基于CFD的机翼颤振分析
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
great influence on aeroelastic response. When they get to some values, limit cycles appear. And the
amplitudes increase with freestream velocity, reeplay clearances and freeplay position, while decrease with friction and keep constant as initial pitching angle changes.
韩景龙20070301南京航空航天大学硕士学位论文摘要本文利用了fluent软件强大的流体计算功能通过其udf功能来编写结构方程和流固耦合程序并实现数据传递从而实现了利用流固耦合方法来进行气弹分析为在时域内分析复杂结构的非线性气动弹性响应问题提供了有效手段具有重要的工程应用意为能正确进行气动弹性分析本文首先对振荡翼型的非定常特性进行了研究包括小攻角时和动态失速时的非定常气动力计算并与实验结果进行了比较
Key words: aeroelasticity ,stall flutter ,UDF,Fluent ,dynamic stall,freeplay nonl
图清单
图 1.1 气动弹性力三角形 .................................................................................................. 1 图 2.1CFD 流程图 .............................................................................................................. 9 图 2.2 基于弹簧光滑节点开始状况 ................................................................................ 17 图 2.3 基于弹簧光滑节点结束状况 ................................................................................ 17 图 2.4 二维网格数据结构示意图 .................................................................................... 19 图 2.5 三维网格数据结构示意图 ................................................................................... 20 图 3.1 第一套网格 ............................................................................................................ 23 图 3.2 第二套网格 ............................................................................................................ 23 图 3.3 第一套网格升力系数曲线 .................................................................................... 24 图 3.4 第二套网格升力系数曲线 .................................................................................... 24 图 3.5 阻力系数曲线比较 ................................................................................................ 24 图 3.6 失速机翼周围的流场速度分布 ............................................................................ 24 图 3.7 α 0 = 5° 时升力系数迟滞曲线和力矩系数迟滞曲线 ............................................. 25 图 3.8 α 0 = 10° 时升力系数迟滞曲线和力矩系数迟滞曲线 ........................................... 26 图 3.9 α 0 = 12° 时升力系数迟滞曲线和力矩系数迟滞曲线 ........................................... 26 图 3.10 α 0 = 15° 时升力系数迟滞曲线和力矩系数迟滞曲线 ......................................... 26 图 3.11 深度失速时( α 0 = 12° )机翼周围流场的速度分布 ........................................ 28 图 3.12 α1 = 2° 时升力系数迟滞曲线和力矩系数迟滞曲线 ........................................... 29 图 3.13 α1 = 5° 时升力系数迟滞曲线和力矩系数迟滞曲线 ........................................... 29 图 3.14 α1 = 10° 时升力系数迟滞曲线和力矩系数迟滞曲线.......................................... 29 图 3.15 α1 = 15° 时升力系数迟滞曲线和力矩系数迟滞曲线.......................................... 30 图 3.16 k = 0.05 ,不同雷诺数下的非定常特性比较..................................................... 30 图 3.17 k = 0.1 ,不同雷诺数下的非定常特性比较 ....................................................... 31 图 3.18 k = 0.15 ,不同雷诺数下的非定常特性比较..................................................... 31 图 3.19 k = 0.2 ,不同雷诺数下的非定常特性比较....................................................... 31 图 3.20 k = 0.4 ,不同雷诺数下的非定常特性比较....................................................... 32 图 4.2 具有 2 个自由度的翼型示意图 ............................................................................ 36 图 4.3 复合材料夹层板结构机翼模型 ............................................................................ 38 图 4.4V=40m/s,二维翼型的颤振响应 ........................................................................ 39 图 4.5V=46.75m/s,二维翼型的颤振响应 ................................................................... 39
