医用高分子材料及其应用
医用高分子材料的研究和应用
医用高分子材料的研究和应用随着医学技术的不断发展,医用材料和器械的发展也越来越迅速。
其中,医用高分子材料是近年来备受关注的一个领域。
医用高分子材料具有多种优异的性能,如生物相容性好、可降解性强、可改变形态等。
它们被广泛应用于医疗设备、医用耗材、医用敷料等领域,并且在制造假体、修复组织等方面都有很大的应用前景。
1. 常见的医用高分子材料常见的医用高分子材料有许多种,比如:聚乳酸(PLA)、聚乳酸-羟基乙酸(PLGA)、聚己内酯(PCL)、聚乙二醇(PEG)、聚苯乙烯(PS)等。
这些材料的特点各不相同,适用于不同的领域和应用场景。
聚乳酸(PLA):PLA是一种生物降解的高分子材料,具有优异的可降解性和生物相容性,适用于制造可降解的医疗器械或打印组织的模型。
聚乳酸-羟基乙酸(PLGA):PLGA是一种可注射性、可分解性的聚合物材料,广泛应用于药物缓释、制备微球、纳米颗粒等领域。
聚己内酯(PCL):PCL是一种具有优异生物相容性、生物可降解性的高分子材料,尤其适用于制造组织支架、修复软骨等方面。
聚乙二醇(PEG):PEG是一种较为特殊的高分子材料,其分子结构具有特殊的亲水性,因此其被广泛应用于制造各种医用耗材、药物缓释等方面。
聚苯乙烯(PS):PS是一种常用的医用高分子材料,常常被用于制造医用耳塞、医用口罩等消耗品。
2. 医用高分子材料的应用(1)医用器械领域:医用高分子材料被广泛应用于制造医学器械,如输液管路、导管、压力传感器、心脏起搏器、人工心脏瓣膜等。
这些器械一般需要具备生物相容性和可靠的性能,医用高分子材料的应用可以满足这些要求。
(2)医用敷料领域:医用高分子材料还被运用于制造医疗用敷料,如止血、吸收、覆盖敷料等。
这类敷料对于血液凝血、伤口治疗、组织修复等方面起到了至关重要的作用。
(3)组织修复和再生领域:医用高分子材料的可降解性、多孔性及微纳工程等独特的性质,使得它们在组织修复和再生方面具有广阔的应用前景。
生物医用高分子材料及应用Polymericbio-materialsandits-
( 2 ) 低分子药物的高分子化。
低分子药物在体内新陈代谢速度快, 半 衰期短, 体内浓度降低快, 从而影响疗效, 故需 大剂量频繁进药, 而过高的药剂浓度又会加重 副作用, 此外, 低分子药物也缺乏进入人体部 位的选择性 。将低分子药物与高分子结合的 方法有吸附 、共聚 、嵌段和接枝等 。第一个 实现高分子化的药物是青霉素
总结
生物技术将是21 世纪最有前途的技术, 生物 医用高分子材料将在其中扮演重要角色, 其性能将 不断提高, 应用领域也将进一步拓宽 。今后的发展 趋势将主要体现在以下几个方面 : ( 1 ) 医用可生物降解高分子材料因其具有良好 的生物降解性和生物相容性而受到高度重视, 论是作为缓释药物还是作为促进组织生长的骨架材 料, 都将得到巨大的发展。
氨酯等。
◆ 人工心脏 材料多用聚醚氨酯和硅橡胶等。
◆ 人工肺 多用聚四氟乙烯、硅橡胶等材料
◆ 人工肾 材料除要求具备良好的血液相容性外, 还要求材
料具有足够的湿态强度、有适宜的超滤渗透性等, 可充当这一使命的材料有乙酸纤维素、铜氨再生纤 维素、尼龙、聚砜及聚醚砜等。
为提高人造器官的血液相容性, 现阶段的 研究重点是对现有生物材料的表面进行改性 和修饰, 其方法有 :
( 2 ) 复制具有人体各部天然组织的物理力学性 质和生物学性质的生物医用材料, 达到高分子 的生物功能化和生物智能化, 是医用高分子材 料发展的重要方向 。此外, 用生物技术合成高 分子的反应条件更温和 、产物的生物降解性 能更好, 因而具有诱人的前景。
( 3 ) 人工代用器官在材料本体及表面结构的有 序化 、复合化方面将取得长足进步, 以达到与 生物体相似的结构和功能, 其生物相容性将大 大提高。
5 眼科用高分子材料
高分子材料在医用领域中的应用研究及展望
高分子材料在医用领域中的应用研究及展望高分子材料在医用领域中的应用研究已经取得了显著的进展,并且有着广阔的展望。
以下是几个典型的应用方向:1. 聚合物药物输送系统:高分子材料可以用作药物的载体,通过控制释放速度和位置,实现药物的精确输送。
目前已经开发出了各种类型的聚合物纳米粒子、微球和水凝胶,用于输送抗癌药物、基因疗法和蛋白质药物等。
2. 人工器官和组织工程:高分子材料可以用于制造人工器官和组织工程支架,通过模拟生物组织的结构和功能,实现损伤部位的修复和替代。
例如,聚合物支架可以用于制造人工心脏瓣膜、骨骼和软组织修复材料等。
3. 医用设备和感知器件:高分子材料可以用于制造各种医用设备和感知器件,用于监测和治疗疾病。
例如,聚合物传感器可以用于监测血压、血糖和氧气饱和度等生理参数,聚合物微流控芯片可以用于检测和分离细胞。
4. 生物材料表面改性:高分子材料可以通过表面改性技术改变其生物相容性和功能,提高其在医学领域的应用。
例如,聚合物薄膜可以通过引入细胞识别基序和生物活性分子,改善其与生物体的相互作用。
未来,高分子材料的应用研究将朝着以下几个方向发展:1. 多功能材料:研究人员将进一步开发具有多种功能的高分子材料,实现药物输送、组织工程和生物感知等多种应用的一体化。
2. 生物材料的仿生设计:受到生物材料的启发,研究人员将开发具有结构和功能类似于生物组织的高分子材料,以提高其生物相容性和生物活性。
3. 纳米技术和微纳加工:纳米技术和微纳加工将用于制造高分子纳米材料和微流控芯片等微型医疗器件,以实现更精确的治疗和检测。
总的来说,高分子材料在医用领域的应用研究前景广阔,将为医疗诊断、治疗和康复提供更多的选择和可能性。
高分子材料在医药领域的应用
高分子材料在医药领域的应用随着科技的不断进步,高分子材料在医药领域的应用日益广泛。
高分子材料具有良好的生物相容性、可控性以及可调性,因此被广泛地用于制造医药产品,包括医用器械、药物缓释系统、组织工程、伤口敷料等等。
本文将从高分子材料的种类、应用案例和未来发展前景三个方面来介绍高分子材料在医药领域的应用。
高分子材料的种类及特点高分子材料是一种由大量重复的分子单元构成的材料,并且有着广泛的种类。
