数形结合和几何直观共47页文档
几何直观
什么是几何直观——对几何直观的认识与思考(七)关于几何直观,课标在第一部分前言的“课程设计思路”中描述了其定义,阐发了其价值与作用:几何直观主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
可以说,这段话是目前理解几何直观的最重要依据。
数学课程标准(2011版)解读第92页—95页对几何直观的认识中指出:几何直观,顾名思义,所指有两点:一是几何,在这里几何是指图形;二是直观,这里的直观不仅仅是指直接看到的东西,更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来,它在本质上是一种通过图形所展开的想象力。
用最通俗的话说几何直观,它不仅是看到了什么?而是通过看到的图形思考到了什么?想象到了什么?直白点就是看图想事,看图说理,也包括想图、画图、表达想法。
利几何直观在小学数学中的运用2011年版课标指出:“几何直观主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
”教师在理解几何直观的过程中,要注意以下几个问题:第一,几何直观指的是通过“几何”的手段,达到“直观”的目的,实现“描述和分析问题”的目标。
这里的“几何”手段主要是指“利用图形”,“直观”的目的主要是将“复杂、抽象的问题变得简明、形象”。
因此,几何直观对学生而言是一种有效的学习方法,对教师而言是一种有效的教学手段,它是数形结合思想的体现,在整个数学学习过程中发挥着重要作用。
第二,几何直观所利用的“图形”主要是指点、线、面、体以及由以上四要素组成的其他几何图形,在小学阶段主要有正方形、长方形、三角形、平等四边形、梯形、圆以及线段、直线、射线等。
几何直观所要描述和分析的问题,不仅可以是生活问题,而且可以是数学问题。
几何直观—与数轴相关的数形结合问题 教学设计
几何直观—与数轴相关的数形结合问题教学设计几何直观—与数轴相关的数形结合问题教学设计一、引言在数学教学中,几何直观的理解对学生的数学学习至关重要。
数轴作为数学中的重要工具,是帮助学生理解数学概念的重要手段之一。
本文将围绕几何直观与数轴的关系展开讨论,结合数形结合问题的教学设计,帮助学生更好地理解和应用数学知识。
二、数轴的基本概念1. 数轴的定义数轴是一条直线上按照一定的单位长度刻度的线段,通常用于表示实数。
数轴上将实数与坐标一一对应,帮助我们直观地理解数的大小和大小之间的关系。
2. 数轴的特点数轴上的任意一点都可以与实数一一对应,数轴上距离原点越远的点对应的实数值也越大。
通过数轴,我们可以直观地比较不同实数的大小,并且进行加减乘除运算。
三、数形结合的教学设计在教学中,我们可以结合数轴的几何直观,帮助学生更好地理解数学概念。
以下是针对数形结合问题的教学设计:1. 引入实际问题引入一个与学生生活相关的实际问题,例如买菜花了多少钱、走路花费了多少时间等等。
2. 绘制数轴让学生自己绘制数轴,并在数轴上标出相关的数值。
通过绘制数轴,让学生更直观地理解数值之间的大小关系。
3. 解决问题让学生通过数轴来解决实际问题,比如计算买菜花了多少钱、走路花费了多少时间等等。
通过解决问题,让学生对数轴的应用有更深刻的理解。
四、个人观点和理解数轴作为一种几何直观的工具,在数学教学中有着重要的作用。
通过数轴,学生可以更直观地理解数值之间的大小关系,并且解决实际问题。
在教学中,我们应该注重培养学生对几何直观的理解和应用能力,让他们在数学学习中更加自信和熟练。
五、总结通过本文的讨论,我们可以看到几何直观与数轴的关系对于数学教学的重要性,并且结合数形结合问题的教学设计,帮助学生更好地理解和应用数学知识。
在今后的教学中,我们应该注重培养学生的几何直观,让他们在数学学习中更加得心应手。
六、参考资料- 张三, 《数学教学研究》,2008年。
注重数形结合 增进图形理解——以“三角形三边关系”的教学为例
三角形三条边的关系是在学生初步认识三角形的基础上进行教学的,“任意两边长度之和大于第三边”是三角形边的重要性质,是判断任意三条线段能否组成三角形的依据。
熟练灵活地运用三角形三边关系有助于学生理解和掌握三角形的特征,提高学生全面思考问题的能力。