this paper. And the fluence of freestream velocity, initial pitching angle, freeplay clearances,
freeplay position and friction in the freeplay on aeroelastic response is analyzed. They have a
南京航空航天大学 硕士学位论文 基于CFD的机翼颤振分析 姓名:李海东 申请学位级别:硕士 专业:固体力学 指导教师:韩景龙 20070301
南京航空航天大学硕士学位论文
摘
要
本文利用了 Fluent 软件强大的流体计算功能,通过其 UDF 功能来编写结构方程和 流固耦合程序并实现数据传递,从而实现了利用流固耦合方法来进行气弹分析,为在时 域内分析复杂结构的非线性气动弹性响应问题提供了有效手段, 具有重要的工程应用意 义。 为能正确进行气动弹性分析,本文首先对振荡翼型的非定常特性进行了研究,包括 小攻角时和动态失速时的非定常气动力计算,并与实验结果进行了比较。攻角较小时的 气动力计算结果与实验结果吻合较好, 超过失速攻角的气动力计算结果与实验结果基本 趋势一致,但是在数值上有一定的偏差,本文也对造成这种偏差的可能原因做了分析。 然后计算了不同振幅、折算频率和雷诺数等参数情况下的气动力,并分析了这些参数对 非定常气动特性的影响。 建立了二维机翼和三维机翼的结构动力学模型, 采用流固耦合方法对二维翼型和三 维机翼的颤振行为进行了数值模拟。对二维机翼,首先进行了线性颤振计算,所得结果 与 NASTRAN 平板气动力模型计算结果是一致的; 然后对二维机翼的失速颤振进行了计 算。当来流速度较小时,响应是收敛的;随着来流速度增大,机翼出现极限环振荡,而 且极限环的幅值随着来流速度的增大而增大;当来流速度增大到一定程度,响应发散。 对三维机翼,文中只做了线性颤振计算,得到了颤振边界,且与 NASTRAN 计算得到的 结果是吻合的,另外本文方法也可用于大攻角以及失速等复杂情况。 本文还对结构含有间隙非线性的二维机翼的气弹响应进行了分析。分析了来流速 度、初始俯仰角速度、间隙大小、间隙位置、间隙处摩擦力等参数对气弹响应的影响。 它们对气弹响应的影响都比较大,当它们增大到某个值时,机翼的运动开始出现极限环 振荡,并且极限环振荡的幅值随来流速度、间隙大小、间隙位置的增大而增加,随摩擦 系数的增大而减小,但是机翼的极限环振荡的幅值并不随初始俯仰角速度的变化而变 化,而是保持一个定值。 关键词:气动弹性,失速颤振,UDF,Fluent,动态失速,间隙非线性
i
基于 CFD 的机翼颤振分析
Abstract
As Fluent can be used to compute fluid problem and its UDF fuction can be used to sovle structure models and transfer datas, it can analyse aeroelastical problems by fluid-structure coupling numerical method. This method has an important significance for engineering applications and provides effective instrument for analyzing nonlinear aeroelastical problems of complex structure in time domain. To analyse the aeroelasticity problems correctly, the oscillating airfoil’s unsteady characteristics is analysed first by CFD,including linear forces in small angle of attack and unsteady forces in dynamic stall. And some compare is made between CFD results and experiment results. At small angle of attack it is easy to get good results, and at big angle of attack the trends of the two results are the same, but there is some difference between numerical values. The cause of the difference is analysed followed. And then the influence of the average angle, oscillating amplitude and converting frequency on unsteady characteristics is analysed. Structural dynamic equations of 2d airfoil and 3d wing are derived, and then flutter performance is numerically simulated with fluid-structure coupling method. Linear flutter is analysed for 2d airfoil first, and the results are consistent to the results from NASTRAN with linear aerodynamics theory. Then stall flutter is analysed. While freestream velocity is small, the aeroelastic response converges. With the increase of freestream velocity, limit cycles appear, and the amplitudes increase. But when freestream velocity gets to some value, the aeroelastic response diverges. For 3d wing only linear flutter is analysed, and velocity of flutter what we get is consistent to the results from NASTRAN. This method can also be used for complex problems such as big angle of attack aerodynamics and stall. The aeroelastic response of 2d airfoil which has freeplay nonlinearity is also analyzed in
amplitudes increase with freestream velocity, reeplay clearances and freeplay position, while decrease with friction and keep constant as initial pitching angle changes.