在医药领域中,常用的高分子材料包括聚乳酸(PLA)、聚乳酸-羟基乙酸(PLGA)、聚己内酰胺(PVN)、聚甲醛(POM)、明胶(COL)以及各种水凝胶等。
这些高分子材料具有不同的特点和应用场景。
PLA是一种生物降解性高分子材料,能够在体内分解成二氧化碳和水,不会对人体造成负面影响。
它具有良好的生物相容性和组织相容性,因此常用于制造手术缝合线、骨接合器和植入物等。
PLA的分子量和结构可以通过改变反应条件和配方进行调节,从而实现对其性能的可控性和可调性。
PLGA是PLA和羟基乙酸(PGA)的共聚物,也是一种生物降解性高分子材料。
它具有良好的生物相容性和可调性,因此被广泛应用于制造药物缓释系统、支架和组织工程等。
PLGA的生物降解速度和药物释放速度可以通过调节聚合度、PLA和PGA的比例以及微球的大小等因素进行控制。
PVN是一种具有良好生物相容性和生物降解性的高分子材料,常用于制造生物可吸收缝合线、人工皮肤和组织工程等。
PVN在水中具有良好的可膨胀性和稳定性,因此也常用于制造药物控释系统和水凝胶。
POM是一种透明的高分子材料,具有良好的生物相容性和光学特性,因此常用于制造透明眼镜、眼球假体和矫形外科器具等。
POM的质量和性能可以通过改变反应条件和原料配方进行调节。
COL是一种从动物骨骼、皮肤和软骨中萃取的天然高分子材料,具有良好的生物相容性和生物降解性,因此被广泛应用于制造骨修复材料、伤口敷料和药物缓释系统等。
以上是常用的几种高分子材料及其特点,它们各自的特点使其在医药领域中有不同的应用场景。
医用高分子材料
医用高分子材料的种类
1 生物可降解材料
2 人工器官材料
3 生物材料表面改性
这类材料在人体内可以自然 降解,减少对人体的刺激, 并且不需要二次手术取出。
这类材料可以用于制造人工 心脏瓣膜、人工血管等,帮 助患有心脏病和其他器官疾 病的患者。
通过改变材料表面的特性, 可以提高材料的生物相容性, 减少对人体的排异反应。
医用高分子材料的特点
生物相容性
医用高分子材料具有良好的生物 相容性,与人体组织相容性高, 不会引起排异反应。
可调控性
医用高分子材料具有可调控性, 可以根据具体需求进行调整,用 于不同的医学应用。
可塑性
医用高分子材料具有良好的可塑 性,易于加工成各种形状,适用 于复杂的医学器械制造。
创新研究
科学家们正在不断进行医用高分子材料的创新研究,开发出更先进的材料。
临床应用
医用高分子材料已经在临床上得到广泛应用,并取得了显著的效果。
合作交流
不同国家的科学家们正在进行医用高分子材料的合作交流,推动其发展。
未来医用高分子材料的发展趋势
生物仿生技术
未来医用高分子材料将更加注重 生物仿生技术,模拟自然生物系 统,实现更好的医疗效果。
医用高分子材料的应用
1
人工关节
医用高分子材料可以用于制造人工关节,帮助患有关节炎等疾病的患者恢复正常 生活。
2
可吸收缝合线
医用高分子材料制成的可吸收缝合线可以用于手术缝合,减少了术后的痛苦和并 发症。
3
人工眼角膜
医用高分子材料可以用于制造人工眼角膜,帮助视力受损的患者恢复视力。
医用高分子材料的发展现状
纳米技术应用
纳米技术将被广泛应用于医用高 分子材料,提高其性能并为医学 研究提供更多可能。
生物医用高分子材料的研究与应用
生物医用高分子材料的研究与应用随着现代医学的不断发展,越来越多的疾病得以得到有效的治疗。
而在治疗过程中,材料的选择也起着至关重要的作用。
生物医用高分子材料是一类在医学领域中应用广泛的材料,它们具有良好的生物相容性、可调性、可加工性和可重复性等优点。
近年来,生物医用高分子材料在医疗、药物输送和组织工程等领域中的应用越来越广泛。
高分子材料是由高分子化合物制成的,它们通常是由单体通过聚合反应而形成的长链分子。
这些分子因其复杂的结构和可塑性,在医学领域中可以用来制造很多种不同的材料,例如人工关节、人造器官、药物传递系统、缝合线和接骨板等。
这些材料可以与人体组织相容,并被认为是一种极为有前途的材料类型。
1. 生物医用高分子材料的类型及其特点生物医用高分子材料的类型十分多样,下面简单介绍几种比较常见的类型。
(1) 人工关节的材料人工关节是治疗关节疾病的最有效方法之一。
目前,最流行的人工关节材料是聚乙烯、聚乙烯醇、尼龙、PTFE等。
这些材料均具备良好的生物相容性和机械性能。
(2) 缝合线缝合线是医生修复切口、牙龈和组织损伤时经常使用的一种材料。
常见的缝合线包括各种生物降解材料,例如聚乳酸、聚乙酸乙烯酯、聚己内酯等。
(3) 药物传递系统药物传递系统是一种在人体内释放药物的材料。
借助生物医用高分子材料可以制备出上述类型的药物释放系统。
例如聚乳酸-羟基乙酸共聚物、聚酸酯基等,这些材料因其生物降解性、可控释放性和生物相容性等优点,被广泛用于制备药物传递系统。
2. 生物医用高分子材料的应用随着现代医学的需求,生物医用高分子材料在医学领域的应用正在不断扩大。
以下列举几个例子。
(1) 肺癌有限化疗局部治疗系统该系统利用高分子材料包覆的药物,选择性地释放到病灶部位,并实现 sustained release (持续释放)。
这种方法具有显著的临床效果,能够提高癌细胞的转录和翻译内在抵抗力,抑制癌细胞的增殖,创造更好的治疗结果。
医用高分子材料的研究与应用
医用高分子材料的研究与应用随着医学技术不断的更新迭代,医药研究的需求也日益增长,而医用高分子材料在现代医学中也扮演着越来越重要的角色。
医用高分子材料是指用于医学领域的高分子材料,其种类包括但不限于聚合物,纤维素和半合成材料等。
这些材料在医学中具有多种独特的物理和化学特性,广泛应用于医疗器械,医学成像和组织修复等领域。
1、医用高分子材料在医学成像中的应用医用高分子材料在医学成像中的应用是其最常见的应用之一。
传统的医学成像如X光、CT等都是通过反射和吸收原理来进行成像。
而医用高分子材料在医学成像中的应用,主要是通过对不同物质的吸收能力,来影响成像效果,从而达到更详细的成像结果。
举例来说,当我们摄入含有高分子材料的碘盐溶液时,在X光成像时,因为高分子材料对X射线的吸收较强,从而影响肝、脾等器官的成像效果,能够明显地显示器官的血液流动情况,以及体内多种病变情况。
