邓州市高中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邓州市高中2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题
1.设i是虚数单位,若z=cosθ+isinθ且对应的点位于复平面的第二象限,则θ位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()
A.2或0 B.0 C.﹣2或0 D.﹣2或2
3.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()
A.﹣16 B.14 C.28 D.30
4.棱长为2的正方体的8个顶点都在球O的表面上,则球O的表面积为()
A.π4B.π6C.π8D.π
10
5.已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的是()
A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β
6.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于()
A.8 B.1 C.5 D.﹣1
7.函数f(x)=﹣x的图象关于()
A.y轴对称B.直线y=﹣x对称C.坐标原点对称 D.直线y=x对称
8.若复数z=2﹣i (i为虚数单位),则=()
A.4+2i B.20+10i C.4﹣2i D.
9.记集合{}
22
(,)1
A x y x y
=+?和集合{}
(,)1,0,0
B x y x y x y
=+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为()
A.
1
2p
B.
1
p
C.
2
p
D.
1
3p
【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.
10.(+)2n(n∈N*)展开式中只有第6项系数最大,则其常数项为()
A.120 B.210 C.252 D.45
11.已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是()
A.(0,1)B.(0,] C.(0,)D.[,1)
12.函数2
1()ln 2
f x x x ax =+
+存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞
【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.
二、填空题
13.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .
14.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .
15.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:
①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k
,2
k+1
)”;其中所有正确
结论的序号是 .
16.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为
______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.
17.已知,0()1,0
x e x f x x ì³ï=í<ïî,则不等式2
(2)()f x f x ->的解集为________.
【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 18.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.
三、解答题
19.(本小题满分12分)求下列函数的定义域:
(1)()
f x=
(2)()
f x=
20.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).
(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.
21.(本小题满分12分)已知12,F F 分别是椭圆C :22
221(0)x y a b a b
+=>>的两个焦点,(1,2P 是椭圆上
1122|,||PF F F PF 成等差数列.
(1)求椭圆C 的标准方程;、
(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得7
16
QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.
22.(本小题满分12分)
如图四棱柱ABCD -A 1B 1C 1D 1的底面为菱形,AA 1⊥底面ABCD ,M 为A 1A 的中点,AB =BD =2,且△BMC 1为等腰三角形.
(1)求证:BD ⊥MC 1;
(2)求四棱柱ABCD -A 1B 1C 1D 1的体积.
23.对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =
.若集合A 满足下
列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω. 如当n=2时,E 2={1,2},P 2=.∀x 1,x 2∈P 2,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,
所以P 2具有性质Ω.
(Ⅰ)写出集合P 3,P 5中的元素个数,并判断P 3是否具有性质Ω. (Ⅱ)证明:不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B . (Ⅲ)若存在A ,B 具有性质Ω,且A ∩B=∅,使P n =A ∪B ,求n 的最大值.
24.已知函数3
2
2
()1f x x ax a x =+--,0a >. (1)当2a =时,求函数()f x 的单调区间;
(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.
邓州市高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】B
【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),
且点(cosθ,sinθ)位于复平面的第二象限,
∴,∴θ为第二象限角,
故选:B.
【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.
2.【答案】D
【解析】解:由题意:函数f(x)=2sin(ωx+φ),
∵f(+x)=f(﹣x),
可知函数的对称轴为x==,
根据三角函数的性质可知,
当x=时,函数取得最大值或者最小值.
∴f()=2或﹣2
故选D.
3.【答案】B
【解析】解:∵a n=(﹣1)n(3n﹣2),
∴S11=()+(a2+a4+a6+a8+a10)
=﹣(1+7+13+19+25+31)+(4+10+16+22+28)
=﹣16,
S20=(a1+a3+…+a19)+(a2+a4+…+a20)
=﹣(1+7+...+55)+(4+10+ (58)
=﹣+
=30,
∴S11+S20=﹣16+30=14.
故选:B.
【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.4.【答案】B
【解析】
考点:球与几何体
5.【答案】D
【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可
【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;
综上D选项中的命题是错误的
故选D
6.【答案】B
【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,
∴a=2×0+1=1.
故选:B.
7.【答案】C
【解析】解:∵f(﹣x)=﹣+x=﹣f(x)
∴是奇函数,所以f(x)的图象关于原点对称
故选C.
8.【答案】A
【解析】解:∵z=2﹣i,
∴====,
∴=10•=4+2i,
故选:A.
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
9. 【答案】A
【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D 及其内部,
由几何概型得点M 落在区域Ω2内的概率为1
1
2P ==p 2p
,故选A.
10.【答案】
B
【解析】
【专题】二项式定理.
【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n ,可求常数项.
【解答】解:由已知(
+
)2n (n ∈N *
)展开式中只有第6项系数为
最大,
所以展开式有11项,所以2n=10,即n=5,
又展开式的通项为=

令5﹣
=0解得k=6,
所以展开式的常数项为=210;
故选:B 【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n ,利用通项求特征项. 11.【答案】C
【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c , ∵
=0,
∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆.
又M 点总在椭圆内部, ∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2

∴e 2=
<,∴0<e <

故选:C .
【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.
12.【答案】D 【解析】因为1()f x x a x
'=++,直线的03=-y x 的斜率为3,由题意知方程1
3x a x ++=(0x >)有解,
因为1
2x x
+
?,所以1a £,故选D . 二、填空题
13.【答案】 ﹣2 .
【解析】解:∵曲线y=x n+1(n ∈N *
),
∴y ′=(n+1)x n
,∴f ′(1)=n+1,
∴曲线y=x
n+1
(n ∈N *
)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),
该切线与x 轴的交点的横坐标为x n =,
∵a n =lgx n ,
∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99
=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2.
故答案为:﹣2.
14.【答案】
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC 中,根据正弦定理得:BC==
海里,
则这时船与灯塔的距离为海里.
故答案为

15.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.

