高考——数学多选题专项训练专项练习及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考——数学多选题专项训练专项练习及解析
一、数列多选题
1.(多选题)已知数列{}n a 中,前n 项和为n S ,且2
3
n n n S a +=,则1n n a a -的值不可能为
( ) A .2
B .5
C .3
D .4
答案:BD 【分析】
利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,
由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本
解析:BD 【分析】
利用递推关系可得12
11
n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵2
3
n n n S a +=
, ∴2n ≥时,1121
33
n n n n n n n a S S a a --++=-=
-, 化为:112
111
n n a n a n n -+==+--, 由于数列21n ⎧⎫
⎨
⎬-⎩⎭
单调递减, 可得:2n =时,
2
1
n -取得最大值2. ∴1
n n a a -的最大值为3. 故选:BD .
【点睛】
本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.
2.已知数列{}n a 满足112a =-,11
1n n
a a +=-,则下列各数是{}n a 的项的有( )
A .2-
B .
2
3
C .
32
D .3
答案:BD 【分析】
根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;
数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要
解析:BD 【分析】
根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】
因为数列{}n a 满足112
a =-,11
1n n a a +=-,
2121
31()
2
a ∴=
=--;
32
1
31a a =
=-; 41311
12
a a a =
=-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-
,2
3
,3; 故选:BD . 【点睛】
本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规
律,属于基础题.
3.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4
n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n
= B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1
{
}n
S 为递增数列 答案:AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】
因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;
解析:AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】
11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1
1104n n n S S S -≠∴
-= 因此数列1{
}n S 为以1
1
4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n
=+-=∴=,即A 正确; 当2n ≥时1111
44(1)4(1)
n n n a S S n n n n -=-=
-=--- 所以1,141,24(1)n n a n n n ⎧
=⎪⎪
=⎨⎪-≥-⎪⎩
,即B ,C 不正确;
故选:AD 【点睛】
本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.
4.(多选)在数列{}n a 中,若2
2
1(2,,n n a a p n n N p *
--=≥∈为常数),则称{}n a 为“等方差
数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .
(){}1n
- 是等方差数列
C .{}2
n
是等方差数列.
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列
答案:BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故
解析:BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,则12222
(1)21n n a a n n n --=--=-不是常数,故
{}n
a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方
差数列,故B 正确; 对于C ,数列{}
2
n
中,()()
22
221
11
2234n
n n n n a a ----=-=⨯不是常数,{}
2n
∴不是等方差
数列,故C 错误; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数
列,()()2
2
2
112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,
故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BD. 【点睛】
关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.
5.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( )