2、医用高分子材料在组织修复中的应用随着医学技术的不断提高,替代医学治疗技术正在兴起,而医用高分子材料在这方面也具有着很大的应用前景。
在组织修复中,医用高分子材料主要用来代替被破坏的人体组织,从而加速修复和康复。
目前,已经有多种医用高分子材料被应用于组织修复,如聚乳酸酰胺(PLA)、聚乳酸(PLLA)等。
其中聚乳酸被广泛应用于组织修复中,其原因在于其材料特性能够模拟真实组织,如PLLA环境良好、无毒、可生物降解、不形变、易于制造等周边特性。
因此,PLA及其衍生物已被广泛应用于组织修复中,包括骨科手术、皮肤修复和牙科等领域。
3、医用高分子材料在药物传输中的应用医用高分子材料在药物传输中也有很多应用。
高分子材料可用于控制药物的释放、负荷、递送和存储等方面。
材料特性的差异和改变会导致药物的释放方式不同,从而实现不同的剂量控制方案。
例如一种名为肝素的聚酰胺材料,它能够稳定了药物负载,同时使药物能够持续的释放出来,从而提高药物的疗效并降低药物副作用。
因此,医用高分子材料在药物传输等方面应用广泛,包括植入物、膜材料、啮齿动物根管治疗等领域。
医用高分子材料在医疗领域的应用及前景
4 医 用 高 分 子 材 料 的 研 究 热 点
医 用 高 分 子材 料 是 一 个 多 学 科交 叉 的领 域 ,涉 及 到 材 料 学 、 学 、 物 医学 、 床 医学 等 1 化 生 临 0多 个 学 科 , 主要 是要 求 材
料 在生 理 环 境 下 要 保 持 稳 定 , 即要 求 具 有 生 物惰 性 。 没 有 一 但
组 织 工 程 的 中 心任 务是 设 计 和 构 建用 于受 损 组 织 和 器 官 的替代物。 医用 高 分 子材 料 是 组 织 工 程 的 重 要 研究 内容 . 必须
与 活 细 胞 在体 内或 体 外 相 容 ,近 年来 已经 受 到 各 国 科 学 家 的 广 泛 关 注 。 目前 , 究 的热 点 材 料 有 胶 原 、 研 明胶 、 多糖 、 壳 聚乳 酸及 其共 聚物 等 。 品有 人 工 血 管 、 经 再 生 导 管 、 工 肝 、 产 神 人 人
次性 医疗 器 械有 以下几 方 面 的缺 点 :
( )V 中残 留有 极 少 量 的 氯 乙 烯 单 体 ,该 化 合 物 已被 1P C
证 实 是 致 癌 物质 ( ) V 软 制 品 在 加 工 时 必 须 使 用 如 邻 苯 二 甲 酸二 辛 酯 2P C
仅 挽 救 了数 以万 计 的生 命 , 而且 提 高 了人 类 的生 命 质 量 , 目 但
(E ) 增塑剂 。 D HP等 动物 试 验 表 明 , E P对 生 殖 系统 、 脏 、 D H 肝 肺
脏 以及 心血 管 等 系 统 有 不 同 程度 的毒 性 作 用 ,给 人 类 健 康带
来 风 险
( ) 研 究 证 明 ,V 3有 P C对 某 些 药 物 ( 硝 酸 甘 油 、 莫 地 如 尼 平 等 ) 有 吸 附 作用 , 用 药 剂量 不 准 确 , 响疗 效 。 具 使 影 ( )V 4 P C加 T 时 加 有 多 种 含 金 属 的 化 合 物 作 稳 定 剂 . 如 钙 、 等 , 输 液 过 程 中会 可 能 进 入 人 体 , 人 的 身 体 健 康 带 锌 在 对 来 危 害 ( ) 了提 高 金 属 稳 定剂 的稳 定 效 果 , 5为 在加 工 中还 加 入 了 含 磷 的 辅 助 稳 定 剂— — 亚磷 酸 苯 二 异 辛 酯 等 , 加 了 P C材 增 V 料 的 毒 性
生物医用仿生高分子材料
生物医用仿生高分子材料是指通过模仿生物体结构和功能特点而设计和制造的高分子材料,用于医学领域的应用。
这些材料具有良好的生物相容性、生物活性和可控可调的特性,可以在医学上模拟和替代生物组织的功能,实现诊断、治疗和修复等应用。
以下是一些常见的生物医用仿生高分子材料及其应用:
1. 生物降解聚合物:如聚乳酸(Poly Lactic Acid, PLA)和聚乙二醇(Polyethylene Glycol, PEG),常用于制备可降解的植入型材料,如缝合线、支架和修复材料。
2. 水凝胶:如明胶、海藻酸钠(Sodium Alginate)和聚乙二醇二甲基丙烯酸酯(Polyethylene Glycol Diacrylate, PEGDA)等,可用于制备组织工程支架、脏器修复和药物传递等。
3. 多肽材料:如胶原蛋白和凝血蛋白,可用于修复软骨、皮肤和血管等组织。
4. 生物活性控释材料:如聚乳酸-羟基磷灰石(Poly Lactic Acid-Hydroxyapatite, PLA-HA)复合材料,可用于药物和生长因子的控释,促进组织修复和再生。
5. 智能材料:如形状记忆聚合物和响应性水凝胶,可根据环境条件(如温度、pH值、电场等)的变化实现形状转变、药物控释和传感应用。
这些生物医用仿真高分子材料在医学领域有着广泛的应用潜力,可以用于组织工程、细胞培养、药物传递、疾病诊断和治疗等方面。
通过不断的研究和创新,这些材料将有助于促进生物医学领域的发展和进步。
生物医用高分子材料的合成与应用
生物医用高分子材料的合成与应用近年来,随着生物医学技术的快速发展,生物医用高分子材料已经成为最具发展潜力的材料之一。
生物医用高分子材料是指具有良好生物相容性和生物可降解性的高分子化合物,它们可以广泛应用于生物医学领域,如医用生态材料、生物医学成像、药物传递和生物传感器等。
本文将介绍几种常见的生物医用高分子材料的合成与应用。
一、聚乳酸(PLA)聚乳酸是一种崭新的生物医用高分子材料,具有可降解性和良好的生物相容性。
它可以被分解为CO2和H2O,不会对环境造成污染,具有广泛的应用前景。
PLA可以制备成各种形状的材料,如纤维、薄膜、泡沫等,可以广泛应用于医疗器械、生物支架、药物传递等。
二、聚己内酯(PCL)聚己内酯是一种生物降解型的高分子材料,具有良好的生物相容性和可加工性。
它可以被多种酶类和水解作用降解为健康无害的产物,是理想的生物医用高分子材料。
PCL可以制备成各种形状的材料,如支架、膜、微球等,可以广泛应用于组织工程、骨修复、神经修复和皮肤再生等领域。