对于小学生来说,三角形三边关系不难理解,却不容易被发现,需要学生带着问题,在活动操作中将数和形有机融合,借形顿悟,以数释形,才能抓住图形的本质,增进对三角形三边关系的本质理解。
下面,我们以苏教版四年级下册“三角形三边关系”的教学为例,谈谈如何在图形教学中做到数形结合,提高学生对图形本质的理解力。
一、动手操作,以形助数,促进理解实际教学中如何将一目了然的常识与数学定理有机结合,是许多一线教师困惑的地方。
“两点之间线段最短”与“三角形任意两边长度和大于第三边”既有联系又有区别,虽然这两个结论学生接受起来容易,但他们往往难以洞悉结论背后隐藏的推理思考。
学生需要经历“动手实验—观察分析—猜想验证”等过程才能明白。
我们认为,在这个过程中教师要还原数学的思考过程,巧妙地化数为形、以形助数,将枯燥的推理形象化、直观化。
从学生动手操作,收集实验数据进行探究开始,教师可设计如下表格,引导学生操作实验(如图1)。
教学文/宋丽容蔡铭墀注重数形结合增进图形理解———以“三角形三边关系”的教学为例[摘要]数形结合,可以帮助学生认识事物的特征,更快地抓住数学本质,促进学生理解,让学习真实发生。
在“三角形三边关系”的教学中,教师要引导学生动手操作,借助图形直观化数据,促进其理解;巧妙设计问题,用数据刻画图形,实现有效理解;引导学生对比发现,数形交替,使其深度理解。
[关键词]三角形;三边关系;数形结合;图形理解[作者简介]宋丽容,福鼎市实验小学一级教师;蔡铭墀,福鼎市实验小学副校长,高级教师图1第1根小棒第2根小棒()cm ()cm ()cm ()cm ()cm ()cm ()cm ()cm 能否围成三角形(能的打“√”,不能的打“×”)第3根小棒()cm ()cm ()cm ()cm我会探索:从4根小棒中任意挑选3根小棒,能围成三角形吗?8cm4cm 5cm2cm44教学教师让学生判断“能否围成三角形”,并观察表格说说有什么发现,明确指导学生需要做什么、该怎么做。
数学中考复习:数形结合思想PPT课件
距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0
几何直观与数形结合的联系与区别
几何直观与数形结合的联系与区别【几何直观与数形结合的联系与区别】1. 引言在数学领域中,几何直观和数形结合是两个重要的概念,它们在数学学习过程中都扮演着非常重要的角色。
在本文中,我们将探讨几何直观和数形结合的联系与区别,以帮助读者更好地理解这两个概念。
2. 几何直观的概念几何直观是指人们对几何空间、形状和位置关系的直观理解和感知。
它是一种非形式化的数学思维方式,通常通过观察、图像和实物来帮助我们理解几何问题。
几何直观在初等数学教育中占据着重要地位,它可以帮助学生更直观地理解几何概念,从而提高数学学习的效果。
3. 数形结合的概念数形结合是指在数学学习中将几何形状和数学概念相结合,通过数学方法来研究几何问题。
数形结合可以帮助我们更深入地理解几何形状的性质、特点和变化规律,从而在解决实际问题时能够运用数学方法进行分析和求解。
4. 几何直观与数形结合的联系几何直观和数形结合在数学学习中并不是孤立的概念,它们之间存在着密切的联系。
几何直观为数形结合提供了直观的感受和图像化的理解,而数形结合则为几何问题的深入研究和分析提供了数学化的手段和方法。
通过几何直观和数形结合的联系,学生可以更全面地理解几何概念,并通过数学方法对几何问题进行更深入的探究。
5. 几何直观与数形结合的区别尽管几何直观和数形结合在数学学习中有着密切的联系,但它们又有着一定的区别。
几何直观更强调直观感受和视觉化的理解,注重学生对几何空间和形状的感知;而数形结合更注重数学方法和理论知识的应用,强调数学工具在解决几何问题中的作用。
几何直观和数形结合在数学学习过程中各自发挥着不同的作用,相辅相成,共同促进着学生对几何问题的全面理解。
6. 个人观点和理解就个人而言,我认为几何直观和数形结合在数学学习中都非常重要。
几何直观可以帮助我们更直观地理解几何概念,激发学生对数学的兴趣;而数形结合可以帮助我们深入研究几何问题,提高数学问题的解决能力。
我认为教学中应该注重几何直观的培养,同时也要注重数形结合的训练,以帮助学生全面、深刻地理解几何概念。
数形结合
3
∴D点坐标为(-3 ,3)或(
3,3).
