AIM-120_AMRAAM[1]
动物凶猛波音FA18大黄蜂舰载战斗机
动物凶猛波音 F A 18 大黄蜂舰载战斗机F/A-18"大黄蜂"战斗机一直以来是比较让人忽视的一种战斗机,自服役伊始就被F-14"雄猫"的光芒所遮蔽,同时又饱受航程不足等缺陷的指责,被戏称为"塑料虫"。
但不可否认的是,"大黄蜂"是比较成熟的设计,遭遇的服役初期故障远低于同时代的三代机,其多用途作战能力大大增加了舰载航空联队的作战灵活性。
随着时间的推移,"大黄蜂"逐渐成为美国海军舰载航空兵的军马,最终"大黄蜂"和"超级大黄蜂"一统美军航母甲板,证明的自身的价值。
起源1975年1月13日美国空军部长约翰·麦克卢卡斯宣布通用动力YF-16成为ACF(空战战斗机)项目的获胜者,理由是YF-16的速度比YF-17略快,且其安装的F100发动机已被F-15采用,可降低维护费用。
F-16后来的成功超出当时所有人的想象,其产量超过4,500架,至今仍未停产。
具有先进气动外形的YF-16,战机史上杰出的设计至于诺斯罗普的YF-17,如果没有下文的话那么今天我们只能在航空历史杂志中瞻仰这种飞机了。
失去了美国空军ACF合同之后,诺斯罗普公司原本打算就此结束,但美国海军对新战机的需求又使YF-17获得了一线生机。
在整个70年代初,一小撮美国海军军官对格鲁曼F-14"雄猫"高昂的价格颇有微词,念念不忘寻求一种低成本的替代战斗机,正好此时"雄猫"项目遭遇研发困难,成本不断超支,于是美国海军启动了VFAX(舰载战斗攻击机)项目。
可以说美国海军给了YF-17第二次生命VFAX被设想成一种能取代F-4"鬼怪"、A-4"天鹰"、A-7"海盗II"的多用途战斗机,格鲁曼也提交了"雄猫"的简化型(F-14X)参与竞标,但被国防部副部长断然拒绝。
世界上的隐形战机有哪些?
如今在世界上,隐身战机还没有十分普及,只有为数不多的几个国家的几款飞机可以被称为是隐身战机。
让我们来看看现在世界上都有那些飞机能被称为“隐形战机”吧。
F-22 Raptor(猛禽)是由美国洛克希德·马丁(Lockheed Martin)、波音(Boeing)和通用动力公司联合设计的新一代重型隐形战斗机。
也是目前专家们所指的“第四代战斗机”(此为西方标准,若按俄罗斯标准则为第五代)。
作为美军空战的顶级战斗机,F-22将替代波音公司生产的F-15是美国于21世纪初期的主力重型战斗机,它是目前最昂贵的战斗机。
它配备了可以不发射电磁波,用敌机雷达波探测敌机的无源相控阵雷达和探测范围极远的有源相控阵雷达,AIM-9X(Aerial Intercept Missile-9X)(响尾蛇)近程格斗空对空导弹、AIM-120C(AMRAAM Advanced Medium-Range Air-to-Air Missile)高级中程空对空导弹、推重比接近10的F-119涡扇引擎、先进整合航电与人机接口等。
在设计上具备超音速巡航(不需要使用后燃器维持)、超视距作战、高机动性、对雷达与红外线隐身性(低可探测性)等特性。
据估计其作战能力为现役F-15的2到4倍。
将会在较长的一段时间里成为世界重型战斗机的霸主。
研发F-22的技术也同时应用到了下一代F-35上。
是仅有的现役可以超音速巡航两种战机之一。
美国的F-35“闪电”有“世界战斗机”之称。
3年前,美军的“通用低成本轻型战斗机”和“联合先进攻击技术”的新战机理念在洛·马-诺·格公司联合研制的X-35上初现,美军便选中它并命名为F-35联合打击战斗机(JSF)。
它的研制费用将达绝对空前的2000亿美元,世界上还有8个国家参与合作,投入经费亦超过45亿美元。
预估市场有4000架需求意向,这令世界传媒惊疑。
F-35战斗机俄罗斯T-50战机俄罗斯T-50战斗机俄罗斯第五代战机T-50为单座双发重型战机,具备隐身性能好、起降距离短、超机动性能、超音速巡航等特点。
AIM-120各批次简介
AIM-120各批次简介作者:Andreas Parsch70年代后期,美国寻求一种麻雀导弹的后继型号,推动AMRAAM(先进中程导弹)计划,1981年雷声公司的YAIM-120成为该计划的赢家。
1984年AIM-120进行了首次实弹射击,1987年,超音速状态下的发射也获得成功。
1988年首批低速生产型AIM-120A部署,在1991年达到IOC(初始作战能力)。
AIM-120A射程50-70公里,其他非作战型号的AIM-120A包括CATM-120A机载训练弹,DATM-120A地面手工作业弹(培训地勤),JAIM-120A电子测试弹(telemetry electronics for test and evaluation purposes谁来准确翻译一下)。
虽然AIM-120A在海湾战争中被部署到前线,没任何官方资料表明它有被发射的记录。
AIM-120A首次记录是在1992年12月的南方守望行动中,一架F-16C用它击落了一架伊拉克的MIG-25。
AIM-120B在1994年开始被部署,它采用了新的导引头WGU-41/B,拥有软件的可再编程能力、新的数据处理器等电子元件的升级。
AMRAAM项目在某时推动了升级计划P3I,第一阶段(P3I Phase 1)的成果就是AIM-120C,于1996年开始部署。
最大的区别就是拥有切尖三角翼为了可以装进F-22的内弹仓,同时也可以用于其他的AMRAAM载机上,其翼展由63.5厘米下降到44.7厘米。
AIM-120C换了新的WGU-44/B导引头。
第二阶段(P3I Phase 2)的型号是AIM-120C4,1999年开始部署,采用新的战斗部WDU-41/B。
C5是C4的小改进型,拥有更大的火箭发动机和经过改进的控制单元。
(我在另一消息来源看到的说法是由于电子元件的技术改良、体积更小,所以使C5可以装上更大的药柱达到更远的射程)。
第三阶段(P3I Phase 3)的型号是AIM-120C7,在1998年开始设计。
Fansub资料整理一:战斗妖精雪风专用名词、缩写、航空术语及其他注释
转载下以前ling大茼蒿fansub论坛整理的资料。
------------------------------------------------------------------项目负责人:阿苏-=第一话=-专用名词、缩写EW: (Electronic Warfare) 电子战,利用电子对抗措施(ECM)及电子反对抗措施(ECCM)展开的战斗Master Arm: 武器管制装置总的开关TFS: (Tactical Fighter Squadron) 战术战斗机中队Seeker: 在选择性攻击里作为探测用的搜索装置IFF: (Identification Friend or Foe) 敌我识别装置Super Sylph: 多目的侦察机FFR-31MR系列的代号----Sylph: 15-16世纪瑞士炼金士Paracelsus假想中生活在空气中的精灵FSQ: (Fire Squadron) 消防中队TARPS: (Tactical Reconnaissance Pod System) 战术侦察辅助系统ECM: (Electronic Counter Measures) 电子对抗措施ARSR: (Air Route Surveillance Radar) 航空路线监视雷达SSR: (Secondary Surveillance Radar) 二次监视雷达PR: (Primary Radar) 一次雷达INS: (Inertial Navigation System) 惯性导航装置EOL: (Engine Off Landing) 无动力状态着陆航空通话术语Merge: 表示地面管制员所见的敌我双方机体图像在雷达上重叠Brovo: 航空无线电通讯中字母B的替代单词----注: 航空无线电通讯中如遇单个字母一般用特定的以该字母为首的单词代替Tanker: 空中加油机Alpha:航空无线电通讯中字母A的替代单词Angel: 高度表示代号,1 Angel表示高度1000英尺Engage: 表示战机确认攻击目标并开始交战Fox 2: 红外诱导导弹发射时提醒友军战机注意的代号Break: 提醒同机战友或友机进行急速转向脱离的代号RTB: (Return To Base) 返回基地Vector: 机首方位的表示,以正北为0/360度,角度顺时针递增,90度即为正东PAN PAN PAN: 国际紧急无线电通讯信号,表示飞机遇到紧急状况,不至于遇难,但已处于需要警戒的状态Uniform: 航空无线电通讯中字母U的替代单词其他Ghoul: 东方神话中的食尸鬼Harpy: 希腊神话中身体是女人而翅膀,尾巴及爪似鸟类的怪物,其性贪婪Valak: 所罗门神话中骑红色双头地狱龙并且长着一对天使翅膀的少年Kraken: 挪威传说中的北海巨妖-=第二话=-专用名词、缩写Auto Throttle: 自动节流阀ALS: (Auto Landing System) 自动着陆装置ADC: (Air Data Computer) 对气数据计算电脑ADCS: (Air Data Computer System) 对气数据计算电脑系统AICS: (Air Inlet Control System) 进气控制系统ASE: (Active Seeker Electronics) 主动搜索电子装置TAB-15: (15th Tactical Air Base) 第15前线战术航空基地AGG: (Air to Ground Gunnery) 空对地射击FAF: (Fairy Air Force) Fairy空军HL: (Helplessness) 不合作倾向DFM: (Defence Mechanism) 自卫意识SSD: (Social Skills Deficit) 社交技巧缺乏瞬间回旋率: 不考虑回旋维持和瞬间失速,取得最大迎角(AOA)时的回旋率DACT: (Dissimilar Air Combat Training) 异机种空战训练SC: (Scramble) 紧急支援机群,具有支援己方干扰敌方的能力,在各基地24小时执行戒备待机任务Escort: 护卫机群航空通话术语Ramp: 停机坪Tower: 机场控制塔台Approach: 轰炸机、战斗机接近目标,或者飞机接近机场准备着陆Romeo: 航空无线电通讯中字母R的替代单词其他Griffon: 希腊神话中狮身鹫首的怪兽Banshee: 爱尔兰民俗中的女妖精,眼泪会化为琥珀,能够预示灾难。
培训体系FC飞行员的培训
(培训体系)FC飞行员的培训F-15C飞行员的培训F-15C走过了20多年的风雨历程,经历过数次的实战检验,至今仍无被击落的记录。
当然首先应归功于它优越的性能,其次就是美空军对F-15C飞行员的严格培训,造就了这支“神鹰”。
当下就让我们走进美军的壹个培训F-15C战斗机飞行员部队,见壹见他们是怎样训练飞行员的。
走进325飞行联队尽管F-15“鹰”式战斗机于美国空军服役始于1974年,可是即使当下,它仍然是富有战斗力的飞机。
F-15的另壹个重要作用就是教授学员飞行。
于F-15C 战斗机上带飞学员和利用F-15C对敌作战的职责由第1飞行中队、第2战斗机中队和第95飞行中队承担。
这3个中队隶属于美国空军教育和训练司令部的第325飞行联队,该联队位于美国佛罗里达州的廷德尔(Tyndall)空军基地(AFB)。
然而,由于很多的壹线飞行中队转飞F-22A“猛禽”战斗机,因此,需要培训F-15C战斗机的新飞行员的数量于减少,其结果是第壹飞行中队不得不于2006年12月解散。
325战术训练联队徽章第2飞行中队和第95飞行中队分别拥有25架F-15C,由于担负培训飞行学员的任务,每壹个飞行培训中队(FTU)仍配备8架双座F-15D型飞机,而于前线的飞行中队壹般配备俩架。
第2飞行中队有30名飞行教官,第95飞行中队有28名飞行教官。
为保证这些飞行教官能保持且不断提高自己的飞行技巧,规定他们必须用飞行时间的10%用于自己的连续飞行训练,其目的是为了保证飞行教官们有能力胜任飞行教学任务。
另外,这俩个飞行中队也担负辅助作战任务。
因此,每个飞行培训小队均要参和空对空武器系统评估项目(WSEP),于此期间,飞行教官们要进行实弹发射。
且且,为保证他们的战斗能力,他们也要参加军事演习。
每个飞行中队要根据学员的飞行经历安排五种课程。
其中时间最长的课程是新飞行员基本课程培训,时间为6个月。
其它四种课程是过渡性课程(TX):TX1课程时间为5个月,针对飞过其它战斗机,但没有飞过F-15C的飞行员;TX2课程时间为3个月,针对“鹰”式战斗机飞行员,且壹年之上没有飞行该机;TX3课程时间为2个月,针对F-15C飞行员,且没有飞行该机的时间少于壹年。
AIM-120空空导弹
AIM-120空空导弹AIM-120空空导弹⼀、概述先进中距空空导弹AIM—120是美国为争夺空中优势⽽研制的⼀种全⽅向、全天候并具有下视/下射能⼒的空空导弹。
该弹1981年研制,⽤于对付80年代已有及其未来可能出现的战⽃机、战⽃轰炸机及巡航导弹,1985年试射,1991年服役。
现已研制出A、B、C、D等多种改进型号并装备多国空军。
A型采⽤⼆级固体⽕箭发动机,制导⽅式为惯性制导+指令修正制导+主动雷达末制导,具有“射后不管”和多⽬标攻击能⼒;B型为A型的改进型,采⽤更先进的数据处理器;C型是专为美国第四代战⽃机F-22改制的,前后翼展均为450毫⽶,最⼤飞⾏速度5马赫,⼀架F-22⼀共可挂4枚A型导弹或6枚C型导弹。
⼆、技术性能1、结构特点先进中距空空导弹的外形与“⿇雀”导弹⾮常近似,唯⼀明显差别是翼⾯较⼩及尾翼⾯和⿇雀略有不同。
但实际上,先进中距空空导弹是由尾翼控制,并不同于“⿇雀”导弹。
所以,这种导弹本可以省去弹翼(雷锡恩公司的竞争弹就是⼀枚⽆翼弹),但因为要保证在⼤部分飞⾏包线内作战的⾼效率,仍然保留了⼩型弹翼。
尽管先进中距空空导弹的外形⾮常接近“⿇雀”导弹,但它却是⼀种完全新型的导弹,并⽐将被取代的“⿇雀”导弹性能好得多。
研制组的主要⽬标是必须保证所设计的导弹具有以下特性:与“⿇雀”导弹相⽐,可靠性⾼,抗⼲扰能⼒强,低空作战能⼒好,平均速度⼤,尤其要具备多⽬标攻击能⼒。
通过使⽤最新数字技术和微型固态电⼦设备,AIM—120先进中距空空导弹具备了上述优点。
其中⼀个细节就为:导弹导引头装有平⾯矩阵天线,天线直径仅有7英⼨(17.7厘⽶),但其发射功率竟⽐⽬前装备在许多⼀线战⽃机的雷达功率还⼤。
先进中距空空导弹没有沿⽤“⿇雀”导弹的常规半主动雷达的制导⽅式,⽽是⼤胆⾰新了制导⽅式,这正是其空战性能的关键所在。
这⼀新型制导⽅式被称作指令/惯性/主动寻的复合制导,完全符合现⾏的制导原理,即尽量使“智能”集中于导弹本⾝,⽽不是集中于发射装置(坦克、飞机或步兵武器)。
“蝰蛇”的秘密(三改进)洛克希德f-16“战隼”战斗机
“蝰蛇”的秘密(三改进)——洛克希德f-16“战隼”战斗机F-16A/B MLU,中期寿命升级历史中期寿命升级的理由1979 年F-16 开始服役时,人们预计从1999 年起“战隼”就会被后继机取代。
但是由于各种政治和经济原因,直到现在还没有出现可以完全取代F-16 的后继机,“战隼”还需要服役许多年。
为了保持F-16 的作战能力和作战效能与苏联先进战斗机处于同一水平,1989 年F-16 各伙伴国开始研究“战隼”大规模的现代化改进项目,即中期寿命升级,简称MLU。
MLU 臂章,背景是五个参与国MLU 旨在对早期的F-16A/B 进行延寿和重大升级,使其具备Block 50/52 F-16C/D 的作战能力,特别增加了AIM-120 AMRAAM 发射能力,以及在夜间和恶劣天候下精确武器的投送能力。
MLU 的主要升级内容飞机结构完整性项目由于欧洲的F-16 在实际使用中重量载荷要大于设计时的估计值,结果导致机身的一些隔框出现了不可预知的细小裂纹。
因此在进行MLU 升级之前,先要进行大规模的飞机结构完整性检查项目(PACER SLIP)。
F-16 的所有隔框都要经过检查,如有必要就使用冷加工方式维修。
经过PACER SLIP 后,F-16 的机身寿命延长至5,000 小时,完成其30 年的服役寿命。