三、聚乳酸-聚己内酯共聚物(PLGA)聚乳酸-聚己内酯共聚物是一种创新型的生物医用高分子材料,它是由聚乳酸和聚己内酯两种单体共聚而成的高分子化合物。
PLGA具有优于单体的降解性能和生物相容性,还可以通过改变单体的比例来调节其降解速率和物理性质。
PLGA可以制备成各种形状的材料,如支架、微粒、微胶囊等,可以广泛应用于药物控释和组织工程等领域。
四、聚(甲基丙烯酸甲酯)(PMMA)聚(甲基丙烯酸甲酯)是一种非可降解型的高分子材料,具有良好的生物相容性和可加工性。
它可以制备成各种形状的材料,如支架、薄膜、微球等,可以广泛应用于组织修复、药物传递和生物成像等领域。
五、羟基磷灰石(HAP)羟基磷灰石是一种无机骨修复材料,具有良好的生物相容性和生物可降解性。
它可以为体内的骨细胞提供生长所需的矿物质和微量元素,具有促进骨组织再生的作用。
HAP可以制备成支架、微球、薄膜等形状,可以广泛应用于口腔、骨科等领域。
生物医用高分子材料的研究及应用
生物医用高分子材料的研究及应用生物医用材料是医学界的热门研究方向之一,而高分子材料则是其中应用最广泛的一种。
高分子材料具有化学惰性、生物相容性、可塑性等优良特性,因此被广泛应用于生物医学领域。
本文将介绍生物医用高分子材料的研究进展和应用情况。
一、生物医用高分子材料的类型生物医用高分子材料可以分为两大类:纯高分子材料和复合高分子材料。
纯高分子材料是指单一物质构成的材料,如聚乙烯醇、聚丙烯酸等,这些材料具有较好的生物相容性,可作为医用敷料、缝线等医疗器械使用。
而复合高分子材料则是由两种或两种以上的高分子材料和其他生物活性物质构成的复合材料,如生物可降解聚合物和医用金属等组合而成的复合材料,其应用范围更为广泛。
二、生物医用高分子材料的应用领域1.医用敷料高分子材料具有良好的渗透性、吸附性和保湿性,因此被广泛应用于医用敷料制造中。
一些高分子材料如聚乙烯醇、聚氨酯等,能够保护创面、减少感染,促进伤口愈合。
2.人工组织与器官高分子材料可以用于制造人工组织和器官。
例如,使用聚乙二醇或聚乳酸等生物可降解聚合物和其他细胞因子和生物大分子通过三维打印技术组装成人工骨骼组织、软组织等。
3.控释药物高分子材料作为控释药物的载体,能够控制药物的释放速度和剂量,理想地实现药物治疗的个性化。
例如脑膜瘤治疗方面,生物可降解聚合物材料多聚乳酸酯可用作持续释放抗肿瘤药物的载体,有效改善治疗效果。
4.口腔修复材料高分子材料在口腔修复领域应用广泛,例如人工牙齿、种植体、美容修复等。
其中,聚酯类难降解高分子材料常常用于制造种植体和口腔修复材料。
三、高分子材料在生物医学领域的研究进展高分子材料在生物医学领域的研究进展非常快速,近年来,国内外学者们对其性质和应用进行了广泛研究。
1.提高高分子材料的生物相容性目前,高分子材料的生物相容性不完全符合医疗器械标准,因此研究人员正在努力寻找能够提高其生物相容性的方法。
如改变高分子材料表面化学组成,修饰其表面的羟基、胺基等官能团,优化其形态等,都是提高高分子材料生物相容性的常用方法。
高分子材料在医学领域的应用
高分子材料在医学领域的应用高分子材料一直以来都是医学领域的重要材料之一。
与其他材料相比,高分子材料有着广泛的适用性,易于制备和改性,同时还具有良好的生物相容性和可降解性等特点。
因此,高分子材料在医学领域的应用也广泛得到了实践和推广,包括生物材料、医用包装材料、制剂和医用高分子设备等方面。
一、生物材料生物材料主要包括人工器官、组织工程、传感器、修复和再生材料等。
这些生物材料不仅应具有良好的生物相容性,还需要具备可控性、可形状化以及生物学响应性等特征。
另外,高分子材料还可以被用于替代生物材料,例如在人工皮肤、血管和心脏瓣膜等方面。
这些材料可以帮助修复、替代、重建和再生固体和软组织,并且有助于支持细胞生长和加速组织修复。
高分子材料也可以用于制造各种种类的支架和移植物材料,以解决和改善人体的不同临床问题。
目前,在生物材料方面的研究仍在不断地扩大、深入和进步。
未来,高分子材料将继续推动这个领域的发展和进步。
二、医用包装材料如今,高分子材料已经成为许多医院和医疗机构中不可或缺的一部分。
医用包装材料可以用于包装和保存各种医疗产品,以保护患者免受交叉感染和其他种种风险。
这些材料主要由聚乙烯、聚丙烯和聚氯乙烯等高分子材料制成。
其中,聚氯乙烯(PVC)袋是最常见的医用包装材料,用于储存和输送血浆、血小板和其他血液制品等。
医用包装材料不仅需要具备优秀的物理性能,还需要具有良好的医学性能。
高分子材料的生物相容性、可降解性、可塑性和机械性能使得其在该领域的应用变得越来越普遍。
未来,高分子材料将继续在医用包装材料领域发挥其作用。
三、制剂制剂是指以高分子材料作为基础材料进行制造的不同类型材料。
根据不同的制造工艺和应用,制剂可以分为一些不同的类别,如预制合成类、可注射剂和载体类。
这些制剂经常被用于制造药物和生物成分的储存和传递等方面。
目前,高分子材料已经与医学界的不同领域进行了多种结合,如药学、治疗学和纳米技术等。
高分子材料的应用可以吸收、保护和传输特定生物分子,提高生物可利用性,特别是在氧、光和温度等方面的稳定性要求很高的情况下。
医用高分子材料的制备及应用研究
医用高分子材料的制备及应用研究医用高分子材料是一种在医疗领域被广泛应用的新型材料。
它具有多种特点,如生物相容性好、可降解、可控制释放等。
它不仅可以被用于制造人工器官、人工骨等医疗设备,还可以用于治疗疾病,如癌症、糖尿病等。
本文将讨论医用高分子材料的制备及其在医疗领域的应用研究。
一、医用高分子材料的制备医用高分子材料的制备方法包括溶液聚合、悬浮聚合、乳液聚合、反应挤出等多种方式。
其中,溶液聚合是制备医用高分子材料的主要方法之一。
溶液聚合需要通过反应,将单体分子组合成高分子材料。
反应中需要控制反应条件,如反应温度、pH值、反应时间等,以保证材料的质量。
另外,还需要利用一些化学药品,如引发剂、稳定剂、调节剂等,来控制反应的速度和质量。
今天,很多研究人员正在尝试使用新型的高分子材料,如功能性聚合物、纳米高分子材料等,来制备更加先进的医疗材料。
这些新型材料在医疗领域具有很大的潜力。
