光纤光学-1-7
光纤光学-文档资料
22
折射光线
条件:
0< n(r0) cosθz(r0)<√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
内散焦面半径: r = rr1
02.07.2020
23
GIOF中的最佳折射率分布
近轴子午光线: P2/ A
02.07.2020
P2/n(r0)nc0 oA sz(r0) 24
02.07.2020
21
隧道光线
条件:
n2> n(r0) cosθz(r0)>√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
光线存在区域: rl1 < r < rl2 r > rl3
内散焦面半径:rl1 外散焦面半径:rl2 辐射散焦面半径: rl3
02.07.2020
(dz/dS)|r0 = cosθz(r0)
r r r ˆ z z ˆ x
z r
er
r0
r0 d
z dz
ds
r0
dr
y
e
er
02.07.2020
11
轴向运动
分析轴向分量方程:
d n dz 0 dS dS
有: n(dz/dS)=const., 令其为 n , 则有
n =n(r)dz/dS=n(r)cosθz(r)=n(r0)cosθz(r0)
=r0n(r0)sinθz(r0)cosθφ(r0)
I ---- 第二射线不变量
02.07.2020
15
角向运动特点
• 光线的角动量:
r2ω=r2dφ/dt=
Ic/
2n 恒为常数
《光纤光学教学课件》第七讲
NA(r) n0 (r)sinimax(r) n2 (r) n22
n2 n n1
2020/4/22
一、倾斜光线
射线方程:
d (n dr) n(r) dS dS
轴向分量方程:
d n dz 0 dS dS
角向分量方程:
n dr d d nr d 0
dS dS dS dS
2020/4/22
约束光线:
条件: n22 n 2 n12 即:
n2 n(r0 )cosz (r0 ) n1
光线存在区域: rg1 r rg2 内散焦面半径: rg1 外散焦面半径: rg 2
n12
ng2
n22
n22
I2 a2
0
2020/4/22 © HUST 2012
n2 r
n2
r
I2 r2
dn dz
0
横向分量:
d dS
ur (rer )
dr dS
ur er
r
ur d er
dS
(矢量关系式
ur d er
d
uur
euur,dde
ur er )
dr dS
ur er
r
d
dS
uur e
d dS
[n
d dS
ur (rer )]
d dS
(n
dr dS
ur er )
d dS
(nr
d
dS
uur e )
r
Const
n :第一射线不变量,由光线的入射条件所决定!
同一光线:n 值相同;不同光线:n值不同!
轴向运动:广义折射定理
2020/4/22 © HUST 2012
光纤光学课件第一章
幻灯片 1
光纤光学 第一章
光纤传输的基本理论
W-C Chen
幻灯片 2 §1. 前言
Foshan Univ.
低损耗光纤的问世导致了光波技术领域的革命,开创了光纤通信的时代。光纤在工程上的 使用促使人们需要对光纤进行深入研究,形成一门新的学科——光纤光学。
NA ni sinim n12 n22 n1 2
*相对折射率差:
(n12 n22 ) / 2n12
约束光: z zc
*折射光: z zc
幻灯片 14 *渐变折射率分布:
子午光线:渐变折射率分布
n(r) n1 1 2(r / a)2 1/2 n2
0ra ra
*光线轨迹: 限制在子午平面内传播的周期曲线。 轨迹曲线在光纤端面投影线仍 是过圆心的直线,但一般不与纤壁相交。
波动理论的数学基础——麦克斯韦方程:
H D/ t J
E B / t
D
B 0
幻灯片 20 从麦克斯韦方程组出发导出一般波导介质中电场的波动方程
2E
(E
)
E
2E t 2
J t
由
E
B
E
t
B
( H )
t
t
根据恒等式关系,有
10
光纤光学第一章课件 ppt 转 word---陆众 制
幻灯片 26
模式的基本性质
当采用波动理论来分析光波在光纤中的传输时,须求解波导场方程。其方法是首先求出