每一家升级的F-16 都要对结构进行仔细的维修,以保证剩余使用寿命在飞机设计上是允许细小裂纹产生的,为了预测裂纹的数量和种类是否还在可接受的范围之内,飞机制造商想出了独特的办法。
以F-16 为例,这种轻型高机动战斗机的最大过载9g,机身寿命不低于8,000 飞行小时。
在F-16 的整个寿命周期中,起降次数、载重量、过载等数据都要记录进载荷谱中,以便对裂纹发展和剩余寿命进行预测。
Block 15 的结构延寿项目参与国1991 年5 月3 日美国、比利时、丹麦和荷兰签署了国际MLU 协议,挪威作为参与者列席。
欧陆台风(中)——细品“台风”
欧陆台风(中)——细品“台风” 细品“台风”欧洲战斗机共有8架原型机,分别是:DA1,DASA制造,于1994年3月27日首飞。
DA2,BAE制造,于1994年4月6日首飞。
DA3,阿莱尼亚公司制造,于1995年6月4日首飞。
DA4,双座型,由BAE制造,于1997年3月14日首飞。
DA5,DASA制造,1997年2月24日首飞。
DA6,双座型,由CASA制造,于1996年8月31日首飞。
DA7,阿莱尼亚制造,于1997年1月27日首飞。
DA2是英国原型机,后期换装了EJ.200发动机DA3是意大利原型机,首先安装了EJ.200DA4是第一架双座型原型机DA5,德国单座原型机DA6,西班牙双座原型机DA7,意大利单座原型机1997年,欧洲战斗机获得投产许可,1998年被授予生产合同。
1998年9月,欧洲战斗机公司宣布新战机的名字是“台风”,公司强调各成员国空军有自由命名该机的权利,“台风”只是出口型的名字。
不过“台风”这个名字的确不错,在二战期间就出现了著名的英国“台风”战斗机和德国Bf 108“台风”联络机,具有重要历史意义。
此外“台风”这个词来自汉语,反映了欧洲战斗机公司成员国没有语言偏见。
此时“台风”至少要到2000年才能开始服役。
欧洲战斗机存在的扯皮和拖延现象是多国合作项目是无法避免的,尽管晚了10年,但结果没有让人失望。
总体设计“台风”是一种鸭式布局飞机,安装两台欧洲喷气发动机公司的EJ.200双转子加力涡扇发动机。
机腹进气口有助于在大迎角时保证进气的顺畅,进气口的总体布置类似于EAP验证机,所不同的是“台风”的进气口不是矩形,附面层隔板和下唇呈弧形,当然“台风”继承了铰接进气口下唇。
“台风”的进气口细节EJ.200单台可提供6120千克的干推力,9185千克的加力推力。
头两架“台风”原型机安装RB.199发动机。
“台风”的辅助动力装置(APU)用于启动发动机及地面供电。
EJ.200先进中推欧洲喷气发动机公司还测试过EJ.200的反推装置,打开角度与RB.199不同“台风”没有沿用EAP验证机的双三角形机翼,而是采用了更简单的切尖三角翼。
美国“先进中距空空导弹”AIM—120的发展及启示(1)
美国“先进中距空空导弹”AIM—120的发展及启示(1)作者:樊会涛王秀萍任淼刘晶晶来源:《航空兵器》2015年第01期摘要:美国“先进中距空空导弹”(AMRAAM)是当今世界上最先进、生产数量最多的现役雷达型中距空空导弹。
本文全面阐述了美国先进中距空空导弹的作战要求、研制方案、研制过程、试验与鉴定以及改进改型情况,介绍了该导弹的生产装备和作战使用情况,梳理了导弹研制、生产和使用过程中出现的问题,总结了导弹研制和生产过程中项目管理的经验和教训以及导弹研制和发展带给我们的启示和借鉴。
关键词:先进中距空空导弹;AIM-120;研制;试验与鉴定;生产与装备;项目管理中图分类号:TJ760.1文献标识码:A文章编号:1673-5048(2015)01-0003-070 引言美国的AIM-120“先进中距空空导弹”(AMRAAM)是当今世界上最早进入现役的第四代主动雷达型空空导弹,在近40年的研制和改进过程中,AMRAAM沿袭美国传统的系列化发展思路,吐故纳新,常改常新,在中距空空导弹领域始终保持着领先优势,是目前世界上最先进的空空导弹之一,享有经久不衰的盛名。
它的出现引发了空战基本模式的变化,标志着以超视距空战为主的时代真正来临。
作为第四代雷达型空空导弹的杰出代表,AMRAAM在世界空空导弹发展史上具有非常重要的影响和地位。
AMRAAM导弹具有全天候、全方向、全高度作战和超视距攻击、发射后不管、多目标攻击、抗多种电子干扰等先进能力,能够提供非对称的空战和空防优势。
凭借卓越的性能、前所未有的作战灵活性、独一无二的高可靠性以及低维护费用,AMRAAM导弹赢得了国际上的广泛认可,不仅大量装备美国部队,还出口到36个国家和地区,成为美制和欧制先进战斗机首选的超视距作战武器。
AMRAAM导弹于1976年开始研制,研制方案充分考虑了美国多个军种的作战需求和技术发展,研制工作经历方案论证、演示验证、全尺寸研制三个阶段。
现代战斗机的作战方法——隐形及信息化时代的空中较量
寂静的战场第二次世界大战时的空战,大多还是活塞式战斗机之间混战,武器也以机炮为主。
而冷战时,空战则进入了高性能喷气式战斗机和近远程导弹时代。
那么,随着时间推移到现在,先进的信息数据系统和隐形战斗机的应用,飞机的驾驶员在座舱里究竟都在看些什么、听些什么,最终是如何将敌机击落的呢?首先让我们一起来模拟体验一下当今世界上最先进的战斗机的作战方法吧。
从座舱向外望去,天空依然披着一层淡淡的黑纱。
我所驾驶的战斗机载着巡航导弹正在驶向预定的作战空域。
驾驶舱内的多功能屏幕的上方所显示的是从后方指挥中心通过AWACS(Airborne Warning And Control System机载报警与控制系统)远距离监控到的战场信息。
想必与我并肩作战的其他驾驶员的座舱里应该也显示着相同的东西吧。
虽然各机之间相互间隔数十公里,而且由于电波的干扰相互之间也无法直接通话。
但是最先进的数据连接系统仍然可以将我们相互之间联系在一起,让我们共通行动。
我们仍然被称为是一支编队。
根据EMS(Electronic Warfare Support Measure电子支援测量系统)所传来的情报来看,敌方战机也在用尽各种手段寻找我们以求先发制人。
当然在我方的电子干扰机输出的大功率电子干扰电波干扰下,对方始终没有得逞。
敌方这种做法可以说是在冒着相当大的风险,因为想要在空中执行索敌任务的话,意味着同时也将暴露自己的位置。
事实上,我们也已经进入了对方雷达的搜索半径以内,但是高科技的隐形技术同样能使我们不被暴露在敌方的雷达屏幕之上。
机会来了,FCS(Fire Control System武器控制系统)显示,敌机已经进入了导弹的射程。
我立刻按下右手操纵杆中程空对空导弹选择按钮,随之又按下了目标选择按钮。
数据连接系统上随之传来了攻击方案,敌方编队队长机由我旁边的僚机负责攻击,而我则负责瞄准对方的二号机。
随后,瞄准,锁定,发射!飞机打开内置弹舱射出一枚中程导弹之后又慢慢地关上了舱门。
阿帕奇直升机操作
起飞按6-7-8-9-0(推力,越往后推力越大)等速度到120的时候就可以按↓键起飞了起飞后按G收起起落架L键平飞R键是雷达开关S、X两个键分别控制雷达侦察范围S侦察范围小适合飞机近身格斗使用X反之-键+键控制飞机减速和加速f22最大能达到200%的加速可以轻易甩掉后面咬着你的飞机还有飞机在天上的时候←键→键不是方向键而是控制飞机左右翻滚要上下左右四个键互相配合才能转弯A键是飞向目标H键是返航但是要配合雷达使用数字键1、2、3、4是武器选择导弹都是自动锁定按空格键就能发射了掌握好发射距离最重要发射早了打不到发射晚了说不准对方先发射把你打下来了还有就是降落很不好掌握在天上对好机场跑道把发动机开到最小掌握好距离然后慢慢下降关闭发动机按5 再打开起落架G 到跑道上按B刹车就这样A 自动驾驶Enter 锁定目标B 刹车/ 显示操作键C 释放金属乾扰物’’ 显示最危险的目标G 放下/拉起起落架; 轮流切换武器H 自动驾驶返回基地. HUD显示颜色的明暗变化L 自动拉平[ 选择上一个目标M 任务简报] 选择下一个目标N 轮流切换到下一个导航点不论是友军还是敌军R 开/关雷达Page Down 右转S 雷达显示范围缩小Delete 左转X 雷达显示范围扩大Ctrl+J 弹射逃生W 给僚机命令1 切换到AIM-120空对空导弹2 切换到AIM-9响尾蛇空对空导弹3 切换到机炮4 切换到JDAM空对地集束炸弹6 发动机60%功率7 发动机70%功率8 发动机80%功率9 发动机90%功率0 发动机100%功率F1-F4 长机的各种视角F5-F8 僚机的各种视角F9-F12 时间加速1、2、4、6倍Keypad2 显示弹药贮藏状况Keypad4/Insert 显示防御系统状况Keypad5/Home 显示导航系统状况Keypad6/PageUp 显示攻击系统状况Keypad7 显示系统损坏状况Keypad8 开启/关闭导航视窗Keypad9 人工驾驶BackSpace 打开加力Tab/Crtl Tab 确定目标为攻击目标SpaceBar 开火Break 暂停游戏1153|评论(1)起飞:按9 这是油门当速度到200以后按向下的光标飞机就飞起来了到一定高度后按a 自动飞行l水平飞行1234是武器选择空格是发射HOME周围是雷达按纽C是铂条干扰盛夏的自己酌么吧每一关的任务不同,你开始游戏前先把武器选好,F-22配备4种武器,1键中距空-空导弹2-响尾蛇格斗导弹3-火神炮4-JDAM激光制导炸弹你在攻击地面目标时要先选4,然后就会出现标靶了. 空-空导弹: 当你目标变红时,证明进入有效射程,但不一定能击中.看好再打.S/X 扩大/缩小雷达显示范围Tab键选择跟踪的目标Enter键选定目标空格给你两个秘籍:开始后按T 然后输入:下面任一段回车ill be back 弹药加满never tell me the odds 不会被击中there can be only one 无敌we can rebuild him 修复按住“+”这个键是增加到100%推动力,“-”是减少到60%。
图说“狂风”ADV——不列颠天空守护者
图说“狂风”ADV——不列颠天空守护者 “狂风”F3战⽃机在四分之⼀世纪⾥⼀直是不列颠天空的守护者。
这种诞⽣在冷战时期的“狂风”防空型(ADV)被设计成⼀种远程截击机,英国皇家空军原计划⽤它来拦截出现在北海上空的苏联飞机。
西德、意⼤利和英国已经⾛到⼀起联合研制了“狂风”IDS(遮断打击)战⽃轰炸机,英国在该机基础上专门研制ADV型来取代⽼化的“闪电”和“⿁怪”战⽃机,后来该机也被意⼤利和沙特空军采购。
“狂风”ADV在1976年3⽉4⽇开始研制。
ADV原型机于1979年8⽉9⽇在英国宇航公司的沃顿⼯⼚下线,10⽉27⽇进⾏了⾸飞。
在第⼆年的7⽉18⽇和11⽉18⽇,第⼆、三架原型机也分别升空。
等最后⼀架ADV在1990年交付皇家空军时,该机已经⽣产了170架。
ADV配备了两台涡轮联盟公司的RB199涡扇发动机,单台加⼒推⼒7443千克,使该机的最⼤速度达到2.2马赫,升限超过15240⽶。
该机能够全天候昼夜作战,飞⾏员配备有夜视镜,通过空中加油可以执⾏远离基地的巡逻任务。
“狂风”ADV的机⾝长18.62⽶,⽐IDS型有所增加,这是为了能在机腹半埋挂载4枚英国宇航“天空闪光”半主动雷达制导导弹并增加载油量。
长度增加是通过在前轮舱后⽅插⼊⼀个53厘⽶长的延长段实现的。
重新设计的机⿐内安装了⼀台马可尼/费伦梯的空中拦截-24(AI-24)“猎狐者”雷达,对中型空中⽬标的最⼤探测距离是161公⾥。
ADV取消了机⾝左侧机炮,换成⼀个900升油箱。
ADV在外观上和IDS的其他区别还有尾部减少了⼀个前向雷达定位与告警接收机天线,两侧翼根各增加了⼀个前向告警天线。
与IDS⼀样,ADV的前机⾝左侧也有⼀根可收放空中加油探管。
不过两种飞机的航电差异颇⼤。
ADV和“狂风”IDS⼀样也是双座布局,前座是飞⾏员,后座是武器系统军官(WSO),负责操纵雷达和⾃卫对抗系统。
1987年9⽉,“狂风”F3 ZE155创造了历史,成为第⼀种不着陆不空中加油飞越⼤西洋的英国喷⽓式战⽃机。
美国的空军实力纵览
主要任务:近距离空中支援;前线空中管制.航速:420英里/小时.翼展57英尺6英寸,长度53英尺4英寸,高度14英尺8英寸.航程:800英里.装备武器:一门30毫米七管加特林机关枪;最多可载16,000磅的各种军械,包括500磅炸弹,2,000磅普通炸弹,燃烧弹和Rockeye II集束炸弹, 小牛导弹和激光制导/电子成像制导炸弹,红外干扰曳光弹,电子干扰配件及球形吊舱.乘员:一人.装备数量:A-10,123架和OA-10,83架;国民警卫队,A-10,76架和OA-10,26架;预备役,A-10,44架和OA-10,7架.
16.C-17A 全球大亨 III
主要任务:货物/士兵运输.航速:450英里/小时.翼展169英尺10英寸,长度174英尺, 高度55英尺1英寸.航程:经空中加油后可不限时滞空.乘员:3人.装备数量:109架.
17.C-12 休伦
主要任务:乘客/货物空运;pilot seasoning(这词儿不懂).航速:336英里/小时.翼展54英尺6 英寸,长度43英尺9英寸,高度14英尺9英寸.航程:1,026英里.乘员:两人.装备数量:27架.
9.E-8C 联合星
主要任务:远程,空对地监视系统.航速:450-585英里/小时.翼展145英尺9英寸,长度152英尺11英寸,高度42英尺6英寸,天线罩长度,40英尺.航程:一次滞空9小时,经空中加油滞空15小时.乘员:22人.装备数量:16架.
10.AC-130H/U 炮艇
主要任务:近距离空中支援,空中阻断以及护送.航速:300英里/小时.翼展132英尺7英寸,长度97英尺9英寸,高度38英尺6英寸.航程:1,496英里.装备武器:AC-130H,两门20毫米火神机关炮备弹3000发,一门40毫米Bofors火炮以及一门105毫米榴弹炮;AC-130U,一门25毫米加特林机关枪,一门40毫米Bofors火炮以及一门105毫米火炮.乘员:AC-130H,14人.AC-130U,13人.装备数量:AC-130H,8架;AC-130U,13架.
我最喜欢的战机英语作文
我最喜欢的战机英语作文My Favorite Fighter Jet。