韩景龙20070301南京航空航天大学硕士学位论文摘要本文利用了fluent软件强大的流体计算功能通过其udf功能来编写结构方程和流固耦合程序并实现数据传递从而实现了利用流固耦合方法来进行气弹分析为在时域内分析复杂结构的非线性气动弹性响应问题提供了有效手段具有重要的工程应用意为能正确进行气动弹性分析本文首先对振荡翼型的非定常特性进行了研究包括小攻角时和动态失速时的非定常气动力计算并与实验结果进行了比较
Key words: aeroelasticity ,stall flutter ,UDF,Fluent ,dynamic stall,freeplay nonl
图清单
图 1.1 气动弹性力三角形 .................................................................................................. 1 图 2.1CFD 流程图 .............................................................................................................. 9 图 2.2 基于弹簧光滑节点开始状况 ................................................................................ 17 图 2.3 基于弹簧光滑节点结束状况 ................................................................................ 17 图 2.4 二维网格数据结构示意图 .................................................................................... 19 图 2.5 三维网格数据结构示意图 ................................................................................... 20 图 3.1 第一套网格 ............................................................................................................ 23 图 3.2 第二套网格 ............................................................................................................ 23 图 3.3 第一套网格升力系数曲线 .................................................................................... 24 图 3.4 第二套网格升力系数曲线 .................................................................................... 24 图 3.5 阻力系数曲线比较 ................................................................................................ 24 图 3.6 失速机翼周围的流场速度分布 ............................................................................ 24 图 3.7 α 0 = 5° 时升力系数迟滞曲线和力矩系数迟滞曲线 ............................................. 25 图 3.8 α 0 = 10° 时升力系数迟滞曲线和力矩系数迟滞曲线 ........................................... 26 图 3.9 α 0 = 12° 时升力系数迟滞曲线和力矩系数迟滞曲线 ........................................... 26 图 3.10 α 0 = 15° 时升力系数迟滞曲线和力矩系数迟滞曲线 ......................................... 26 图 3.11 深度失速时( α 0 = 12° )机翼周围流场的速度分布 ........................................ 28 图 3.12 α1 = 2° 时升力系数迟滞曲线和力矩系数迟滞曲线 ........................................... 29 图 3.13 α1 = 5° 时升力系数迟滞曲线和力矩系数迟滞曲线 ........................................... 29 图 3.14 α1 = 10° 时升力系数迟滞曲线和力矩系数迟滞曲线.......................................... 29 图 3.15 α1 = 15° 时升力系数迟滞曲线和力矩系数迟滞曲线.......................................... 30 图 3.16 k = 0.05 ,不同雷诺数下的非定常特性比较..................................................... 30 图 3.17 k = 0.1 ,不同雷诺数下的非定常特性比较 ....................................................... 31 图 3.18 k = 0.15 ,不同雷诺数下的非定常特性比较..................................................... 31 图 3.19 k = 0.2 ,不同雷诺数下的非定常特性比较....................................................... 31 图 3.20 k = 0.4 ,不同雷诺数下的非定常特性比较....................................................... 32 图 4.2 具有 2 个自由度的翼型示意图 ............................................................................ 36 图 4.3 复合材料夹层板结构机翼模型 ............................................................................ 38 图 4.4V=40m/s,二维翼型的颤振响应 ........................................................................ 39 图 4.5V=46.75m/s,二维翼型的颤振响应 ................................................................... 39