二、医用高分子材料在医疗领域的应用研究1.医用高分子材料在人工器官制造中的应用使用医用高分子材料制造人工器官已经成为医学研究的一个热门领域。
这种材料可以具备生物相容性和可控制释放等优点,可以用于制造人工皮肤、人工骨、人工关节等医疗设备。
2.医用高分子材料在药物控制释放中的应用医用高分子材料在药物控制释放方面的应用正在逐步增加。
这些材料可以将药物包裹在内部,实现药物的可控制释放。
例如,一些模拟植入式装置中就包含着一种可以逐渐释放药物的医用高分子材料。
3.医用高分子材料在癌症治疗中的应用医用高分子材料在癌症治疗方面的应用也开始逐步增加。
一些研究表明,它可以通过靶向性控制药物释放来治疗癌症。
例如,一些通过靶向治疗可控制释放的治疗药物就包含了医用高分子材料。
结语医用高分子材料的应用潜力巨大,其研究和应用已经引起了世界各地研究人员的广泛关注。
但是,尽管医用高分子材料有许多好处,但它们所带来的新技术也会带来新的道德和安全风险。
为了确保它们能够被广泛应用,我们需要加强对这些材料的安全性研究,并确保它们适合在各种生化环境和病理条件下使用。
高分子材料在医药中的应用
高分子材料在医药中的应用
高分子材料广泛应用于医药领域,其主要应用包括以下几个方面:
1. 医疗器械:高分子材料被广泛用于制造各种医疗器械,如导管、人工器官、人工关节等。
高分子材料具有良好的生物相容性和可塑性,能够满足不同器械的形状和功能需求。
2. 药物传递系统:高分子材料可用于制造药物传递系统,如药物载体、微球、纳米粒等。
这些材料能够稳定药物,控制药物的释放速率,增强药物的生物利用度,从而提高药物治疗效果。
3. 包装材料:高分子材料在医药包装中起到保护药品、延长药品保质期的作用。
高分子材料可以提供良好的物理和化学稳定性,阻隔水分和氧气等有害物质的侵入,从而保护药品的质量和安全性。
4. 组织工程:高分子材料用于组织工程可以制造人工骨骼、皮肤和血管等替代器官。
这些材料可以提供支撑和结构,促进细胞生长和修复,促进组织再生和修复。
5. 医学纺织品:高分子材料被用于制造医用纺织品,如敷料、手术用具等。
高分子材料具有良好的透气性和吸湿性,能够保持伤口干燥和舒适,促进伤口愈合。
总而言之,高分子材料在医药中的应用涵盖了医疗器械、药物
传递系统、包装材料、组织工程和医学纺织品等多个方面,为医药领域的发展和创新提供了重要的支持和推动。
医用高分子材料范文
医用高分子材料范文医用高分子材料是指应用在医学领域的高分子材料。
随着科技的不断进步和医疗技术的快速发展,医用高分子材料的种类和应用范围不断扩大,已成为医疗器械和医疗设备的重要组成部分。
本文将介绍医用高分子材料的种类、特点和应用。
首先,医用高分子材料可以分为天然高分子材料和合成高分子材料两大类。
天然高分子材料包括天然橡胶、天然纤维素、胶原蛋白等。
天然高分子材料具有良好的生物相容性和生物可降解性,因此广泛应用于外科手术缝合线、心脏瓣膜、人工血管等领域。
然而,天然高分子材料的力学性能较差,容易疲劳破裂,限制了其在一些领域的应用。
合成高分子材料主要包括聚乙烯、聚丙烯、聚乳酸、聚酯等。
这些材料具有较好的力学性能和化学稳定性,可以通过化学合成来控制其物理性能和化学性质,满足不同医疗器械和医疗设备的要求。
例如,聚乳酸可以制备成可降解的缝合线,聚乙烯可以制备成人工关节、人工骨头等。
其次,医用高分子材料具有许多特点。
首先,医用高分子材料具有良好的生物相容性。
这意味着它们可以与生物体的组织和细胞相容,不会引起明显的免疫反应和毒性反应。
这是医用高分子材料能够被广泛应用于人体的重要原因之一其次,医用高分子材料具有可调控的物理性能和化学性质。
通过改变材料的组成、结构和加工工艺,可以调节医用高分子材料的机械性能、表面性质、降解速率等,以满足不同医疗需求。
再次,医用高分子材料具有较好的加工性能和可塑性。
它们可以通过注塑、挤出、模压等加工工艺制备成各种形状的医疗器械和医疗设备,例如导尿管、人工心脏瓣膜等。
同时,医用高分子材料还可以通过热成型、薄膜法等加工工艺制备成薄膜、纤维等形式,应用于创伤敷料、医用纤维材料等领域。
最后,医用高分子材料具有良好的生物可降解性。
它们在体内能够逐渐分解为低分子物质,最终通过代谢排出体外,不会对人体造成负面影响。
这种特性使得医用高分子材料在内外科手术、组织工程和药物缓释等领域得到了广泛应用。
最后,医用高分子材料在医疗领域有广泛的应用。
生物医用高分子材料
生物医用高分子材料简介生物医用高分子材料是一类应用于医疗领域的材料,由具有生物相容性和生物可降解性的高分子化合物制成。
这些材料具有优异的物理、化学和生物学性能,可以用于制备医疗器械、药物递送系统和组织工程材料等。
特点生物医用高分子材料具有以下特点:1.生物相容性:材料与生物体组织之间有良好的相容性,不引起排异反应和毒性反应;2.生物可降解性:材料在体内可逐渐分解和吸收,降低二次手术的风险;3.可塑性:材料具有良好的加工性能,可以通过热处理、注塑、拉伸等方式制备成各种形状;4.调控性:材料的组分和结构可以通过化学修饰进行调控,以实现特定的功能和效果;5.故障警示功能:材料可以通过改变颜色、形状等方式表达材料出现故障的信息。
应用生物医用高分子材料在医疗领域有广泛的应用,包括但不限于以下几个方面:医疗器械生物医用高分子材料可以用于制备各种医疗器械,包括人体植入物、支架和修复材料等。
例如,可降解聚合物可以用于制备骨修复材料,用于治疗骨折和骨缺损。
此外,生物医用高分子材料还可以制备耐高温和耐化学腐蚀的医用管道、接头和阀门等。
药物递送系统生物医用高分子材料可以用于制备药物递送系统,通过控制材料的解理速率和药物的释放速率,实现药物在体内定点释放和长效治疗。
例如,聚乳酸-羟基乙酸共聚物可以用于制备微球,用于缓释抗癌药物。
此外,生物医用高分子材料还可以制备胶囊、片剂和注射剂等药物剂型。
组织工程材料生物医用高分子材料可以用于制备组织工程材料,用于修复受损组织和器官。
例如,聚丙烯酸甲酯可用于制备人工表皮,用于治疗烧伤和创面愈合。
此外,生物医用高分子材料还可以制备人工骨髓和人工心脏瓣膜等组织工程产品。