有一个抛物线形的立交桥拱,这个桥拱的最大高度为16米,跨 度为40米。若在离跨度中心M点5米处垂直竖立一铁柱支撑拱顶, 这铁柱应取多长?
还可取哪些不同的位置来建立平 面直角坐标系? y
解:以M为原点,以AB所在直线为x 轴, 建立直角坐标系. 设函数解析式为
81
A
225 图 2
B
A 225 图 1 400
1.如图,点A、D、G、M在半圆O上,四边 形 ABOC 、 DEOF 、 HMNO 均 为 矩 形 。 设 BC=a EF=b NH=c,则a、b、c的大小关系 是——————
如图,在直角三角形ABC中,角C是直角, AC=3,BC=4,点E在直角边AC上(与A、C两 点均不重合),点F在斜边AB上(与AB两点均 不重合)(1)若EF平分直角三角形ABC的周 长,设AE的长为x,试用含x的代数式表示三角 形AEF的面积。(2)是否存在线段EF将直角 三角形ABC的周长和面积同时平分?若存在, 求出此时AE的长;若不存在,说明理由。
2、 二次函数y=ax2+bx+c的图像如图所示, 则点 A(a, b)在
A. 第一象限 B. 第二象限 D. 第四象限
C. 第三象限
B
0或-2 .3、如图所示的抛物线:当x=_____时,y=0;
当x<-2或x>0时, y_____0; <
大于-2小于0 -1 当x在_____ 范围内时,y>0;当x=_____ 3 时,y有最大值____
(0,16)
y a( x m) 2 k
A
M · O 40m
∵抛物线顶点坐标为(0,16)
中考数学专题之数形结合
中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
培养小学生几何直观的策略
培养小学生几何直观的教学策略源于空间与几何的几何直观并不是仅仅就适用范围于发展学生的空间观念,同样对培养学生推理能力,启迪学生解题策略方面具有促进学生理解、深化思考的重要作用。
因此几何直观在数学教学中的应用研究是必不可少的有效工具,可以借助几何直观把复杂的数学问题变得简明、形象,有助于学生更好的学习数学。
几何直观是一种重要的学习方式,教学中我们更要培养学生应用几何直观来解决问题的能力,这是我们今后应用几何直观教学对学生学习方法的培养目标。
通过研读文章,使我从中归结出几何直观的教学策略有如下策略:1.数形结合的策略数学是研究数量关系和空间形式的科学。
而数形结合的思想就是抓住了数学的本质数与形,把抽象的数与具体的形结合在一起,让数与形有机结合,从而培养学生几何直观的能力。
小学生正处在形象思维向抽象思维过渡的阶段,图示,把抽象的算理变得直观可见,几何直观凭借图形的直观性特点将抽象的数学语言转化成直观的图形,让学生由形象思维慢慢过渡到抽象思维,帮助学生灵活的思维,开启智慧的大门。
2.动手操作的策略理解运算的意义教学中学生往往要经历四个阶段:情境感知、动作表征、语言表征、符号表征。
情境往往是教材提供给学生,或者是老师提供的,在感知的基础上,学生如何进一步理解情境,明白情境中蕴含的数量关系。
在小学阶段,我们常用的手段就是动手操作,动手操作的目的,就是要建立概念的表象。
而这一活动在人脑海中形成的表象和图形很相似,它都有具体的成像。
从这里开始,几何直观逐步萌芽。
比如加法,在学生的手中,就是把两部分合并,或者在一部分的基础上增加,或者从别的地方移入新的一部分。
“合并”、“增加”、“移入”在这里都不是抽象的概念,而是学生活生生的操作活动。
学生理解概念,正是从这些简单的操作入手,慢慢内化成语言,最后归纳总结形成比较规范严密的定义。
3.化静为动的策略。
化静为动的策略在数学中有两种体现。
一是让学生感受图形的变换,比如基本图形组合成组合图形,组合图形分解成基本图形。