As an aviation enthusiast, I have always been fascinated by fighter jets. Among all the fighter jets in the world, my favorite one is the F-22 Raptor.The F-22 Raptor is a fifth-generation, single-seat, twin-engine, all-weather stealth tactical fighter aircraft developed for the United States Air Force (USAF). It was designed to perform air superiority missions, but also has ground attack, electronic warfare, and signal intelligence capabilities. With its advanced avionics, sensor fusion, and weapons systems, the F-22 is considered the most advanced fighter jet in the world.What makes the F-22 Raptor so special is its stealth technology. The aircraft's shape, materials, and coatings are designed to reduce its radar signature, making it virtually invisible to enemy radar. This allows the F-22 topenetrate deep into enemy territory undetected and strike targets with precision. The F-22 is also equipped with advanced sensors and weapons, including the AIM-120 AMRAAM and AIM-9 Sidewinder air-to-air missiles, the GBU-32 JDAM and GBU-39 SDB precision-guided bombs, and the 20mm M61A2 Vulcan Gatling gun.Another impressive feature of the F-22 Raptor is its maneuverability. The aircraft is capable of supercruise, which means it can fly at supersonic speeds without using afterburners, allowing it to cover long distances quickly and efficiently. The F-22 can also perform high-G maneuvers, such as the "Cobra" and the "J-turn," which enable it to outmaneuver most other fighter jets.In addition to its advanced technology, the F-22 Raptor is also a beautiful aircraft. Its sleek lines and angular shape give it a futuristic look that is both intimidating and awe-inspiring. The F-22's distinctive "v-tail" design and twin-engine configuration make it instantly recognizable.Overall, the F-22 Raptor is an amazing aircraft that represents the pinnacle of modern fighter jet technology. Its stealth, speed, maneuverability, and firepower make it a formidable weapon in any conflict. As an aviation enthusiast, I am in awe of the F-22 Raptor and consider it my favorite fighter jet of all time.。
aim120
APPROVEDNAVY TRAINING SYSTEM PLANFOR THEAIM-120 ADVANCED MEDIUM RANGE AIR-TO-AIR MISSILEN88-NTSP-A-50-8111C/AJUNE 1998June 1998 AIM-120 ADVANCED MEDIUM RANGE AIR-TO-AIR MISSILEEXECUTIVE SUMMARYThe Advanced Medium Range Air-to-Air Missile (AMRAAM) program was established as a result of Joint Service Operational Requirement for an Advanced Air-to-Air Tactical Missile needed in the post-1985 time frame. AMRAAM is managed as a joint Air Force and Navy program. The Air Force, as executive service, established a Joint System Program Office (JSPO) at Air Force Material Command/Aeronautical Systems Center, Eglin Air Force Base, Fort Walton Beach, Florida. The JSPO is headed by the Air Force Deputy for AMRAAM (Code ASC/YA) and the Navy AMRAAM Program Manager, Air (PMA268). AMRAAM is currently in the Production, Fielding/Deployment and Operational Support Phase of the Weapon System Acquisition Process. Air Force Initial Operating Capability (IOC) was declared in September 1991. Navy IOC was completed in September 1993.Presently, there are three series of AMRAAM: AIM-120A, AIM-120B, and AIM-120C. The AIM-120A is a non-reprogrammable missile, while the AIM-120B/C are reprogrammable through the missile umbilical using the Common Field-Level Memory Reprogramming Equipment. The AIM-120C has smaller aerosurfaces to enable internal carriage on the Air Force F-22 aircraft.Testing was accomplished in a combined Developmental Test and Evaluation and Initial Operational Test and Evaluation program. Successful Navy operational testing on the F/A-18C/D aircraft was conducted by Commander Operational Test and Evaluation Force during FY94 and included an evaluation of the missile system’s effectiveness and suitability, maintainability, and supportability in the Navy operational environment.The AMRAAM Training Program consists of initial training for instructors and follow-on training for operators and maintenance personnel. Initial training for All-Up-Round (AUR) loading, handling, processing and LAU-127A/A launcher operation and maintenance was provided by Naval Air Warfare Center Weapons Division (NAWCWD), Point Mugu, California in fiscal year (FY) 1993 to: Strike Fighter Weapons School (SFWS), Atlantic, NAS Cecil Field, and SFWS Pacific, NAS Lemoore; Naval Air Maintenance Training Group Detachment (NAMTRAGRUDET) Maintenance Training Unit (MTU)-4030, NAS Mayport, Florida, MTU-4032, NAS Norfolk, Virginia, MTU-4033, NAS North Island, California; MTU-4034, VMAT-203 FREST, MCAS Cherry Point, North Carolina; and Naval Weapons Station (NWS) Yorktown, Virginia. Refresher training for AUR loading, handling, processing and LAU-127A/A launcher operation and maintenance was provided by NAWCWD, China Lake, California in FY 1995. Hughes Missile Systems Company provided aircrew instruction via their AMRAAM School in Tucson, Arizona through FY 1995. This responsibility was transitioned to the Naval Strike and Air Warfare Center (NSAWC) as part of their Strike Fighter Training Program (SFTP).June 1998 AIM-120 ADVANCED MEDIUM RANGE AIR-TO-AIR MISSILETABLE OF CONTENTSPage Executive Summary (i)List of Acronyms (iii)Preface (vii)PART I - TECHNICAL PROGRAM DATAA.Title-Nomenclature-Program..........................................................................I-1B.Security Classification....................................................................................I-1C.NTSP Principals.............................................................................................I-1D.System Description.........................................................................................I-2E.Developmental Test and Operational Test.......................................................I-2F.Aircraft and/or Equipment/System/Subsystem Replaced.................................I-2G.Description of New Development...................................................................I-3H.Concepts........................................................................................................I-6I.On-Board (In-Service) Training......................................................................I-18J.Logistics Support...........................................................................................I-20 K.Schedules.......................................................................................................I-22 ernment Furnished Equipment and Contractor Furnished EquipmentTraining Requirements....................................................................................I-22 M.Related NTSPs and Other Applicable Documents...........................................I-22PART II -BILLET AND PERSONNEL REQUIREMENTS...................................II-1 PART III -TRAINING REQUIREMENTS................................................................III-1 PART IV -TRAINING LOGISTICS SUPPORT REQUIREMENTS.......................IV-1 PART V -MPT MILESTONES.................................................................................V-1 PART VI -DECISION ITEMS/ACTION REQUIRED.............................................VI-1 PART VII -POINTS OF CONTACT...........................................................................VII-1June 1998 AIM-120 ADVANCED MEDIUM RANGE AIR-TO-AIR MISSILELIST OF ACRONYMSAFB Air Force BaseAFD Arm/Fire DeviceAIMD Aircraft Intermediate Maintenance DepartmentAMIST Aviation Maintenance In-Service TrainingAMRAAM Advanced Medium Range Air-to-Air MissileAMTCS Aviation Maintenance Training Continuum SystemAO Aviation OrdnancemanASC