发展趋势随着生物医学技术和材料科学的不断发展,生物医用高分子材料的应用前景越来越广阔。
未来,我们可以预见以下几个发展趋势:1.新型材料的研发:研究人员将继续开发新型的生物医用高分子材料,以满足不断增长的临床需求。
2.功能化材料的应用:利用纳米技术和生物传感技术,将进一步开发具有特定功能的生物医用高分子材料,例如智能控释材料和组织修复材料等。
医用高分子材料
医用高分子材料
医用高分子材料是一类广泛应用于医疗领域的材料,其具有优异的生物相容性、可塑性和生物降解性,被广泛应用于医疗器械、医用包装、医用敷料等领域。
医用高分子材料的研发和应用,对提高医疗器械的性能、减少医疗废物的产生、改善患者的治疗效果具有重要意义。
首先,医用高分子材料在医疗器械领域具有重要作用。
例如,聚乳酸、聚己内
酯等生物降解性高分子材料被广泛用于可降解缝合线、骨修复材料、缓释药物载体等医疗器械中。
这些材料具有良好的生物相容性和可塑性,能够减少对患者的创伤,促进伤口愈合,提高治疗效果。
其次,医用高分子材料在医用包装领域也发挥着重要作用。
医用高分子材料具
有良好的气体屏障性能和抗菌性能,能够有效保护医疗器械和药品,延长其有效期限,降低交叉感染的风险。
例如,聚乙烯、聚丙烯等高分子材料被广泛用于医用包装袋、输液袋等医疗用品中,保障了医疗器械和药品的安全性和稳定性。
此外,医用高分子材料在医用敷料领域也具有重要应用。
例如,医用胶带、敷
料等产品广泛采用了具有良好生物相容性和吸水性能的高分子材料,能够有效保护创面,促进伤口愈合,减少感染的风险。
总的来说,医用高分子材料在医疗领域具有广泛的应用前景和重要意义。
随着
医疗技术的不断发展和人们对健康的不断追求,医用高分子材料的研发和应用将会更加广泛,为医疗领域的发展和患者的健康提供更多的可能性和选择。
希望未来能够有更多的科研人员和企业投入到医用高分子材料的研发和应用中,为医疗健康事业做出更大的贡献。
医用高分子材料及其用途
医用高分子材料及其用途医用高分子材料是指用于医疗领域的高分子化合物或材料,具有良好的生物相容性、生物降解性、机械强度以及透明度等特点,可以应用于各种医疗器械、医用敷料、生物医学材料等方面。
下面将介绍一些常见的医用高分子材料及其用途。
1. 聚乳酸(PLA)和聚乳酸-共-羟基乙酸(PLGA):这两种材料是常见的生物降解高分子材料,可用于制备缝合线、骨钉、支架等医疗器械,也可制备生物降解性的缝合线和注射给药系统。
2. 聚乳酸-共-己内酯(PHLA)和聚己内酯(PCL):这两种材料具有较好的生物降解性和生物相容性,可以用于制备软组织修复材料、骨修复支架和软骨修复材料等。
3. 聚乳酸-聚乙二醇-聚乳酸(PLLA-PEG-PLLA):这种材料具有优良的机械性能和生物相容性,适用于制备人工关节、脊椎植入物、心脏瓣膜等。
4. 聚甲基丙烯酸甲酯(PMMA):这种材料具有优良的透明度和机械性能,可用于制备人工眼角膜、义眼等。
5. 聚乙烯醇(PVA):这种材料具有良好的生物相容性、生物降解性和亲水性,可用于制备软组织修复材料、药物控释系统等。
6. 聚乳酸-聚乙二醇共聚物(PLA-PEG):这种材料具有良好的生物相容性和降解性能,可用于制备药物控释微球和纳米颗粒等。
7. 聚己内酯-聚乳酸(PCL-PLA):这种材料对细胞具有良好的附着性,可用于制备组织工程支架和组织修复材料。
除了以上常见的医用高分子材料外,医用高分子材料的研究还涉及到许多其他材料,如天然高分子材料(如明胶、海藻酸钠等)、合成高分子材料(如聚乳酸-多肽共聚物、聚己内酯-碳酸氢盐共聚物等)等。
医用高分子材料的应用广泛,可以用于各种医疗器械和医用敷料制备。
例如,聚乳酸和PLGA可以制备可降解的缝合线,用于手术缝合;PCL和PLLA-PEG-PLLA 可以制备骨修复支架,用于骨折修复和骨增生;PMMA可以用于制备人工眼角膜和义眼等,用于眼部疾病治疗。
此外,医用高分子材料还可以应用于生物医学材料领域,如制备药物控释系统、组织工程材料和人工器官等。
医药高分子材料及其在医疗领域的应用考核试卷
B.聚乙烯
C.聚氨酯
D.所有以上选项
8.生物医用高分子材料在医疗领域的主要作用是什么?( )
A.作为临时替代材料
B.作为永久替代材料
C.作为药物载体
D.所有以上选项
9.下列哪种医药高分子材料可用于制备血管支架?( )
A.聚氨酯
B.聚乳酸
C.聚乙烯
D.聚苯乙烯
10.下列哪种医药高分子材料具有较好的生物相容性和血液相容性?( )
4.聚乳酸-羟基乙酸共聚物
5.生物可降解性
6.聚乙烯
7.生物体环境
8.生物相容性
9.聚氨酯
10.免疫
四、判断题
1. ×
2. ×
3. √
4. ×
5. √
6. ×
7. ×
8. √
9. √
10.×
五、主观题(参考)
1.组织工程中,生物医用高分子材料作为支架提供细胞附着、增殖和分化的空间,促进组织再生。其重要性在于能够模拟细胞外基质,引导组织生长,最终实现受损组织的功能恢复。
1.生物医用高分子材料按其生物降解性能可分为可降解和不可降解两大类,其中__________材料在体内可以分解并被吸收。
2.聚乳酸(PLA)是一种常用的生物可降解高分子材料,其降解产物为__________和二氧化碳。
3.在医药高分子材料中,__________是衡量材料血液相容性的重要指标之一。
4.药物控释系统中,__________是一种常用的缓释高分子材料,可以控制药物释放速率。
A.羟基磷灰石
B.聚乳酸
C.聚乙烯
D.聚氨酯
16.以下哪些是医药高分子材料在组织工程中的应用?( )
A.细胞载体
B.细胞支架
医用高分子-人工心脏资料
组织再生与融合
促进人工心脏与机体组织的融合, 诱导组织再生,提高生物相容性。
药物缓释技术
利用药物缓释技术,降低抗排斥药 物的副作用。
人工心脏的长期疗效和安全性评估
长期跟踪研究
建立长期跟踪研究机制, 评估人工心脏的长期疗效 和安全性。
患者生活质量
关注患者的生活质量,评 估人工心脏对患者社会生 活的影响。
医用高分子材料作为人工心脏的主要 组成部分,需要具备足够的强度和柔 韧性,以承受心脏的机械运动和循环 血液的压力。
人工心脏的未来发展方向
