2020-2021学年最新沪科版七年级数学上册《整式加减》全章专题训练及答案-精编试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年最新沪科版七年级数学上册《整式加减》全章
专题训练及答案-精编试题
专训一:求代数式值的技巧
名师点金:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数式的值.如果要求值的式子比较简单,可以直接代入求值;如果要求值的式子比较复杂,可考虑先将式子化简,然后代入求值;有时我们还需根据题目的特点,选择特殊的方法求式子的值,如整体代入求值等.
直接代入求值
1.(2015·大连)若a=49,b=109,则ab-9a的值为W.
2.当a=3,b=2或a=-2,b=-1或a=4,b=-3时,
(1)求a2+2ab+b2,(a+b)2的值.
(2)从中你发现怎样的规律?
先化简再代入求值
3.已知A=1-x2,B=x2-4x-3,C=5x2+4,求多项式A-2[A-B-2(B-C)]的值,其中x=-1.
特征条件代入求值
4.已知|x-2|+(y+1)2=0,求-2(2x-3y2)+5(x-y2)-1的值.
整体代入求值
5.已知2x-3y=5,求6x-9y-5的值.
6.已知当x=2时,多项式ax3-bx+1的值是-17,那么当x=-1时,多项式12ax-3bx3-5的值是多少?
整体加减求值
7.已知x2-xy=-3,2xy-y2=-8,求代数式2x2+4xy-3y2的值.
8.已知m2-mn=21,mn-n2=-12.求下列代数式的值:
(1)m2-n2;
(2)m2-2mn+n2.
取特殊值代入求值
9.已知(x+1)3=ax3+bx2+cx+d,求a+b+c的值.
专训二:与数有关的排列规律
名师点金:1.数(式)中的排列规律,关键是找出前面几个数(式)与自身序号数的关系,从而找出一般规律,进而解决问题.
2.数阵中的排列规律的探究一般都是先找一个具有代表性的数
(设为某个字母)作为切入点,然后找出其他数与该数的关系,并用字母表达式写出来,从而解决相关问题.
数式的排列规律
1.(2015·淄博)从1开始得到如下的一列数:
1,2,4,8,16,22,24,28,…
其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()
A.21
B.22
C.23
D.99
2.(2015·包头)观察下列各数:1,4
3
,
9
7
,
16
15
,…,按你发现的规律计算这
列数的第6个数为()
A.25
31
B.
36
35
C.
4
7
D.
62
63
3.下列各图形中的三个数之间均具有相同的规律,根据此规律,图形中M与m、n的关系是()
(第3题)
A.M=mn
B.M=n(m+1)
C.M=mn+1
D.M=m(n+1)
数阵中的排列规律
类型1 长方形排列
4.如图是某月的日历.
日一二三四五六
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
(1)带阴影的长方形框中的9个数之和与其正中间的数有什么关系?
(2)不改变长方形框的大小,如果将带阴影的长方形框移至其他几个位置试一试,你还能得出上述结论吗?你知道为什么吗?
(3)这个结论对于任何一个月的日历都成立吗?
类型2 十字排列
5.将连续的奇数1,3,5,7,9,…按如图所示的规律排列.
(第5题)
(1)十字框中的五个数的平均数与15有什么关系?
(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.
类型3 斜排列
6.如图所示是2016年6月份的日历.
(第6题)
(1)平行四边形框中的5个数的和与其中间的数有什么关系?
(2)(1)题中的关系对任意这样的平行四边形框都适用吗?设中间这个数为a,请将这5个数的和用含有a的式子表示出来.
专训三:图形中的排列规律
名师点金:图形中的排列规律都与它所处位置的序号有关,所以解题的切入点是:先设法列出关于序号的式子,再用关于序号的式子表示图形的变化规律.
图形变化规律探究
1.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()
(第1题)
2.一组“穿心箭”按如下规律排列,照此规律,画出第2 016支“穿心箭”是W.
(第2题)
图形个数规律探究
类型1 三角形个数规律探究
3.(2015·山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……依此规律,第n个图案有个三角形(用含n的代数式表示).
(第3题)
类型2 四边形中个数规律探究
4.(2014·重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个,…,按此规律,则第6个图形中面积为1的正方形的个数为()
(第4题)
A.20
B.27
C.35
D.40
5.(2014·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图所示方式进行拼接.
(第5题)
(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?
(2)若用餐的有90人,则需要这样的餐桌多少张?
类型3 点阵图形中个数规律探究
6.观察如图的点阵图形和与之相对应的等式,探究其中的规律:
①4×0+1=4×1-3;
②4×1+1=4×2-3;
③4×2+1=4×3-3;
④;
⑤W.
…
(第6题)
(1)请你在④和⑤后面的横线上分别写出相对应的等式;
(2)通过猜想,写出与第n(n为正整数)个图形相对应的等式.
专训四:整体思想在整式加减中的应用
名师点金:整式化简时,经常把个别多项式作为一个整体(当作
单项式)进行合并;整式的化简求值时,当题目中含字母的部分可以看成一个整体时,一
般用整体代入法,整体代入的思想是把联系紧密的几个量作为一个整体来看的数学思想,运用这种方法,有时可使复杂问题简单化.
应用整体思想合并同类项
1.化简:4(x+y+z)-3(x-y-z)+2(x-y-z)-7(x+y+z)-(x -y-z).
应用整体思想去括号
2.计算:3x2y-[2x2z-(2xyz-x2z+4x2y)].