纵向场分量 Ez 和 Hz,然后利用纵横关系式求出场的横向分量。求出 Ez 和 Hz,再通过
麦克斯韦方程组求出其他电磁场分量,就得到任意位置的电场和磁场。
光纤光学课件第一章
---------------------------------------------------------------最新资料推荐------------------------------------------------------光纤光学课件第一章1幻灯片 1 光纤光学第一章光纤传输的基本理论 W-C Chen Foshan Univ. 幻灯片 2 1. 前言低损耗光纤的问世导致了光波技术领域的革命,开创了光纤通信的时代。
光纤在工程上的使用促使人们需要对光纤进行深入研究,形成一门新的学科光纤光学。
幻灯片 3 光纤的分类幻灯片 4 2实用光纤主要的三种基本类型 (a) 突变型多模光纤; (b) 渐变型多模光纤;(c )单模光纤横截面2a2brn折射率分布纤芯包Ait(a)输入脉冲光线传播路径~多模光纤幻灯片 5 阶跃折射率光纤剖面测量图(华工光通信研究所)3 单模光纤多模光纤幻灯片 6 光纤结构光纤(Optical Fiber)是由中心的纤芯(Core)和外围的包层(Cladding)同轴组成的圆柱形细丝。
纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。
设纤芯和包层的折射率分别为 n1 和 n2,光能量在光纤中传输的必要条件是n1n2。
幻灯片 7 主要用途:1 / 15突变型多模光纤只能用于小容量短距离系统。
渐变型多模光纤适用于中等容量中等距离系统。
单模光纤用在大容量长距离的系统。
特种单模光纤大幅度提高光纤通信系统的水平 1.55 m 色散移位光纤实现了 10 Gb/s 容量的 100 km 的超大容量超长距离系统。
色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。
偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。
4幻灯片 8 2.光纤的研究方法光线理论几何光学方法波动光学方法适用条件研究对象光线模式基本方程射线方程波导场方程研究方法折射/反射定理边值问题主要特点约束光线模式幻灯片 9 光线理论光线分类子午光线倾斜光线射线方程几何光学法分析问题的两个出发点数值孔径时间延迟幻灯片 10 设纤芯和包层折射率分别为 n1 和 n2,空气的折射率 n0=1,纤芯中心轴线与 z 轴一致。
光纤光学-1-6课件
Ur cos(m -1)
J m+1 (
a
)
sin(m +1)
-
Jm-1(
a
)
sin(m -1)
EyI
A Jm (U )
Ur cos m
Jm(
a
)
sin m
HxI
-n
0 0
A Ur cos m
Jm (U )
Jm(
a
)
sin m
ExI 0
H
I y
0
2022/10/18
4
线偏振模LPml 的构成(r>a)
EyII
A Km
Wr cos m
Km (
a
)
sin m
H
II x
-n
0 0
A Km
Wr cos m
Km (
a
)
sin m
ExII 0
H
II y
0
2022/10/18
5
LPml模的偏振态:
• LPml模的简并态是以光纤的弱导近似为前提的。实 际上,n1和n2不可能相等,因此HEm+1,l模与EHm-1,l模的 传播常数β不可能绝对相等,即两者的相速并不完全 相同。随着电磁波的向前传播,场将沿z轴作线偏振 波-椭圆偏振波-园偏振波-椭园偏振波-线偏振 波的周期性变化。场形变化一周期所行经的z向距离, 即差拍距离为:
Jm(U)
Km(W)
2022/10/18
8
LPml模式本征值
• 模式的截止与远离截止:
– 远离截止: W→∞, 场在包层中不存在 – 临近截止: W=0 , 场在包层中不衰减
• 截止与远离截止条件:
光纤光学课后答案
光纤光学课后答案【篇一:光纤应用习题解第1-7章】>1.详述单模光纤和多模光纤的区别(从物理结构,传播模式等方面)a:单模光纤只能传输一种模式,多模光纤能同时传输多种模式。
单模光纤的折射率沿截面径向分布一般为阶跃型,多模光纤可呈多种形状。
