【数列】放缩证明不等式的4种方法(数列难点)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【数列】放缩证明不等式的4种方法(数
列难点)
数列放缩证明不等式的方法有很多,以下是其中4种方法:
- 直接求和再放缩:通过求和的方式将原式进行化简,再进行放缩证明。
- 先放缩再求和:通过放缩将原式进行化简,再通过求和的方式证明。
- 等差数列:将原式中的数列通过放缩转换为等差数列,再进行证明。
- 等比数列:将原式中的数列通过放缩转换为等比数列,再进行证明。
在使用放缩法证明不等式时,需要根据数列的特点选择合适的放缩方法,并进行严谨的证明。