Aeronautical Systems CenterAT Aviation Electronics TechnicianAUR All-Up-RoundBIT Built-In-TestBUPERS Bureau of Naval PersonnelCAI Computer Aided InstructionCANTRAC Catalog of Navy Training CoursesCATM Captive Air Training MissileCBT Computer-Based TrainingCCRV Captive Carry Reliability VehicleCD-ROM Compact Disk-Read Only MemoryCFMRE Common Field-level Memory Reprogramming Equipment CIN Course Identification NumberCINCLANTFLT Commander in Chief, U.S. Atlantic FleetCINCPACFLT Commander in Chief, U.S. Pacific FleetCMC Commandant of the Marine CorpsCMI Computer Managed InstructionCNET Chief of Naval Education and TrainingCNO Chief of Naval OperationsCOMNAVAIRESFOR Commander, Naval Air Reserve ForceCV/CVN Aircraft CarrierCWTPI Conventional Weapon Technical Proficiency Inspection DOP Designated Overhaul PointEOD Explosive Ordnance DisposalFMS Foreign Military SalesJune 1998 AIM-120 ADVANCED MEDIUM RANGE AIR-TO-AIR MISSILELIST OF ACRONYMSFREST Fleet Replacement Enlisted Skills TrainingFRS Fleet Replacement SquadronFY Fiscal YearGFE Government Furnished EquipmentICW Interactive CoursewareIM Insensitive MunitionsIMSD Inventory Management and Systems DivisionJILSP Joint Service Integrated Logistics Support PlanJRB Joint Reserve BaseJSD Joint Services DepotJSPO Joint System Program OfficeMALS Marine Aviation Logistics SquadronMATMEP Marine Aviation Training Management Evaluation Program MCAS Marine Corps Air StationMCCDC Marine Corps Combat Development CommandMOS Military Occupational SpecialtyMRL Missile Rail LauncherMTIP Maintenance Training Improvement ProgramMTU Maintenance Training UnitNA Not ApplicableNAMTRAGRUDET Naval Air Maintenance Training Group DetachmentNAS Naval Air StationNATOPS Naval Air Training and Operating ProceduresStandardizationNAVAIRSYSCOM Naval Air Systems CommandNAVSCOLEOD Naval Explosive Ordnance Disposal SchoolNAVICP Naval Inventory Control PointNAWCWD Naval Air Warfare Center Weapons DivisionNAWMU Naval Airborne Weapons Maintenance UnitNCEA Non-Combat Expenditure AllocationNEC Navy Enlisted ClassificationNSAWC Naval Strike and Air Warfare CenterNTSP Navy Training System PlanJune 1998 AIM-120 ADVANCED MEDIUM RANGE AIR-TO-AIR MISSILELIST OF ACRONYMSNWS Naval Weapons StationOOLD Out-Of-Line DeviceOPNAV Office of the Chief of Naval OperationsOPNAVINST OPNAV InstructionOPO OPNAV Principle OfficialPEST Practical Explosive Ordnance Disposal System Trainer PICA Primary Inventory Control ActivityPMA Program Manager, AirP3I Pre-Planned Product ImprovementRF Radio FrequencyRFT Ready For TrainingRSP Render Safe ProceduresSFTI Strike Fighter Tactics InstructorSFTP Strike Fighter Training ProgramSFTS Strike Fighter Training SystemSFWS Strike Fighter Weapons SchoolSFWSL Strike Fighter Weapons School AtlanticSFWSP Strike Fighter Weapons School PacificSFWT Strike Fighter Weapons and TacticsSICA Secondary Inventory Control ActivitySIST Serviceable-In-Service-TimeTBD To Be DeterminedTD Training DeviceTDD Target Detection DeviceTIVS Thermally Initiated Venting SystemTM Technical ManualT&R Training and Readiness (matrix)TTE Technical Training EquipmentUSAF United States Air ForceUSMC United States Marine CorpsUSN United States NavyWCU Weapons Control UnitJune 1998 AIM-120 ADVANCED MEDIUM RANGE AIR-TO-AIR MISSILELIST OF ACRONYMSWDU Weapons Detonation UnitWGU Weapons Guidance UnitWPU Weapons Propulsion UnitWSO Weapon and Sensor OfficerWTT Weapon and Tactics TrainerJune 1998 AIM-120 ADVANCED MEDIUM RANGE AIR-TO-AIR MISSILEPREFACEThis Approved Navy Training System Plan (NTSP) has been prepared to update the AIM-120 Advanced Medium Range Air-to Air Missile (AMRAAM) Navy Training Plan, A-50-8111B, dated August 1994. The update of this document was accomplished through a thorough review of the life-cycle manpower, personnel, and training requirements associated with the AMRAAM program.The major changes and updates to this NTSP consist of:PART I: Outdated information was deleted and all elements of this part were modified to include the Air-launched, Aerial-Intercept Guided Missile (AIM) design seriesAIM-120B and AIM-120C. Also, information on the Strike Fighter TrainingProgram’s AMRAAM Computer-Based Training (CBT), developed by the NavalStrike and Air Warfare Center (NSAWC), NAS Fallon, Nevada, was added. PART II:This part was recalculated to depict current billet requirements for operational and fleet support units through FY02.PART III:In addition to reflecting the changes above, this part has been recalculated to identify chargeable student billets through FY02.PART IV:This part has been updated to reflect the new requirements in training and training logistics support resulting from the AIM-120B and AIM-120C.PART V:This part has been updated to show completion of milestones and includes new milestones supporting the AIM-120B and AIM-120C.PART VII:This part has been updated to reflect current Points of Contact.June 1998PART I - TECHNICAL PROGRAM DATAA.TITLE-NOMENCLATURE-PROGRAM1.Nomenclature-Title-Acronym. AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM).2.Program Element. 24162N and 26138M.B.SECURITY CLASSIFICATION1.System Characteristics.................Unclassified2.Capabilities...................................Secret3.Functions.......................................UnclassifiedC. NTSP PRINCIPALSOPNAV Principal Official (OPO)Program Sponsor.............................................. Chief of Naval Operations (CNO) (N88) OPO Resource Sponsor.......................................................................... CNO (N880C7) Functional Mission Sponsor ................................................................... CNO (N880C7) Marine Corps Mission mandant of the Marine Corps (CMC) (APW-31) Developing Agency......... Naval Air Systems Command (NAVAIRSYSCOM) (PMA268) Training Agency.......................... Commander in Chief Atlantic Fleet (CINCLANTFLT)Commander in Chief Pacific Fleet (CINCPACFLT)Chief of Naval Education and Training (CNET)Commander, Naval Air Reserve Force (COMNAVAIRESFOR)Marine Corps Combat Development Command (MCCDC) (C463)Naval Strike and Air Warfare Center (NSAWC) (N7) Training Support Agency................................................ NAVAIRSYSCOM (PMA205) Manpower and Personnel Mission Sponsor..................................................... CNO (N1)BUPERS (PERS-4, -40, -512E) Director of Naval Training ............................................................................. CNO (N7) CMC Manpower Management.................................................................... TFS DivisionJune 1998D.SYSTEM DESCRIPTION1.Operational Uses. Presently, there are three series of the AMRAAM mission design: AIM-120A, AIM-120B, and AIM-120C. Hereafter, AMRAAM will be used when referring collectively to all AMRAAM configurations, and the mission-design-series will be used when referring to specific AMRAAM configurations. AMRAAM is an all weather, radar guided, all-environment missile used on the F-15, F-16, F/A-18C/D, and in the future, the F/A-18E/F and F-22 aircraft. It incorporates active radar with an inertial reference unit and micro-computer system which makes the missile less dependent upon the fire control system of the host aircraft. The missile offers far greater lethality than most series of the AIM-7 Sparrow and significantly improves operational capability while reducing the missile's weight and drag on aircraft performance. The AMRAAM program is a joint United States Air Force (USAF) and United States Navy (USN) procurement, with the USAF designated as the executive service.2.Foreign Military Sales. The USAF established a Joint System Program Office (JSPO) at Air Force Material Command/Aeronautical Systems Center (ASC), Eglin Air Force Base (AFB), Florida, to manage the AMRAAM program. The JSPO is headed by the USAF Deputy for AMRAAM, code ASC/YA, and the USN AMRAAM Program Manager, Air(PMA268). The USAF, as the executive service, is responsible for Foreign Military Sales (FMS). AMRAAM is sold to approved FMS customers.E. DEVELOPMENTAL TEST (DT) AND OPERATIONAL TEST (OT). All AMRAAM testing is coordinated by the AMRAAM JSPO. Navy-specific testing is relegated to PMA268.1. DT and OT Not Completed. Not Applicable (NA).2. DT and OT Completed. Testing was accomplished in a combined Developmental Test and Evaluation and Initial Operational Test and Evaluation program. Successful USN OT on the F/A-18C/D aircraft was conducted by Commander, Operational Test and Evaluation Force during FY94. Maintainability and supportability demonstrations on the F/A-18C/D aircraft were also performed. Ground test, loading and unloading, and captive flights were also completed successfully.3. Follow-on Test and Evaluation. The United States Marine Corps (USMC) are considering integration of AMRAAM with their AV-8BC1 aircraft. Successful integration, procurement, and introduction will impact USMC AV-8BC1 aircrew and Organizational-level maintenance personnel training curriculum.F. AIRCRAFT AND/OR EQUIPMENT/SYSTEM/SUBSYSTEM REPLACED. The AMRAAM system does not replace any existing missile system in the Navy or Marine Corps inventory, although it does share the medium-range, air-to-air missile mission with the AIM-7 Sparrow.June 1998G.DESCRIPTION OF NEW DEVELOPMENT1.Functional Descriptiona. Missile. AMRAAM is a supersonic, air launched, aerial intercept, guided missile employing active radar target tracking, proportional navigation guidance, and active Radio Frequency (RF) target detection. It employs active, semi-active, and inertial navigational methods of guidance to provide an autonomous launch and leave capability against single and multiple targets in all environments.The AIM-120A is a non-reprogrammable missile (requires a hardware change to upgrade the missile software). The AIM-120B/C is reprogrammable through the missile umbilical using Common Field-level Memory Reprogramming Equipment (CFMRE). The USAF All-Up-Round (AUR) container houses an internal cable which enables up to four missiles to be reprogrammed while in the container. USN containers are not equipped with the cable and must be opened to reprogram the missile. All three AMRAAM variants are currently approved for use on the F-15C/D/E, F-16C/D, and F/A-18C/D aircraft.AMRAAM consists of the following major sections: Guidance, Armament, Propulsion, and Control. Other components include a wiring harness, harness cover, Thermally Initiated Venting System (TIVS), and wing and fin assemblies. A functional description of the launcher is also provided.(1) Guidance Section, Weapons Guidance Unit. The Weapons Guidance Unit (WGU) consists of the radome, seeker, servo, transmitter-receiver, electronics unit, Inertial Reference Unit, Target Detection Device (TDD), the harnesses, and frame structure. All units except the TDD are contained within a sealed structure composed of the pyroceramic radome, titanium skin sections, and aluminum aft bulkhead. The TDD, RF and video processor, and the antennas are attached to the aft skin section as a complete testable assembly. Electronics group functions include radar signal processing, seeker servo control, and all of the computations performed in the central data processor. The WGU-16B is used on AIM-120A missiles, the WGU-41/B is used on AIM-120B missiles, and the WGU-44/B is used on AIM-120C missiles. Guidance sections on AIM-120B and AIM-120C missiles contain Electronic Erasable Programmable Read Only Memory which allow reprogramming of the missile software. Missile software versions are denoted by Tape and Revision Numbers, e.g., Tape 4 Revision 16.(2) Armament Section, Weapons Detonation Unit. The Weapons Detonation Unit (WDU)-33/B forms an integral part of the tactical missile airframe and includes the warhead, the FZU-49/B (modified Mk 3 Mod 5) safe-arm fuze device, and the Mk 44 Mod 1 booster. The armament section also includes the forward missile hook and hanger. The WDU-33/B warhead meets the Insensitive Munitions (IM) program requirements.June 1998(3) Propulsion Section, Weapons Propulsion Unit. The Weapons Propulsion Unit (WPU)-6/B consists of an airframe, integral rocket motor, a blast tube and exit cone, and an Arm/Fire Device (AFD) with a visible safe-arm indicator. The high performance rocket motor utilizes a reduced smoke, hydroxyl terminated, polybutadiene propellant in a boost sustain configuration, an asbestos-free insulated case (an integral part of the airframe), and an integral aft closure, blast tube, and nozzle assembly with a removable exit cone to facilitate control section installation/removal. Wings are attached in wing sockets at the forward end of the propulsion section. Provisions are included within this section for mounting the filter rectifier assembly.(4) Control Section, Weapons Control Unit. The Weapons Control Unit (WCU)-11/B consists of four independently controlled electro-mechanical servo actuators, four lithium-aluminum batteries connected in parallel, and a steel fuselage section that is bolted to the propulsion section aft skirt. Each actuator consists of a brushless DC motor ballscrew, an infinite resolution potentiometer directly coupled to the output shaft, and pulse width modulated control electronics. The output shaft is engaged directly to a squib actuated lock so that it does not interfere with the fin (control surface) installation and removal.