数形结合与几何直观2012
• 策略4:假设全是鸡,也可以假设全是兔, 也可以假设一半是鸡一半是兔;
• 策略5:方程思路:用□表示鸡的只数,用 ○表示兔的只数,根据已知条件可以发现 □+○=8,2□+4○=22;由此可以得到 2(□+○)+2○=22,2○=22-16,○ =3。
• 策略6:面积图,利用长方形面积公式来计 算组合图形的面积。
最后的画与最后的话:
这是一棵什么树? 这是一棵勾股树。也称智慧树。
Thanks。
欢迎访问新思维数学网
http:
唐彩斌
四棵树,怎样栽,使得任两棵树之间距 离相等?
怎样用形来帮助思考?
5个朋友参加完聚会,一一道别,如果每 两人都握一次手,一共要握多少次手?
A
B
C
D
E
数形结合诗
华罗庚
数形本是相依偎, 焉能纷作两边飞. 数缺形时少直观, 形少数时难入微. 数形结合百般好, 割裂分家万事休. 几何代数统一体, 永远联系莫分离.
7
2
3
9 8 7 6 5 4 3 2 1
4+9=13
8+5=13
0 1 2 3 4 5 6 78 9
20以内进位加法 :
• 分数的大小比较
坐标与图形 :
y
4 3 2 1
D
A
B
o
1
2
3
4
5
6
7xΒιβλιοθήκη • 用数对表示C点的位置;并画出这个长方形 的另外两条边。 • 如果以BC所在的直线为对称轴作出这个长 方形的轴对称图形,请用数对表示A点所对 应的点的位置。 • 将这个长方形向上平移一格,用数对表示 出移动后长方形四个顶点的位置。
1 100
÷10
(完整word)数形结合思想在解题中的应用(包含30例子)汇总,推荐文档
数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:“数形结合”在解题中的应用原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202 解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
(word完整版)高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)(2021年整理)
(word完整版)高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)(word版可编辑修改)的全部内容。
数形结合的思想方法(1)--—讲解篇一、知识要点概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。
因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
借助数形结合巧建几何直观
教学研究新标准“图形与几何”部分课程核心内容首次提出在义务教育阶段应当注重发展学生的几何直观能力。
可见几何直观方面的研究是极其重要又与时俱进的。
几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。
小学阶段,主要的研究对象,一个是数、字母,另一个就是图形。
该如何借助图形获得最大的教育价值,这是作为数学工作者应该思考的一件事情。
在数学中建立学生的几何直观,要先从直观教学开始,引导学生学会用画图的策略分析题意,解决简单的实际问题,逐步上升到能将直观图与数学语言、符号语言进行转换,并逐步在解决数学问题的过程中渗透数形结合思想,感悟数与形、形与数之间的转化。
一、重视画图策略的教学,直观感知数学知识为什么要重视画图的策略?第一,要充分发挥图形带来的好处。
第二,要让孩子主动借助画图。
第三,重视变换,把握图形与图形的关系。
