彭水苗族土家族自治县一中2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
彭水苗族土家族自治县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )
A .20x y -+=
B .10x y +-=
C .10x y -+=
D .20x y ++= 2. 命题:“若a 2+b 2=0(a ,b ∈R ),则a=b=0”的逆否命题是( )
A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0
B .若a=b ≠0(a ,b ∈R ),则a 2+b 2≠0
C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0
D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠0
3. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函
数图象的一条对称轴方程是( )
A .x=π
B .
C .
D .
4. 下列说法正确的是( )
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
5. 复数2
(2)i z i
-=(i 为虚数单位),则z 的共轭复数为( )
A .43i -+
B .43i +
C .34i +
D .34i -
【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 6. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )
7. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为
( )
A .15
B .
C .15
D .15
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 8. 设i 是虚数单位,则复数
21i
i
-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9. 已知变量与正相关,且由观测数据算得样本平均数
,,则由该观测的数据算得
的线性回归方程可能是( ) A
B
C D
10.已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )
11.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .4
12.已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .
15 B .16 C .314 D .13
二、填空题
13.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .
14.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .
15.已知||2=a ,||1=b ,2-a 与13b 的夹角为
3
π
,则|2|+=a b . 16.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;
②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2; ⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.
三、解答题
17.如图,四边形ABCD 与A ′ABB ′都是边长为a 的正方形,点E 是A ′A 的中点,AA ′⊥平面ABCD . (1)求证:A ′C ∥平面BDE ;
(2)求体积V A ′﹣ABCD 与V E ﹣ABD 的比值.
18.已知椭圆C 的中心在坐标原点O ,长轴在x 轴上,离心率为,且椭圆C 上一点到两个焦点的距离之和为4.
(Ⅰ)椭圆C 的标准方程.
(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:为定值.
(Ⅲ)当为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.
19.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且
.
(1)求A;
(2)若,求bc的值,并求△ABC的面积.
20.已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.21.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名
95%的把握认为“歌迷”与性别有关?
“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌21
3.841 6.635
附:K 2
=
.
22.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;
(2)若a =5c =,求.
23.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
彭水苗族土家族自治县一中2018-2019学年上学期高三数学10月月考试题(参考答案) 一、选择题
1. 【答案】A 【解析】
试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=
,由
,1d r k =∴=,所以切线方程为20x y -+=,故选A.
考点:直线与圆的位置关系. 2. 【答案】D
【解析】解:“且”的否定为“或”,因此其逆否命题为“若a ≠0或b ≠0,则a 2+b 2
≠0”;
故选D . 【点评】此类题型考查四种命题的定义与相互关系,一般较简单,但要注意常见逻辑连接词的运用与其各自的
否定方法、形式.
3. 【答案】B
【解析】解:将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变), 得到
y=cos x
,再向右平移个单位得到
y=cos[(
x )],
由(
x )=k π,得
x =2k π,
即
+2k π,k ∈Z ,
当k=0
时,
,
即函数的一条对称轴为,
故选:B
【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.
4. 【答案】C 【解析】
考
点:几何体的结构特征.
5. 【答案】A
【解析】根据复数的运算可知43)2()2(22
--=--=-=i i i i
i z ,可知z 的共轭复数为43z i =-+,故选A.
6. 【答案】C 【解析】
试题分析:由题意得,当01t <≤时,()21
22
f t t t t =
⋅⋅=,当12t <≤时, ()1
12(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12
t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符
合,故选C.
考点:分段函数的解析式与图象. 7. 【答案】C
【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面
ABCD ,如图所示,所以此四棱锥表面积
为1S =262创
?11
23+2
2622
创创?
15=,故选C .
46
46
10
10
1
1
32
6
E V
D C
B
A
8.
【答案】B
【解析】因为
所以,对应的点位于第二象限 故答案为:B 【答案】B
9. 【答案】A
【解析】解:∵变量x 与y 正相关,
∴可以排除C,D;
样本平均数=3,=3.5,代入A符合,B不符合,
故选:A。
10.【答案】B
【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,
可推出¬p为假命题,q为假命题,
故为真命题的是p∨q,
故选:B.
【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.