一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.
故答案为:①②④.
16.
【解析】
17.【答案】(2,1)-
【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得20x -<<;当0x ³时,22x x ->,
解得01x ?,综上所述,不等式2
(2)()f x f x ->的解集为(2,1)-. 18.【答案】 【解析】
试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且
5,,6AB VA h AC ===,所以三棱锥的体积为11
5652032
V h h =⨯⨯⨯==,解得4h =.
考点:几何体的三视图与体积.
三、解答题
19.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.
【解析】

点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环. 20.【答案】
【解析】解:(Ⅰ)证明:如果g (x )是定义域(0,+∞)上的增函数,
则有g ′(x )=2ax+b+=
>0;
从而有2ax 2
+bx+c >0对任意x ∈(0,+∞)恒成立;
又∵a <0,则结合二次函数的图象可得,2ax 2
+bx+c >0对任意x ∈(0,+∞)恒成立不可能,
故当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数;
(Ⅱ)函数f (x )=ax 2+bx+c 是“K 函数”,g (x )=ax 2
+bx+c •lnx 不是“K 函数”, 事实上,对于二次函数f (x )=ax 2
+bx+c ,
k=
=a (x 1+x 2)+b=2ax 0+b ;
又f ′(x 0)=2ax 0+b , 故k=f ′(x 0);
故函数f (x )=ax 2
+bx+c 是“K 函数”; 对于函数g (x )=ax 2
+bx+c •lnx ,
不妨设0<x1<x2,则k==2ax0+b+;
而g′(x0)=2ax0+b+;
故=,化简可得,
=;
设t=,则0<t<1,lnt=;
设s(t)=lnt﹣;则s′(t)=>0;
则s(t)=lnt﹣是(0,1)上的增函数,
故s(t)<s(1)=0;
则lnt≠;
故g(x)=ax2+bx+c•lnx不是“K函数”.
【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.
21.【答案】
【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.
下面证明54m =
时,7
16
QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;
当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,
由1x ty =+及2
212
x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221
,22
t y y y y t t +=-=-++. 111x ty =+,221x ty =+,
∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2
(1)t +121211()416
y y t y y -++=
222
222
11212217(1)242162(2)1616
t t t t t t t t --+-++⋅+=+=-+++.
综上所述,在x 轴上存在点5(,0)4Q 使得7
16
QA QB ⋅=-恒成立. 22.【答案】
【解析】解:(1)证明:如图,连接AC ,设AC 与BD 的交点为E , ∵四边形ABCD 为菱形, ∴BD ⊥AC ,
又AA 1⊥平面ABCD ,
BD ⊂平面ABCD ,∴A 1A ⊥BD ; 又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1, 又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.
(2)∵AB =BD =2,且四边形ABCD 是菱形, ∴AC =2AE =2
AB 2-BE 2=23,
又△BMC 1为等腰三角形,且M 为A 1A 的中点, ∴BM 是最短边,即C 1B =C 1M . 则有BC 2+C 1C 2=AC 2+A 1M 2,
即4+C 1C 2=12+(C 1C 2
)2

解得C 1C =46
3

所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C
=12AC ×BD ×C 1C =12×23×2×463=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2. 23.【答案】
【解析】解:(Ⅰ)∵对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =.
∴集合P 3,P 5中的元素个数分别为9,23,
∵集合A 满足下列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω,
∴P 3不具有性质Ω.…..
证明:(Ⅱ)假设存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .其中E 15={1,2,3,…,15}. 因为1∈E 15,所以1∈A ∪B ,
不妨设1∈A .因为1+3=22,所以3∉A ,3∈B .
同理6∈A ,10∈B ,15∈A .因为1+15=42,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .…..
解:(Ⅲ)因为当n ≥15时,E 15⊆P n ,由(Ⅱ)知,不存在A ,B 具有性质Ω,且A ∩B=∅,使P n =A ∪B . 若n=14,当b=1时,

取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14}, 则A 1,B 1具有性质Ω,且A 1∩B 1=∅,使E 14=A 1∪B 1. 当b=4时,集合
中除整数外,其余的数组成集合为




则A 2,B 2具有性质Ω,且A 2∩B 2=∅,使.
当b=9时,集
中除整数外,其余的数组成集合




则A 3,B 3具有性质Ω,且A 3∩B 3=∅,使

集合
中的数均为无理数,
它与P 14中的任何其他数之和都不是整数,
因此,令A=A 1∪A 2∪A 3∪C ,B=B 1∪B 2∪B 3,则A ∩B=∅,且P 14=A ∪B . 综上,所求n 的最大值为14.…..
【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.
24.【答案】(1)()f x 的单调递增区间是(),2-∞-和2,3⎛⎫
+∞ ⎪⎝⎭
,单调递减区间为2(2,)3-;(2)[1,)+∞.
【解析】
试题分析:(1) 2a =时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;(2) 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围.
试题解析:(1)当2a =时,3
2
()241f x x x x =+--,
所以2
'()344(32)(2)f x x x x x =+-=-+, 由'()0f x >,得2
3
x >
或2x <-, 所以函数()f x 的单调递减区间为2(2,)3
-.
(2)要使()0f x ≤在[1,)+∞上有解,只要()f x 在区间[1,)+∞上的最小值小于等于0. 因为2
2
'()32(3)()f x x ax a x a x a =+-=-+, 令'()0f x =,得103
a
x =
>,20x a =-<.1
考点:导数与函数的单调性;分类讨论思想.。

相关文档
最新文档