第四,要在学生的头脑中留住些图形。
苏教版四年级(下册)《解决问题的策略》,主要教学用画直观示意图的方法解决有关面积计算的实际问题。
例:梅山小学有一块长方形花圃,长8米,在修建校园时,花圃的长增加了3米,这样花圃的面积就增加了18平方米。
原来花圃的面积是多少平方米?学生读完例题,首先想到了解题还缺少原来的宽是多少这一条件,有很多学生无从下手,不会主动想到用画图的策略分析数量关系。
这时需要教师引导学生想到画图和鼓励学生尝试画示意图表示已知条件与问题,并通过充分交流,完善画出的示意图,这里的示意图不仅能表示出条件和问题,而且能清楚地看出增加的小长方形的长就是所需条件——原来的宽。
借助示意图清楚地体现出仅凭头脑不易想到的数量关系,列式解答后,再让学生结合算式和示意图说说解题思路,最后反思画图策略的价值,突出示意图对解决该类面积问题的重要作用。
二、概念教学利用图形渗透几何直观在概念教学中,教师可以根据教学内容,灵活渗透几何直观。
在教学中可以寻求各种途径与方法使学生切实体会到图形对概念理解、寻求解决办法带来的益处。
数形结合,建立几何直观意识
综合论坛93摘 要:数形结合可以将抽象的数学理论进行转化,将抽象的数学逻辑具体化,使学生可以在探究数量关系的时候,充分理解和掌握立体几何知识,从而帮助学生建立几何直观意识。
目前,许多小学数学课堂忽略了数形几何对于培养学生几何直观思想的重要作用。
下面,本文将从开展数形结合教学的几点途径入手谈一谈如何在小学课堂上培养学生的几何直观意识。
关键词:数形结合;几何直观;数量关系;多元化几何直观思想主要是指学生对于数学图形的分析能力和理解能力。
在小学数学教学过程中,由于学生的抽象思维不完善,对于一些抽象的数学问题,教师可以采取数形结合的教学方法,在抽象图形中分析数学概念和原理,使学生在探究数量关系、分析图形运动的过程中,对于抽象图形从数学逻辑的角度进行分析。
一、动手画图,梳理数量关系绘制简图是学生解决几何问题的一个良好的学习习惯。
对于一些比较复杂描述比较多的题目,教师可以鼓励学生绘制简图来梳理题目中的数量关系,帮助学生进行分析。
简图的绘制可以体现出学生的思维发展,在帮助学生理清数学思路的同时,使学生更好地进行数量关系的分析。
例如在学习“面积”这节课时,同学们除了需要掌握面积的计算公式以外,还需要了解到面积这个概念在生活中的作用,并学会利用面积来进行数量关系的分析。
例如在题目“将边长是8米的正方形花园篱笆进行拆除,如果改成一个宽为40分米且有一条长边靠墙的长方形,求围成的长方形的面积”在这个题目中,同学们可以绘制一个简图来分析数量关系。
同学们首先要明确边长8米的正方形的周长为32米。
这32米的篱笆是进行花园改造的基础。
也就是说长方形的一条长边和两条短边的长度加起来等于32米。
同学们可以发现其中的数量关系,然后可以得出长方形的长边b=24m,该长方形的面积为96平方米。
同学们还需要注意其中的单位转化问题,注意将分米转化成米再进行计算。
将数字标注在图形上,可以使学生快速地获得数量关系式,使学生准确地完成计算。
在绘制简图的时候,学生可以将自己的思路和数字标注在简图上,将题目转化成一个比较简单的图形关系进行分析。
数形结合“画”数学 培养低年级学生几何直观能力
湖北省秭归县实验小学袁玉玲案例分析课堂/实践KETANG SHIJIAN荩我国著名数学家华罗庚说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。
”数学中,数和形是两个最主要的研究对象,彼此有着非常密切的联系,一定条件下,数和形需要相互转化,相互渗透。
对于以形象思维为主的低年级学生来说,画数学是数形结合的重要手段,是培养学生几何直观能力的重要途径。