随着医学技术的不断进步,人工心脏的发展方向将更加注重个性化治疗和精准医疗。
通过基因编辑和干细胞技术,未来的人工心脏可能会实现与天然心脏更为相似的结 构和功能,提高移植的成功率和患者的生存质量。
质量方面取得更大的突破。
社会各界需要加强对人工心脏的 宣传和普及,提高公众对人工心 脏的认识和理解,为患者提供更
多的支持和关爱。
谢谢观看
医用高分子特性
医用高分子材料应具备无毒、无免疫 反应、无致敏性、良好的生物相容性 和耐久性等特点,同时也要具备良好 的加工性能和机械性能。
医用高分子材料的分类
天然高分子材料
如胶原、明胶、透明质酸等,具 有良好的生物相容性和可降解性 ,常用于药物载体和组织工程。
合成高分子材料
如聚乙烯、聚丙烯、聚氨酯、聚 氯乙烯等,具有优良的机械性能 和稳定性,常用于制作医疗设备 和植入物。
人工心脏的功能
人工心脏能够模拟自然心脏的泵血功能,将血液输送到全身各个器官,维持生命 活动。
人工心脏的分类和特点
人工心脏的分类
根据结构和功能的不同,人工心脏可分为全人工心脏和辅助 人工心脏。全人工心脏可以完全替代自然心脏的功能,而辅 助人工心脏则主要用于辅助自然心脏的泵血功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医用高分子材料及其应用摘要:医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的合成高分子材料,可以利用聚合的方法进行制备,是生物医用材料的重要组成之一。
本文主要介绍了医用高分子材料的类别以及它们在不同要求下如何被选择。
关键词:医用,高分子材料,应用Medical polymer materials and its applicationXia Yun (College high polymer materials 0902 ) Abstract: Medical polymer materials is a kind of organisms can repair alternative and renewable organization, has special functions synthesis of polymer materials, can use the method of polymerization preparation, is an important component of biomedical materials one of this article mainly introduced the medical polymer materials and their requirements in different categories how to be a choice.Key Words: medical, polymer materials, application、八、亠前言生物医用材料是研究开发人工器官和医疗器械的基础, 已成为材料学科中的一个重要分支和各国材料科学家竞相研究和开发的热点, 目前的研究重点是在保证生物安全性的前提下寻找多功能的生物医用材料[1] 。
由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能, 易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种, 近年来发展需求量增长十分迅速。
目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%- 20%勺速度增长。
随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。
1 种类和应用1.1 与血液接触的高分子材料与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料,要求这种材料要有良好的抗凝血性、抗细菌粘附性,即在材料表面不产生血栓、不引起血小板变形,不发生以生物材料为中心的感染。
此外,还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。
人工血管用材料有尼龙、聚酯、聚四氟乙烯、聚丙烯及聚氨酯等。
人工心脏材料多用聚醚氨酯和硅橡胶等。
人工肺则多用聚四氟乙烯、硅橡胶、超薄聚(涂在多孔PP膜上)、超薄乙基纤维(涂在PE无纺布或多孔PP膜上)等材料。
人工肾用材料除要求具备良好的血液相容性外,还要求材料具有足够的湿态强度、有适宜的超滤渗透性等,可充当这一使命的材料有乙酸纤维素、铜氨再生纤维素、尼龙、聚砜及聚醚砜等。
1.2 组织工程用高分子材料组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构- 功能关系,以及研制生物代用品以恢复、维持或改善其功能的一门科学。
细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究, 使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。
生物相容性材料的开发是组织工程核心技术之一。
组织工程中的生物材料主要发挥下列作用:(1) 提供组织再生的支架或三维结构;(2) 调节细胞生理功能;(3) 免疫保护。
当完成自己的使命后,作为组织生长骨架的生物高分子材料则降解为无毒的小分子被机体吸收。
作为这种材料使用的聚合物主要有聚乳酸(PLA) 、聚羟基乙酸(PGA)及其共聚物(PLGA)等。
例如,中科院化学所石桂欣等应用溶液浇铸致孔剂浸出技术制备了一系列聚乳酸及不同组成的聚乳酸—羟基乙酸多孔细胞支架,组织培养试验表明,软骨细胞在支架上繁殖情况良好周后已开始分泌细胞外基质。
生物高分子材料种类:1 甲壳质纤维甲壳质(也称甲壳素)来自虾和蟹等节足动物的甲壳中,每年海洋产甲壳量达10亿t ,在天然高分子的产量仅次于纤维素。
甲壳质是一种天然多糖物质,由于其具有较好的晶状结构和较多的氢键,因此,其溶解性能很差。
甲壳经脱乙酰化成为甲壳胺(也称脱乙酰甲壳素)其溶解性能比甲壳质好。