11.【答案】A
【解析】解:设等差数列{a n}的公差为d,
由a1+1,a3+2,a5+3构成等比数列,
得:(a3+2)2=(a1+1)(a5+3),
整理得:a32+4a3+4=a1a5+3a1+a5+3
即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.
化简得:(2d+1)2=0,即d=﹣.
∴q===1.
故选:A.
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
12.【答案】D
【解析】
考点:等差数列.
二、填空题
13.【答案】.
【解析】解:∵asinA=bsinB+(c﹣b)sinC,
∴由正弦定理得a 2=b 2+c 2﹣bc ,即:b 2+c 2﹣a 2
=bc , ∴由余弦定理可得b 2=a 2+c 2
﹣2accosB ,
∴cosA===,A=60°.可得:sinA=,
∵bc=4,
∴S △ABC =bcsinA==.
故答案为:
【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.
14.【答案】 3 .
【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,
∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),
故三角形的面积S=×2×3=3,
故答案为:3.
【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.
15.【答案】2
【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23
π
,1⋅=-a b ,
∴|2|+=
a b 2=.
16.【答案】 ②③④
【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误; 对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),
可以认为是圆(x ﹣1)2+(y ﹣2)2
=1的切线系,故②正确;
对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,
如圆C :(x ﹣1)2+(y ﹣2)2
=100,故③正确;
对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确; 对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误. 故答案为:②③④.
【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.
三、解答题
17.【答案】
【解析】(1)证明:设BD交AC于M,连接ME.
∵ABCD为正方形,∴M为AC中点,
又∵E为A′A的中点,
∴ME为△A′AC的中位线,
∴ME∥A′C.
又∵ME⊂平面BDE,A′C⊄平面BDE,
∴A′C∥平面BDE.
(2)解:∵V E﹣ABD====V A′﹣ABCD.∴V A′﹣ABCD:V E﹣ABD=4:1.
18.【答案】
【解析】(I)解:由题意可设椭圆的坐标方程为(a>b>0).
∵离心率为,且椭圆C上一点到两个焦点的距离之和为4.
∴,2a=4,解得a=2,c=1.
∴b2=a2﹣c2=3.
∴椭圆C的标准方程为.
(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x (k≠0),P(x,y).
联立,化为,
∴|OP|2=x2+y2=,同理可得|OQ|2=,
∴=+=为定值.
当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.
因此=为定值.
(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.
OP⊥OQ不一定成立.下面给出证明.
证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件.
当直线OP或OQ的斜率都存在时,
设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).
联立,化为,
∴|OP|2=x2+y2=,
同理可得|OQ|2=,
∴=+=.
化为(kk′)2=1,
∴kk′=±1.
∴OP⊥OQ或kk′=1.
因此OP⊥OQ不一定成立.
【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.
19.【答案】
【解析】解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC﹣sinBsinC=cos(B+C)=,
∴B+C=,
则A=;
(2)∵a=2,b+c=4,cosA=﹣,
∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,
解得:bc=4,
则S
=bcsinA=×4×=.
△ABC
【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.
20.【答案】
【解析】解:∵A∩B={3},
∴9+3a+b=0,9+3c+15=0.
∴c=﹣8.
∴B={x|x2﹣8x+15=0}={3,5},
∵A∪B={3,5},A∩B={3},
∴A={3}.
∴a2﹣4b=0,又∵9+3a+b=0
∴a=﹣6,b=9.
21.【答案】
100人中,“歌迷”有25人,从而完成2×2列联表如下:
将2×2列联表中的数据代入公式计算,得:
K2==≈3.030
因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…
(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i=1,2,3,b i 表示女性,i=1,2.
Ω由10个等可能的基本事件组成.…
用A 表示“任选2人中,至少有1个是女性”这一事件,则A={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.
∴P (A )= (12)
【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.
22.【答案】(1)6B π=
;(2)b =
【解析】1111]
(2)根据余弦定理,得
2222cos 2725457b a c ac B =+-=+-=,
所以b =考点:正弦定理与余弦定理.
23.【答案】
【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2, 此时的概率21
3111324P C ⎛⎫=⨯⨯= ⎪⎝⎭. (4分)。