≈ 0.82, tan35°≈ 0.70
sin 70°≈ 0.94, cos70°≈ 0.34, tan70°≈ 2.75 )。