将精制的甲壳质或甲壳胺溶解于合适的溶剂,通过湿法纺丝制成为甲壳质纤维或甲壳胺纤维。
由于甲壳质或甲壳胺具有良好的生物相容性和适应性,并具有消炎、止血、镇痛和促进肌体组织生长等功能,可促进伤口愈合,因此被公认为保护伤口的理想材料。
甲壳质作为低等动物中的纤维组分,兼具高等动物组织中的胶原和高等植物纤维中纤维素两者的生物功能,因此生物特性十分优异,其主要特征为:(1) 生物相容性好。
甲壳质及其衍生物是无毒副作用的天然聚合物,其化学性质和生物性质与人体组织相近,因此,其制品与人体不存在排斥问题。
(2) 生物活性优异。
甲壳质及其衍生物因本身所含的复杂的空间结构而表现出多种生物活性,其制品具有抑菌、降低血清和胆固醇含量、抑制成纤维细胞生长、直接抑制肿瘤细胞以及促进上皮细胞生长、促进体液免疫和细胞免疫等作用。
(3) 生物降解性好。
甲壳质及其衍生物在酶的作用下会分解为低分子物质。
因此,其制品用于一般的有机组织均能被生物降解而被肌体完全吸收。
甲壳质及其衍生物的医疗保健功能有:免疫调节、降低胆固醇、抗菌、降血压、脂质排泄、促进乳酸菌生长、促进伤口愈合以及细胞活性化等作用。
2 骨胶原纤维骨胶是一种蛋白质,它在皮肤、骨骼、腱、血管、肠、眼角膜和牙齿中担负着个体保护以及保持形态的作用。
骨胶分子由三概括多肽链形成螺旋结构。
骨胶原纤维是通过重新组构牛屈肌腱的骨胶原悬浮液制成的。
首先将干净的肌腱薄片用解元酶进行处理除去骨胶原原纤维束的弹性硬元,使之容易膨胀。
在除掉了非骨胶原蛋白质和多余的酶之后,将肌腱薄片浸在氰乙酸和甲醇- 水的混合液(pH2〜3)里使其膨胀。
接着再将得到的混合物进行均匀化处理和过滤,然后压入适当的凝固浴里形成丝条,其断裂强度可达2.7cN/dtex 左右。
骨胶原作为医用材料的特点在于:生物适应性优良、无抗原性、生物体吸收性良好等,因此国内外正将其开发和应用于伤口保护。
3 海藻酸纤维海藻酸是从海藻植物中提炼的多糖物质。
海藻酸纤维可由湿法纺丝制备,将海藻酸钠碱性浓溶液经过喷丝板挤出后送入含钙离子的酸性凝固浴中,海藻酸钠与钙离子发生离子交换,即形成不溶于水的海藻酸钙纤维,该纤维的缺点是断裂强度较低。
当海藻酸钙纤维用于伤口接触层时,它与伤口之间相互作用,会产生海藻酸钠、海藻酸钙凝胶。
这种凝胶是亲水性的,可使氧气通过而细菌不能通过,并促进新组织的生长。
海藻酸纤维的制备通常采用与非海藻酸高聚物共纺丝的方法,后者往往是水溶性的或者可溶于有机溶剂,并且均含有负电荷基团COO,- 主要有:羧甲基纤维素(CMC)果胶质(含半乳糖醛酸)、N-,0-羧甲基脱乙酰甲壳质(N00C、0-羧甲基脱乙酰甲壳质(0CC)聚天冬氨酸、聚谷氨酸以及聚丙烯酸等。
这些非海藻酸高聚物的加入可以改善海藻酸纤维的吸收性能等。
1.3 药用高分子材料根据药用高分子结构与制剂的形式,药用高分子可分为三类:(1) 具有药理活性的高分子药物。
它们本身具有药理作用,断链后即失去药性,是真正意义上的高分子药物。
天然药理活性高分子有激素、肝素、葡萄糖、酶制剂等。
合成药理活性高分子如聚乙烯吡咯烷酮和聚4-乙烯吡啶-N-氧撑是较早研究的代用血浆。
有些阳离子或阴离子聚合物也具有良好的药理活性。
例如主链型聚阳离子季铵盐具有遮断副交感神经、松驰骨骼筋作用,是治疗痉挛性疾病的有效药物;阴离子聚合物二乙烯基醚与顺丁烯二酐的吡喃共聚物是一种干扰素诱发剂,具有广泛的生物活性,不仅能抑制各种病毒的繁殖,具有持久的抗肿瘤活性,而且还有良好的抗凝血性。
(2) 低分子药物的高分子化。
低分子药物在体内新陈代谢速度快,半衰期短,体内浓度降低快,从而影响疗效,故需大剂量频繁进药,而过高的药剂浓度又会加重副作用,此外,低分子药物也缺乏进入人体部位的选择性。
将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。
第一个实现高分子化的药物是青霉素(1962 年), 所用载体为聚乙烯胺, 以后又有许多的抗生素、心血管药和酶抑制剂等实现了高分子化。
(3) 药用高分子微胶囊。
将细微的药粒用高分子膜包覆起来形成微小的胶囊是近年来生物医药工程的一场革命。
药物经微胶囊化处理后可以达到下列目的:延缓、控制释放药物,提高疗效;掩蔽药物的毒性、刺激性和苦味等不良性质,减小对人体的刺激;使药物与空气隔离,防止药物在存放过程中的氧化、吸潮等不良反应,增加贮存的稳定性。
所用高分子材料有天然高分子,如骨胶、明胶、海藻酸钠、琼脂等;半合成的高分子有纤维素衍生物等;合成高分子有聚葡萄糖酸、聚乳酸及乳酸与氨基酸的共聚物等。
1.4 医药包装用高分子材料用于药物包装的高分子材料正逐年增加。
包装药物的高分子材料大体上可分为软、硬两种类型。
硬型材料如聚酯、聚苯乙烯、聚碳酸酯等,由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器,制造饮片和胶囊等固体制剂的包装。
新型聚酯聚萘二甲酸乙二醇酯除具有优异的力学性能及阻隔性能外,还有较强的耐紫外线性,可用于口服液、糖浆等的热封装。
软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯- 醋酸乙烯共聚物等,常加工成复合薄膜,主要用来包装固体冲剂、片剂等药物。
而半硬质聚氯乙烯片材则被用作片剂、胶囊的铝塑泡罩包装的泡罩材料。
至于药膏、洗剂、酊剂等外用药液的包装,则用耐腐蚀性极强且综合性能优良的聚四氟乙烯来担任。
1.5 眼科用高分子材料隐形眼镜是最常见的眼科用高分子材料制品。
对这类材料的基本要求是: ① 具有优良的光学性质,折光率与角膜相接近;②良好的润湿性和透氧性;③生物惰性,即耐降解且不与接触面发生化学反应;④有一定的力学强度,易于精加工及抗污渍沉淀等。
常用的隐形眼镜材料有聚甲基丙烯酸B-羟乙酯,聚甲基丙烯酸B -羟乙酯-N-乙烯吡咯烷酮,聚甲基丙烯酸B -羟乙酯-甲基丙烯酸戊酯,聚甲基丙烯酸甘油酯-N-乙烯吡咯烷酮等。
浙江工业大学的邬润德等研究的聚钛硅氧烷化合物,由于在聚合体系中加入了钛烷氧化物交联剂,使材料的致密性增加,减少了固化收缩,制备了一种优良的隐形眼镜材料。