为此,我想说一说怎样通过画数学来培养低年级学生的几何直观能力。
一、引导学生化形为数———读懂图现用教材,大容量、大范围以图形、符号、语言式数学信息等形式承载,培养学生读懂图意,有效实现图形语言、符号语言、文字语言的转换是数学教学的前提和关键。
片段一在这个极为熟悉的家庭生活场景中,课堂最初展示环节,学生主要从关注的点入手。
为了有针对性地引领,我通过设问:猜猜老师会怎么来观察这幅图的不同场景?学生开始认真揣摩,从而主动发现有顺序进行观察,并全面得到:花(花盆):4+1=5(盆或个),凳子:2+3=5(个),现实人物(照片人物)1+2=3(人),梨:1+2=3(个),并从中发现相同算式可以表达不同的场景。
那一刻,写得全而多的学生内心充满欣喜,写得不够全的学生从同伴身上获得了新的认知和对同伴的欣赏。
片段二这是一个关于8的加法算式的主题图。
开始,多数学生只写出一个算式,便开心等待揭晓答案。
后经提醒“看看你能写出几个加法算式”。
于是他们又陷入了深思,并发现了系列算式:摇绳与跳绳总人数:2+6=8(人);戴帽子与不戴的总人数:1+7=8(人),穿裙子与穿裤子总人数:3+5=8(人)。
截止到此,还是没能写出所有,我就再次启发:老师还能写出一个算式,猜猜看。
结果全班还是没有一人能有所悟,我板书算式4+4=8(人),并追问“你能说一说为什么可以这样写吗”。
终于有学生满心欢喜地说出:“因为女生有4人,男生有4人。
”老师趁胜追击:“仔细观察这4个算式,看看你能从中又有什么新的发现?”从而引导学生从整体来观察,在观察中比较,并发现4个算式涉及到8的组成,不仅可以按顺序写出算式:2+6=8,3+5=8,4+4=8,还真正从内心深处体会到:原来这个简单的跳绳场景图中,蕴含了这么丰富的数的内涵。
数形结合的ppt
考情分析
纵观多年来的高考试题,不难发现,数形结合应用 的考查,比比皆是.集合问题,函数与不等式问题,解 析几何问题,立体几何问题等都用到了数形结合的思想 与方法.
巧妙运用数形结合的思想方法解决一些抽象的数学 问题,可起到事半功倍的效果. 尤其在解一些选择题、 填空题中更显其优越.
我们在平时复习中要注意培养这种思想意识, 要争取胸中有图,见数想图,以开拓自己的思维视野。
x1
x2
-8
-4
y
x3
x4
O2
4
6
8x
二.数形结合解决有关函数问题
例5 (09北京)设f(x)是偶函数,若曲线y=f(x) 在点(1,f(1))处的切线的斜率为1,则该曲线 在(-1,f(-1))处的切线的斜率为————
y
o
x
二.数形结合解决有关函数问题
例6 (2010北京)如图放置的边长为1的正方形PABC沿 x轴滚动。设顶点P(x,y)的纵坐标与横坐标的函数关 系是y=f(x),则f(x)的最小正周期为 y=f(x)在其相邻 零点间的图像与x轴所围区域的面积为
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
知识影响格局,格局决定命运! 多端互通
抽奖特权
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。 开通VIP后可以在VIP福利专区不定期抽奖,千万奖池送不停!
福利特权
开通VIP后可在VIP福利专区定期领取多种福利礼券。
四 数形结合解决有关解析几何问题
例11 (09江西)设直线直线系M :
.
x cos ( y 2)sin 1 (0 2 )
对于下列四个命题: A.存在一个圆与所有直线相交 B. 存在一个圆与所有直线不相交 C. 存在一个圆与所有直线相切 D. M中的直线所能围成的正三角形面积相等 其中真命题的代号是————