纤芯尺寸及纤芯和包层的折射率差:单模纤芯直径在10um左右,多模一般在50um以上;单模光纤的相对折射率差在0.01以下,多模一般在0.01—0.02之间。
2.解释数值孔径的物理意义,并给出推导过程。
a::na的大小表征了光纤接收光功率能力的大小,即只有落入以m为半锥角的锥形区域之内的光线,才能够为光纤所接收。
3.比较阶跃型光纤和渐变型光纤数值孔径的定义,可以得出什么结论?a:阶跃型光纤的na与光纤的几何尺寸无关,渐变型光纤的na是入射点径向坐标r的函数,在纤壁处为0,在光纤轴上为最大。
4.相对折射率差的定义和物理意义。
n12-n22n1-n2a:d=2n12n1d的大小决定了光纤对光场的约束能力和光纤端面的受光能力。
5.光纤的损耗有哪几种?哪些是其固有的不能避免,那些可以通过工艺和材料的改进得以降低?a:固有损耗:光纤材料的本征吸收和本征散射。
非固有损耗:杂质吸收,波导散射,光纤弯曲等。
6.分析多模光纤中材料色散,模式色散,波导色散各自的产生机理。
a:材料色散是由于不同的光源频率所对应的群速度不同所引起的脉冲展宽。
波导色散是由于不同的光源频率所对应的同一导模的群速度不同所引起的脉冲展宽。
多模色散是由于不同的导模在某一相同光源频率下具有不同的群速度所引起的脉冲展宽。
7.单模光纤中是否存在模式色散,为什么?a:单模光纤中只传输基模,不存在多模色散,但基模的两个偏振态存在色散,称为偏振模色散。
8.从射线光学的观点计算多模阶跃光纤中子午光线的最大群时延差。
a:设光纤的长度为l,光纤中平行轴线的入射光线的传输路径最短,为l;以临界角入射到纤芯和包层界面上的光线传输路径最长,为linfc。
光纤光学知识总结
光纤光学知识总结1. 引言光纤光学是一门研究光传输和操控的学科,它是现代通信、医学和工业等领域中不可或缺的关键技术。
光纤光学利用光纤作为传输介质,通过光的折射和全反射实现信号传输。
本文将对光纤光学的基本原理、传输性能和应用领域进行总结和介绍。
2. 光纤的基本原理光纤是一种通过内部光的全反射实现光信号传输的介质。
它由一个中心芯和一个外包层组成。
中心芯是光信号传输的主要部分,通常由高折射率的玻璃或塑料材料构成。
外包层则是低折射率的材料,用于包裹和保护中心芯。
光纤通过光的折射和全反射,实现将光信号沿着光纤传输的目的。
3. 光纤的传输性能3.1 传输带宽光纤的传输带宽是指光纤能够传输的最大频率信号的能力。
它受到光纤的材料特性、设计和制造工艺等因素的影响。
高质量的光纤能够支持更高的传输带宽,从而实现更高速率、更大容量的数据传输。
3.2 传输损耗传输损耗是光信号在光纤中传输过程中的能量损失。
它由散射、吸收和弯曲等因素引起。
传输损耗通常以每单位长度的衰减值(dB/km)来表示。
光纤的传输损耗越低,传输距离就越长,信号质量就越好。
3.3 色散色散是指光信号在光纤中传输过程中,不同频率的光信号由于折射率的差异而传播速度不同的现象。
色散会导致光脉冲的展宽和失真,限制了光信号的传输距离和速率。
4. 光纤光学的应用领域4.1 光通信光通信是光纤光学的主要应用之一。
光纤光学的高带宽和低损耗特性使得光纤成为主流的长距离通信传输介质。
光纤通信系统通过调制光信号来传输数据,实现了高速率、大容量的信息传输。
4.2 医学影像光纤光学在医学影像领域有广泛的应用。
通过光纤的灵活性和小尺寸,可以将光信号传输到人体内部,实现光学成像和激光手术等应用。
例如,内窥镜和激光手术器械中都使用了光纤。
4.3 工业检测光纤光学在工业检测领域也具有重要的应用价值。
光纤传感器可以通过测量光的强度、相位和波长等参数,实现对温度、压力、液位等物理量的测量。
光纤传感器具有高精度、抗干扰和耐腐蚀等特点,被广泛应用于工业自动化和安全监测等领域。
光纤光学教学课件-第四讲
2019/12/2 © HUST 2012
2019/12/2
N A B 1 B L
2019/12/2
物理意义
• 反映光纤接收光的能力,NA越大,光纤收集光的 能力增大,增加了光源与光纤的耦合效率。应注 意,光纤的数值孔径只决定于光纤的折射率,而 与光纤的几何尺寸无关,这一点和普通的光学系 统有所不同。
• 增大NA,对于提高光纤耦合效率有利。但是却使
Hale Waihona Puke 2019/12/23.1 几何光学方法分析
几个基本概念: 1、什么是子午平面?