(5) Wiring Harness, Harness Cover, and Thermally Initiated Venting System. The wiring harness cover extends from the aft end of the guidance section to the forward end of the control section. Its primary purpose is to provide protection for the wiring harness. The main wiring harness electrically connects the umbilical connector, guidance section, and control section. The wiring harness cover also houses the TIVS. The TIVS is designed to vent rocket motor pressure in the event the missile is exposed to a fuel fire. The TIVS consists of an external thermal cord which, when ignited, triggers an Out-Of-Line Device (OOLD) that ignites a Linear Shape Charge that weakens the rocket motor, allowing the rocket motor to vent without exploding. The OOLD prevents the shaped charge from detonating should the booster in the OOLD inadvertently detonate due to causes such as high impact. The unit has an additional safety feature that causes it to “reset” within nine to thirteen units of gravity, such as the acceleration experienced during missile launch. This feature prevents the system from functioning during missile free flight so that the associated aerodynamic pressures do not inadvertently enable the TIVS and thereby degrade missile performance. An indicator is on the wiring harness cover showing the condition of the TIVS, either “ENABLE” or “DISABLE”. Only TIVS equipped missiles are deployed aboard Aircraft Carriers (CV/CVN).The WPU-6/B Propulsion Section (with TIVS) meets the fast cook-off and sympathetic detonation requirements of the IM program and the policy delineated in OPNAV Instruction (OPNAVINST) 8010.13B. The other requirements (bullet impact, fragment impact, and slow cook-off) have not been met with the current configuration. However, the WPU-6/B has been granted the appropriate waivers for shipboard use.(6) Wing and Fin Assemblies. Wing and fin assemblies provide for flight control of the missile. The four wings are detachable, stationary flight surfaces with ball fastenersJune 1998to facilitate quick installation and removal. The four fins provide the movable control surfaces. The AIM-120C has “clipped” wings and fins which are not interchangeable with AIM-120A and AIM-120B missiles. The AIM-120C utilizes “clipped” wings and fins in order to meet the internal carriage requirements of the F-22.b. Launchers. The AMRAAM system includes three new Missile Rail Launchers (MRLs): the LAU-127A/A, in conjunction with the LAU-115, used on the F/A-18C/D aircraft; the LAU-128A/A, and the LAU-129A/A, used on the F-15 and F-16 aircraft, respectively. Additional interface cables are not required between the aircraft and the launcher. The MRL can be installed and operated at all current AIM-9 Sidewinder positions on all candidate aircraft, except F/A-18C/D wing tip stations; and is also capable of launching AIM-9 Sidewinder missiles. The MRL supplements the Sidewinder launchers (except F/A-18C/D wing tip) on AMRAAM capable aircraft.2.Physical Description. AMRAAM has the physical properties listed below. Four wings, four fins (control surfaces), and the wiring harness cover are mounted externally, providing additional distinguishing features from other similar missiles, such as AIM-7 Sparrow. The AIM-120C utilizes “clipped” wings and fins in order to meet the internal carriage requirements of the F-22.Tactical Missile:Length ..........................144.0inchesDiameter .......................7.0inchesWing Span ....................21.0inches*Wing Span ....................19.0inches**Fin Span.........................25inches*Fin Span.........................19inches**Weight ..........................348.1pounds* AIM-120A and AIM-120B** AIM-120C3.New Development Introduction. AMRAAM was introduced through new production. The Navy began receiving AIM-120A deliveries in 1991, but delayed Fleet introduction until integration with the F/A-18 aircraft was completed in 1993. Fleet introduction coincided with F/A-18 IOC when CV/CVN load-outs began to include AIM-120A. AIM-120B deliveries began in FY 94, and AIM-120C deliveries began in FY 96. AMRAAM Pre-Planned Product Improvement (P3I) missile deliveries are anticipated to begin in FY 00 and continue through FY 12.4.Significant Interfaces. Power for Built-In-Test (BIT) of the pre-launch dormant missile is provided by converting aircraft power in the AMRAAM Electronic Control Unit. TheJune 1998 filter rectifier assembly is mounted at the forward end of the missile propulsion section and provides the conversion of aircraft power required by the missile. Prior to launch, signal and data transfer between missile and aircraft is accomplished through a buffer connector that is in-line between the launcher cable and the missile umbilical connector. Similarly, the CFMRE interfaces with AMRAAM using the buffer connector and the missile umbilical connector, and supplies the power in lieu of the aircraft for off-aircraft BIT and reprogramming operations.H.CONCEPTS1.Operational Concept. AMRAAM is employed by the aircrew of F-15, F-16, F/A-18C/D aircraft, and in the future, will be employed by the aircrew of F/A-18E/F and F-22 aircraft, against threat aircraft and cruise missiles. The host aircraft radar, missile radar, and data link are used to acquire and track single or multiple targets.2. Maintenance Concept. Maintenance of AMRAAM employed on various aircraft is accomplished using the basic maintenance philosophy outlined in OPNAVINST 4790.2 (series), and specific weapons maintenance instructions outlined in OPNAVINST 8600.2 (series).a. Organizational-level. Organizational-level maintenance units receive AMRAAM as an AUR, four per container. Organizational-level maintenance is performed by Work Center 230 USN Aviation Ordnanceman (AO) with Navy Enlisted Classification (NEC) codes 8342 and 8842, and USMC personnel with Military Occupational Specialty (MOS) 6531. The AN/AWM-54 Aircraft Firing Circuit Test Set is used to test for stray voltage in aircraft weapons circuits prior to loading ordnance. The AN/AWM-96 Aircraft Weapons Control Test Set is used primarily by Aviation Electronics Technicians (ATs) to test the functionality of the aircraft weapons circuit prior to loading AMRAAM, but is also used by AOs in squadrons employing the Integrated Weapons Team concept. On-aircraft testing is accomplished using the BIT capability of the missile. Organizational-level maintenance tasks include:• Visual inspection for damage and corrosion• Visual inspection of missile launcher assembly interface• Cleaning of external surface and corrosion control• Attaching wings and fins• Aircraft Weapons Control System Check• Uploading and downloading on aircraft• Returning launcher to Aircraft Intermediate Maintenance Department (AIMD) or Marine Aviation Logistics Squadron (MALS)b. Intermediate-level. Intermediate-level maintenance is performed on AURs and LAU-127 launchers. AIMD Weapons Departments, both shipboard and NAS, and MALS Ordnance Departments, Work Centers 710, perform intermediate-level maintenance on AMRAAM AURs. AIMD Weapons Departments, both shipboard and NAS, and MALSJune 1998 Ordnance Departments, Work Centers 71B, perform intermediate-level maintenance on LAU-127 launchers.