解三角形 应用举例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形 应用举例
1.实际问题中的常用角
(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).
(2)方位角:指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)).
(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.
(4)坡度:坡面与水平面所成的二面角的度数. 2、解三角形应用题的一般步骤:
(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.
(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.
一、距离问题:
例1. 如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是50m ,∠A =60°,∠C =75︒. 求A 、B 两点的距离(结果保留根号).
例2. 如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法. 小明提供了一种方法:如图在河岸选取相距40米的C 、D 两点,用经纬仪测得∠ADB =∠ACB=60°,∠BDC =45°,∠ACD =30°,你能根据小明提供的这些数据求出AB 吗?
A B
二、高度问题
例3: 在山顶铁塔上B 处测得地面上一点A 的俯角α= 60° ,在塔底C 处测得A 处的俯角β=30°。
已知铁塔BC 部分的高为28m ,求出山高CD.
例4、如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .
D
A
B C
三.角度问题
例5、某巡逻艇在A 处发现北偏东450相距9海里的C 处有一艘走私船,正沿南偏东750的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?( )
例6.(2007·山东) 如图4-4-12,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105
方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120
方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?
14
3538
sin 0 北
1B
2B 1A
2
A
120 105
甲
乙
课后作业:
1.有A、B两个小岛相距10 nmile,从A岛望B岛和C岛成60°的视角,从B 岛望A岛和C岛成75°角的视角,则B、C间的距离是()
A.5 2 nmile
B.10 3 nmile
C. 10
36
nmile D.5 6 nmile
2.如下图,为了测量隧道AB的长度,给定下列四组数据,
测量应当用数据
A.α、a、b
B.α、β、a
C.a、b、γ
D.α、β、γ
4.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行30 nmile后看见灯塔在正西方向,则这时船与灯塔的距离是. . 5.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为300,则甲、乙两楼的高分别是, .
6.如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船沿直线CB前往B处救援,求cos∠ACB的值
7.甲舰在A处,乙舰在A的南偏东45°方向,距A有9 nmile,并以20 nmile/h 的速度沿南偏西15°方向行驶,若甲舰以28 nmile/h的速度行驶,应沿什么方向,用多少时间,能尽快追上乙舰?。