与纤轴相交且与纤壁垂直的平面。
2、什么是子午光线?
在子午平面上传输的光线。
z
偏斜光线:与纤轴既不相交又不限 于单一平面之内的光线。
2019/12/2 © HUST 2012
2019/12/2
子午的全反射条件:
cos z
第三章 阶跃折射率分布光纤
2019/12/2 © HUST 2012
2019/12/2
阶跃折射率分布光纤(SIOF)
折射率分布表达式:
n1 (0≤r≤a) (纤芯中) n( r ) =
n2 ( r >a) (包层中)
分析方法:几何光学方法分析、波动光学分析方法
2019/12/2 © HUST 2012
临界角: zcarccno2/sn1()
2019/12/2 © HUST 2012
2019/12/2
2019/12/2 © HUST 2012
2019/12/2
数值孔径: 定义光纤数值孔径NA为入射媒质折射率与最大入射角 的正弦值之积,即
N A n isiin m n 1 2 n 2 2n 1 2
光纤光学讲义三PPT课件
放大光信号,提高传输距离和可靠性。
半导体光放大器(SOA)和掺铒光纤放大器(EDFA)
SOA通常用于信号处理和逻辑门,EDFA则广泛应用于长距离通信。
光纤通信系统的性能指标
带宽与色散
带宽决定了传输速率,色散则 影响信号质量。
损耗与增益
光纤的损耗和增益对系统性能 有重要影响。
噪声与信噪比
噪声会影响信号质量,信噪比 则是衡量信号质量的重要参数 。
塑料光纤
由塑料材料制成,具有成本低、柔软 易弯曲的特性,通常用于短距离照明 、显示等领域。
光纤的损耗与色散特性
损耗特性
光纤传输光信号时会因为吸收、散射等原因产生能量损耗。石英光纤的损耗较 低,而塑料光纤的损耗较高。
色散特性
光信号在光纤中传输时会产生时延,导致信号畸变。石英光纤的色散较小,适 用于长距离通信;而塑料光纤的色散较大,适用于短距离应用。
05
光纤光学的未来发展
光子晶体光纤与光子束纤维
光子晶体光纤
光子晶体光纤是一种新型的光纤,其纤芯由光子晶体构成。由于其具有高非线性、低损耗、易于制作 等优点,因此在光通信、光学传感、激光器等领域具有广泛的应用前景。
光子束纤维
光子束纤维是一种能够传输高功率光束的特种光纤。它具有高强度、高光束质量、高稳定性等优点, 因此在激光武器、激光雷达、高能物理等领域具有重要的应用价值。
光纤互联网
利用光纤传输技术,实现全球范围内的互联互通,提供高速 、稳定的网络服务。
光纤物联网
通过光纤网络连接各种物联网设备,实现智能化、远程控制 等功能。
光纤传感技术及其应用
光纤传感原理
利用光纤的传光特性,感知外界物理 量(如温度、压力、位移等)的变化。
《光纤光学教学课件》第五讲
光纤的构造
1
光心
光纤中心区域,光线从这里一直传输下去。
2
包覆层
保护光心,确保光线能够顺畅传输,同时防止信号损失。
3
护套
外部保护层,起到保护作用。
光纤的特点
高速传输
光纤的传输速度远高于铜线, 这也是光纤比铜线更受欢迎 的原因之一。
小的尺寸
光纤通常非常细,因此它们 可以轻松地安装在难以到达 的地方,例如壁橱或在建筑 结构内部。
应用广泛
光纤的应用不仅限于通信领域,而且已经渗 透到许多其他行业。
光纤的未来
预计随着技术的不断进步,光纤将继续在许 多领域中发挥重要作用。
计算机
光纤技术在计算机网络中扮演着至关重要的角 色,我们将研究它是如何工作的。
医疗
光纤可用于医疗设备,例如内窥镜或手术灯, 以提高精度和效率。
工业
光纤传感器可用于工业自动化和监测管道中流 体的速度和浓度。
总结
技术的进步
光纤技术是现代许多新兴技术的基础。
自然界的启示
光纤的构造和性能灵感来自于自然界中的大 量生物。
《光纤光学教学课件》第 五讲
在这一讲中,我们将深入了解光纤光学的基础概念、构造、特点、分类以及 应用。让我们开始吧!