this paper. And the fluence of freestream velocity, initial pitching angle, freeplay clearances,
freeplay position and friction in the freeplay on aeroelastic response is analyzed. They have a
南京航空航天大学 硕士学位论文 基于CFD的机翼颤振分析 姓名:李海东 申请学位级别:硕士 专业:固体力学 指导教师:韩景龙 20070301
南京航空航天大学硕士学位论文
摘
要
本文利用了 Fluent 软件强大的流体计算功能,通过其 UDF 功能来编写结构方程和 流固耦合程序并实现数据传递,从而实现了利用流固耦合方法来进行气弹分析,为在时 域内分析复杂结构的非线性气动弹性响应问题提供了有效手段, 具有重要的工程应用意 义。 为能正确进行气动弹性分析,本文首先对振荡翼型的非定常特性进行了研究,包括 小攻角时和动态失速时的非定常气动力计算,并与实验结果进行了比较。攻角较小时的 气动力计算结果与实验结果吻合较好, 超过失速攻角的气动力计算结果与实验结果基本 趋势一致,但是在数值上有一定的偏差,本文也对造成这种偏差的可能原因做了分析。 然后计算了不同振幅、折算频率和雷诺数等参数情况下的气动力,并分析了这些参数对 非定常气动特性的影响。 建立了二维机翼和三维机翼的结构动力学模型, 采用流固耦合方法对二维翼型和三 维机翼的颤振行为进行了数值模拟。对二维机翼,首先进行了线性颤振计算,所得结果 与 NASTRAN 平板气动力模型计算结果是一致的; 然后对二维机翼的失速颤振进行了计 算。当来流速度较小时,响应是收敛的;随着来流速度增大,机翼出现极限环振荡,而 且极限环的幅值随着来流速度的增大而增大;当来流速度增大到一定程度,响应发散。 对三维机翼,文中只做了线性颤振计算,得到了颤振边界,且与 NASTRAN 计算得到的 结果是吻合的,另外本文方法也可用于大攻角以及失速等复杂情况。 本文还对结构含有间隙非线性的二维机翼的气弹响应进行了分析。分析了来流速 度、初始俯仰角速度、间隙大小、间隙位置、间隙处摩擦力等参数对气弹响应的影响。 它们对气弹响应的影响都比较大,当它们增大到某个值时,机翼的运动开始出现极限环 振荡,并且极限环振荡的幅值随来流速度、间隙大小、间隙位置的增大而增加,随摩擦 系数的增大而减小,但是机翼的极限环振荡的幅值并不随初始俯仰角速度的变化而变 化,而是保持一个定值。 关键词:气动弹性,失速颤振,UDF,Fluent,动态失速,间隙非线性
i
基于 CFD 的机翼颤振分析
Abstract
As Fluent can be used to compute fluid problem and its UDF fuction can be used to sovle structure models and transfer datas, it can analyse aeroelastical problems by fluid-structure coupling numerical method. This method has an important significance for engineering applications and provides effective instrument for analyzing nonlinear aeroelastical problems of complex structure in time domain. To analyse the aeroelasticity problems correctly, the oscillating airfoil’s unsteady characteristics is analysed first by CFD,including linear forces in small angle of attack and unsteady forces in dynamic stall. And some compare is made between CFD results and experiment results. At small angle of attack it is easy to get good results, and at big angle of attack the trends of the two results are the same, but there is some difference between numerical values. The cause of the difference is analysed followed. And then the influence of the average angle, oscillating amplitude and converting frequency on unsteady characteristics is analysed. Structural dynamic equations of 2d airfoil and 3d wing are derived, and then flutter performance is numerically simulated with fluid-structure coupling method. Linear flutter is analysed for 2d airfoil first, and the results are consistent to the results from NASTRAN with linear aerodynamics theory. Then stall flutter is analysed. While freestream velocity is small, the aeroelastic response converges. With the increase of freestream velocity, limit cycles appear, and the amplitudes increase. But when freestream velocity gets to some value, the aeroelastic response diverges. For 3d wing only linear flutter is analysed, and velocity of flutter what we get is consistent to the results from NASTRAN. This method can also be used for complex problems such as big angle of attack aerodynamics and stall. The aeroelastic response of 2d airfoil which has freeplay nonlinearity is also analyzed in