直接整体代入
3.设M=2a-3b,N=-2a-3b,则M+N=()
A.4a-6b
B.4a
C.-6b
D.4a+6b
4.当x=-4时,代数式-x3-4x2-2与x3+5x2+3x-4的和是()
A.0
B.4
C.-4
D.-2
5.已知A=2a2-a,B=-5a+1.
(1)化简:3A-2B+2;
(2)当a=-1
2
时,求3A-2B+2的值.
添括号后再整体代入
6.(中考·威海)若m-n=-1,则(m-n)2-2m+2n的值是()
A.3
C.1
D.-1
7.已知3x2-4x+6的值为9,则x2-4
3
x+6的值为()
A.7
B.18
C.12
D.9
8.已知-2a+3b2=-7,则代数式9b2-6a+4的值是W.
9.已知a+b=7,ab=10,则式子(5ab+4a+7b)-(4ab-3a)的值为W.
10.已知14x+5-21x2=-2,求式子6x2-4x+5的值.
11.当x=2时,多项式ax3-bx+5的值是4,求当x=-2时,多项式ax3-bx+5的值.
特殊值法代入
12.已知(2x+3)4=a
0x4+a
1
x3+a
2
x2+a
3
x+a
4
,求:
(1)a
0+a
1
2
+a
3
+a
4
的值;
(2)a
0-a
1
+a
2
-a
3
+a
4
的值;
(3)a
0+a
2
+a
4
的值.
专训五:整式加减常见的热门考点
名师点金:本章的主要内容有整式的定义及其相关概念,整式的运算等,学好这些内容为后面学习整式乘法打好基础.而在中考命题中,对这些内容的考查常与其他知识相结合,主要以填空、选择题的形式出现.
整式的概念
1.下列说法正确的是()
A.整式就是多项式
B.π是单项式
C.x4+2x3是七次二项式
D.3x-1
5
是单项式
2.若5a3b n与-5
2
a m b2是同类项,则mn的值为()
A.3
B.4
C.5
D.6
3.-1
3πx
2y的系数是,次数是W.
整式的加减运算
4.下列正确的是()
A.7ab-7ba=0
B.-5x3+2x3=-3
C.3x+4y=7xy
D.4x2y-4xy2=0
5.当a=-2,b=-1时,代数式1-|b-a|的值是()
A.0
B.-2
C.2
D.4
6.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影
部分的周长和是()
(第6题)
A.4m cm
B.4n cm
C.2(m+n)cm
D.4(m-n)cm
7.化简:
(1)5x-(2x-3y);
(2)-3a+[2b-(a+b)].
8.先化简,再求值:
(1)4
3
a-
2a-
2
3
a2-
-
2
3
a+
1
3
a2,其中a=-
1
4
;
(2)2(2x-3y)-(3x+2y+1),其中x=2,y=-1 2 .
9.有这样一道题目:
计算1
3
x2-
3x2+3xy-
3
5
y2+(
8
3
x2+3xy+
2
5
y2)的值,其中x=-
1
2
,y=2.
甲同学把“x=-1
2”错抄成了“x=
1
2”,他的计算结果也是正确的,你知道这是
怎么回事吗?
整式的应用
10.可以表示“比a的平方的3倍大2的数”的是()
A.a2+2
B.3a2+2
C.(3a+2)2
D.3a(a+2)2
11.某养殖场2015年底的生猪出栏价格是每千克a元,受市场影响,2016年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()
A.(1-15%)(1+20%)a元
B.20%(1-15%)a元
C.(1+15%)(1-20%)a元
D.15%(1+20%)a元
12.大客车上原有(4a-2b)人,中途下车一半人,又上车若干人,这时车上共有(8a-5b)人,那么上车乘客是人.(用含a,b的代数式表示)
13.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有人.(用含m的代数式表示)
14.若一个长方形的长是a+b,它的宽比长短a-b(a>b),则这个长方形的周长是W.
15.某服装厂有三个加工车间,9月份的生产情况是:第一车间加工服装x套,第二车间加工的服装套数比第一车间的3倍少8套,第三车间加工的服装套数是第一车间的一半,你能求出9月份三个车间
共加工多少套服装吗?当x=600时,三个车间共加工多少套服装?
数学思想方法的应用
类型1 整体思想
16.若a2+2a=1,则2a2+4a-1=W.
17.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx 的值为W.
18.已知2x2-5x+4=5,求式子(15x2-18x+4)-(-3x2+19x-32)-8x 的值.
类型2 数形结合思想
19.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()
(第19题)
A.a+c
B.c-a
C.-a-c
D.a+2b-c
20.观察图中正方形四个顶点所标数的规律,可知2 016应标在()
(第20题)
A.第503个正方形的左下角
B.第503个正方形的右下角
C.第504个正方形的左上角
D.第504个正方形的右下角
21.若单项式-3x a-b y5与单项式2xy5a+b的和仍是单项式,则a+b=W.
类型3 转化思想
22.已知A=-3x2-2mx+3x+1,B=2x2+2mx-1,且2A+3B的值与x无关,求m的值.
探究规律
23.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,…,这些等式反映自然数间的某种规律,设n(n≥1)表示自然
数,用关于n的等式表示这个规律为W.
24.用黑、白两种正六边形地面瓷砖按如图所示规律拼成若干个图案,则第n 个图案中有白色地面瓷砖块.
(第24题)
25.用如图(a)所示的三种不同花色的地砖铺成如图(b)的地面图案.
(1)用①+②+③+④+⑤+⑥+⑦+⑧+⑨的方法计算地面面积,请列出整式并化简.
(2)你有更简便的计算方法吗?请你列出式子.
(3)你认为由(1)(2)两种方法得到的两个式子有什么关系?为什么?
(第25题)。