(1) AURs. AIMD Weapons Departments, both shipboard and NAS, and MALS Ordnance Departments, Work Centers 710, receive AURs from the NWS, MCAS, or Naval Airborne Weapons Maintenance Unit (NAWMU). Missile maintenance is performed by Weapons Department USN AO personnel with NEC 6801 and USMC personnel with MOS 6541. Weapons/Ordnance Department AUR intermediate-level maintenance tasks include:• Storing and handling• Unpackaging Inspection• Visual inspection for damage and corrosion• Performing corrosion control procedures• Performing ready service inspection• Lubricating missile hook• De-canning and canning of AUR• Delivering missile to organizational-level• Returning AUR to NWS, NAWMU, or MCAS• Technical Direction Compliance actions, when appropriate(2) LAU-127. AIMD Weapons Departments, both shipboard and NAS, and MALS Ordnance Departments, Work Centers 71B, receive launchers from the supply system or AIMD. Launcher maintenance is performed by Weapons Department USN AO personnel with NEC 6802 and USMC personnel with MOS 6541. USN AO 6802 and USMC MOS 6541 functionally test the LAU-127 using the AN/AWM-90 series Intermediate Maintenance Guided Missile Launcher Test Set. Weapons/Ordnance Department launcher intermediate-level maintenance tasks include:• Storing and handling• Visual inspection for damage and corrosion• Performing corrosion control procedures• Performing ready service inspection• Delivering launcher assembly to organizational-level• Returning launcher to NWS, NAWMU, or MCAS• Technical Direction Compliance actions, when appropriate• Launcher testing using the AN/AWM-90 series IntermediateMaintenance Guided Missile Launcher Test Setc. All-Up-Round Depot-level. NWS Yorktown, Virginia, and NWS Fallbrook, California, are the AUR depot-level maintenance activities. Launchers are not processed through the NWSs or NAWMU. Depot-level AUR maintenance tasks include:。
美军现役先进空空导弹AIM
美军现役先进空空导弹AIM2021 年 3 月 3 日,美军在卡塔尔阿尔乌代德空军基地举行的综合战斗转弯训练活动中,来自第379 远征维修中队弹药飞行的飞行员将AIM-120D 先进中程空对空导弹装载到 F-15E 攻击鹰上.AIM-120D AMRAAM 自 1991 年开始服役,最高速度可达 4 马赫。
AMRAAM 是一款主动雷达制导的中程超音速空对空导弹。
是美国空军-海军联合AIM-7 Sparrow 的后续产品,具有发射和机动能力。
AIM-120B 是原始导弹的升级、可重新编程变体。
AIM-120C 为 F-22 和 F-35 的内部托架配备了较小的控制空间,并具有高角度偏离准星 (HOBS) 发射能力。
AIM-120D 除了更大的杀伤力外,还提供改进的射程、GPS 辅助制导、更新的数据链路和抗干扰能力。
正在进行的升级将进一步增强武器性能和电子保护。
AIM-120D 系统改进计划(SIP II)的第二阶段完成了运行测试,于2020 年投入使用。
网络安全测试已于 2019 年年中结束。
2020 年美空军采购了 414 枚 AIM-120D 导弹。
2019 年,美国空军宣布正在与海军合作开发 AIM-260 联合空中战术导弹 (JATM),以用射程更远、能力更强的武器取代 AMRAAM,以应对高端威胁。
承包商:雷神;诺斯罗普·格鲁曼公司;Nammo 集团(推进系统)。
首飞: 1984 年 12 月。
交付时间: 1988 年至今。
主动变体:·AIM-120B。
AIM-120A 的升级、可重新编程变体。
·AIM-120C。
为 F-22/F-35 优化的生产型。
·AIM-120D。
具有 GPS 引导、改进的射程、杀伤力和抗干扰性的最新变体。
尺寸:跨度 1.7 英尺(0.518米),长度 12 英尺(3.65米),直径 7 英寸(177.8mm)。
推进力:助推维持固体推进剂火箭发动机。
AIM-120开发
AIM-120开发介绍我们Eagle Dynamics为您带来尽可能逼真的飞行模拟而自豪,而对于现代空战,其中一个重要方面就是空空导弹模拟。
我们认识到此建模存在缺陷,并且在过去的一年中,我们一直在重新建模这些系统在DCS中的行为。
我们非常感谢您提供的所有出色的反馈,这在很大程度上使我们能够将空空导弹仿真提升到一个新的水平。
让我们以AIM-120为例,讨论如何在DCS中建模空对空导弹。
这是我们对所有空对空导弹的计划。
飞行模型如先前的新闻通讯所述,我们已经花费了很多时间进行计算流体动力学(CFD)研究。
几乎对每一种导弹型号进行了250种不同的计算。
已经进行了大量的研究使得我们能够在更精确的水平上模拟主要的空气动力特性。
我们还计算了发动机点火前和燃尽后导弹的重心和转动惯量等力学性能。
空气动力学与旧的导弹动力学模型相比,新模型包含了稳定性和控制特性。
这是新动力学的主要特征之一。
稳定性和控制特性包括静稳定性、弹翼效率和气动阻尼。
这些参数对于导弹的瞬态响应和整体飞行的真实仿真是必要的。
导弹的机动性和制导精度都依赖于它们。
我们还改进了导弹的升阻特性。
请看下面的图表。
它显示了诱导阻力改变/改善的程度。
旧的导弹版本高估了诱导阻力。
通过CFD模拟,我们获得了马赫5以下的正确升力和阻力值。
现在,最大升阻比对应于空空导弹的典型值。
新导弹在机动过程中能量损失更少。
零升力阻力也根据CFD数据进行了更改。
如下图所示,可以看到旧的和新的阻力值。
另一个有趣的特点是减少了由于发动机燃烧而产生的零升力阻力。
发动机排气增加了弹体后面的压力,从而减少了阻力。
图 1. 导弹在2马赫时的零升阻力与诱导阻力极曲线。
火箭发动机火箭发动机的性能直接影响导弹的弹道和射程,因此我们决定对发动机数据进行修正。
利用其他含HTPB/AP推进剂的少烟发动机的已知数据、排气喷口尺寸和一些手册数据,我们估算了推进剂特性。
然后,我们使用气动函数和喷口几何形状估算了AMRAAM发动机的燃烧变化,从而获得了发动机推力和比冲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IntroductionThe AIM-120 AMRAAM (Advanced Medium Range Air to Air Missile) is a high-supersonic, day/night/all weather Beyond Visual Range (BVR), fire-and-forget air-to-air missile. It has a high-explosive warhead and relies on active radar homing for the final stages of flight, being launched on inertial mid-course guidance without the need for the fighter to keep the target illuminated. Its capabilities include look-down, shoot-down, multiple launches against multiple targets, and intercepts at very short range in dogfight situations.the AIM-120 is used by a variety of Western fixed-wing combat aircraft, and is a decisive factor in most ongoing Middle East aircraft procurement programs. Unit cost is about USD $386,000 (FY 1999).HistoryIn the mid-1970s, it was recognized that the AIM-7 Sparrow would be in urgent need of replacement in the 1980s. Even the upgraded AIM-7F/7M was becoming long in the tooth, and the AMRAAM program was initiated in 1976. A joint USAF/USNavy program, it aimed at producing a high performance air intercept missile, featuring a higher probability of kill than any conceivable advanced version of Sparrow, packed in a smaller, lighter, cheaper, and more reliable airframe. On top of that, the new missile had to be compatible with existing fire control radars, and physically fit where a Sparrow was previously located.Ambitious research projects were started, to investigate into all-new guidance and target-detection methods, such as target classification by aerodynamic noise, laser scanning of the external shape, or decomposition of the engine sound harmonics in the frequency domain. None of these techniques materialized however.AIM-120 launch sequence by an USAF F-16A. (USAF photo)The original list of five proposals was narrowed down to 2 in February 1979. Both contractors received a contract for ten prototype missiles each, which were to be fired from F-14, F-15 and F-16 aircraft. At the end of 1981, after only 6 missiles were fired (3 each), Hughes Aircraft & Missile Systems Group was picked over Raytheon to build 94 test missiles, with an option for 924 full production missiles. The AMRAAM program entered FSD (Full Scale Development) in September 1982, and test firing of the missile started in that same year at Holloman AFB and NAS Pt. Mugu, with the missile proving itself against increasingly tougher targets. The fact that no European counterpart for the AMRAAM exists, is due to an MoU (Memorandum of Understanding) signed by West Germany and the UK, assigning AMRAAM to the USA and ASRAAM (Advanced Short Range Air to Air Missile) to Europe.By 1985, AMRAAM was in serious trouble: huge cost overruns and delays meant that not a single test round was fired in a hostile ECM-environment until October 1986. By this time, some of the problems were solved and low-rate initial production (LRIP) was approved for FY 1987. Production is split (under Caesar's 'Devide and Conquer' motto) between two contractors, Hughes and Rate. Of the initial 180 missile, USD $537.4 million (four times higher than estimated) order, Raytheon produced 75 and Hughes 105 rounds. The subsequent FY 1988 order for 630 missiles was split 55/45 with the biggest share for Hughes. Continued LRIP was approved in May 1991.In September 1991, IOC (Initial Operational Capability) was achieved for the AMRAAM on USAF F-15 aircraft. The F-16 followed in January 1992, and the Navy in October 1993. Full-rate production of the missile was approved in April 1992, marking Milestone III.ConstructionThe AMRAAM is housed in a light-weight structure of steel and titanium. The airframe is divided into four major sections: guidance, warhead, propulsion and control. The four wings and fins are detachable. The guidance section features an active X-band radar terminal seeker using a highpower solid-state transmitter with alow-sidelobe, wide-gimbal antenna, and a built-in radio-frequency processor. Navigation, autopilot, radar, datalink, fuzing, sequencing, and self-test functions are allhandled by a single 30MHz microprocessor. The propulsion section consists of an advanced solid-fuel rocket motor to achieve a speed of Mach 4 and a range in excess of 30 miles.Key to drawing:1.Radome2.Active Radar Antenna3.Batteries/ Transmitter Section4.Main micro-electronics Section5.Inertial Reference Unit, Target Detector and fuze6.Armament section with warhead7.Fixed forward wings8.Igniter9.Twin suspension lugs10.Solid rocket motor11.Control actuator group12.Moving fins13.Data Link (for mid-course guidance update)14.NozzleIn long-range engagements AMRAAM heads for the target using inertial guidance and receives updated target information via data link from the launch aircraft. It transitions to a self-guiding terminal mode when the target is within range of its own monopulse radar set, operating in high-PRF mode. Since this seeker uses its own active radar (unlike the Sparrow), it does not require the launch aircraft to illuminate the target or to track the target. In case the target tries to protect itself with active jamming, AMRAAMs seeker switches to a medium-PRF "home-on-jam" mode. With its sophisticated avionics, high closing speed, and excellent end-game maneuverability, chances of escape from AMRAAM are minimal. Upon intercept an active-radar proximity fuze detonates the 40-pound high-explosive warhead to destroy the target. At closer ranges AMRAAM guides itself all the way using its own radar, freeing the launch aircraft to engage other targets. The lethal range of the 40lbs. blast fragmentation warhead has not been disclosed.VersionsAIM-120AAs described above.AIM-120B, Rb 99The AIM-120B missile was the result of the two block AMRAAM Producibility Enhancement Program. TheB-model incorporates a new digital processor, erasable programmable read only memory, and five major electronic unit hardware chassis upgrades. The Swedish AIM-120B's, carried by the 'Gripen', are designated as Rb 99.AIM-120CThe AIM-120C will include a redesigned warhead and improvements to the rocket motor, fuzing logic, guidance algorithms, and ECCM logic. Modified for internal carriage on the F-22, the AIM-120C will have "clipped wings" to reduce its box size from 17.4 to 12.5 inches.F-16 InstallationA Shaw 79th Tiger FS (see markings on gunport cover) carrying dummy wingtip AIM-120s, AIM-9L/Ms and AGM-88s. ( photo)The APG-66 radar fitted to the F-16A/B was not originally intended to have the capabilities of handling BVR missiles such as the Sparrow or the AMRAAM. Indeed, the whole concept of the cheap, light-weight fighter excluded fitting of SARH or ARH missiles. However, the need for a BVR capability became apparent soon after the F-16A/B entered service. The long-term solution was to be the AMRAAM missile, which was originally scheduled to enter service in the mid-1980s, but was delayed by a protracted series of developmental difficulties. Possible interim solutions were considered, amongst others the British Aerospace Skyflash or the Raytheon AIM-7 Sparrow. The first tests of a Sparrow-armed F-16 were made by General Dynamics with inert rounds attached to the wingtip, to the underwing pylons, and even to a pylon being attached to the mainwheel door. The undercarriage door location was used for some test firings with the Sparrow in November of 1977, and a test launch with a BAE Skyflash was made a year later. Ultimately, F-16A/B aircraft were modified into the F-16A/B ADF aircraft, and were capable of firing the Sparrow.This testfiring of an AIM-120 by an Eglin F-16C (39th FTS Squadron Commanders aircraft) shows the typical diamond-shaped exhaust gasses. (USAF photo)When the MSIP Stage II was approved for the F-16, AMRAAM was far from ready. However, the associated ECP350 (Engineering Change Proposal) included changes to the wiring of the wings and aircraft structure, so that the AIM-120 could be retrofitted easily later on. block 10 introduced the stronger wing structure necessary to carry the missile, the wiring and software came later. Some Block 10 and 15's got retrofitted with the software/wiring, but others didn't. So basically all F-16s from Block 10 onwards are structurally AMRAAM-capable, although some A/B models lack both the wiring and the software, and although the C/D models have the wiring, some of them do not have the necessary software. The latter depends on whether the customer is subject to export restrictions or not.F-16 LoadoutOn the F-16, AIM-120 AMRAAMs can be loaded on stations 1 and 9 (1 missile each, wingtip), 2 & 8 (1 missile each) and 3 & 7 (1 missile each).Operational UseThe first-ever launched AIM-120 scored a direct hit agains the QF-102 drone (USAF photo)The first ever fully guided AIM-120 to be fired, was fired from an F-16 and scored an almost central hit on the QF-102 target drone, which burst into flames and crashed. The missile did not even carry a warhead.A small number of AMRAAMs were carried by F-15 aircraft during Operation Desert Storm, though none were actually fired. The AIM-120 was redeployed to the Persian Gulf in 1992 for use on F-15 and F-16 fighters. In December 1992 (Operation Southern Watch), an F-16 pilot fired the first AMRAAM in actual combat, shooting down a MiG-25 Foxbat during a confrontation over southern Iraq. The AIM-120 was also used in another engagement in Southern Iraq, and successfully downed the target. The F-16 Fighting Falcon scored a third AMRAAM kill in Bosnia.SpecificationsPrimary Function: Air-to-air tactical missileContractor: Hughes Aircraft Co. and Raytheon Co.Power Plant: High performanceLength: 143.9 inches (366cm)Launch Weight: 335 pounds (150.75kg)Diameter: 7 inches (17.78cm)Wingspan: 20.7 inches (52.58cm)Range: 30+ miles (48+ km)Speed: Mach 4 capableGuidance System: Active radar terminal/inertial midcourse Warhead: 40 lbs, Blast fragmentationUnit Cost: $386,000 (FY 1999)。