基础概念
光的折射
让我们从光线的折射开始最基本的定义和构造,为以后的了解 打下坚实基础。
激光的原理
激光在光纤通信中老少皆宜,了解激光原理对 光纤通信的理解很有帮助。
抗电磁干扰
与铜线不同,光纤可以抵抗 电磁干扰,这意味着它们可 以更好地保持信噪比。
光纤的分类
1 多模光纤
在光缆中传输多种光信号,距离较短。
2 单模光纤
只能传输单种光信号,距离更远。
光纤光学教学课件-第七讲25页文档
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
光纤光学教学课件-第七讲 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
光纤光学教学课件-第二讲
(limited by CD and PMD - see next slides)
n
1.465 1.460
2019/10/31 © HUST 2012
r
2019/10/31
光纤的设计与制作
2019/10/31 © HUST 2012
2019/10/31
1、光纤的设计
如何改善光纤的传输特性:减少OH- ,降低损耗; 改变芯经和结构参数,色散位移; 改变折射率分布,降低非线性。
2019/10/31 © HUST 2012
2019/10/31
forbidden range of angles
Cartoon picture of light guidance in BGF
forbidden range of angles
forbidden range of angles
2019/10/31 © HUST 2012
2019/10/31 © HUST 2012
2019/10/31
波动光学方法:
是一种严格的分析方法,从光波的 本质特性电磁波出发, 通过求解电磁波所遵从的麦克斯韦方程,导出电磁波的场分布。
优点:具有理论上的严谨性,未做任何前提近似,因此适用于 各种折射率分布的单模和多模光纤。 缺点:分析过程较为复杂。
光纤芯径远大于光波波长λ0时, 可以近似认为λ0→0,从而将 光波近似看成由一根一根光线所构成, 因此可采用几何光学方法来分 析光线的入射、传播(轨迹) 以及时延(色散) 和光强分布等特性,这 种分析方法即为光线理论。
优点:简单直观,适合于分析芯径较粗的多模光纤。 缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分 布等现象,分析单模光纤时结果存在很大的误差。
光纤光学 学习指南
第一部分.光纤光学需要掌握的基本概念与重要结论第一章.绪论(4学时)1.光纤的优缺点优点:大容量;低损耗;抗干扰能力强;保密性好;体积小重量轻;材料取之不竭;抗腐蚀耐高温。
缺点:易折断;连接分路困难;怕水;怕弯曲。
2.光纤的分类重点掌握(1)光纤的结构,纤芯、包层、涂覆层的特点与作用(2)阶跃折射率分布光纤(SIOF)与渐变折射率分布光(GIOF)的特点与区别,折射率分布形式。
一些基本参数的意义与其表达式:相对折射差∆的意义与表达式;折射率分布参数g的意义(当g=∞时为SIOF,当g=2时为平方率分布光纤,当g=1时为三角分布光纤)。
(3)单模光纤与多模光纤的特点与区别(传输的模式数,芯径的大小,归一化频率);归一化频率的意义与表达式(阶跃单模光纤的判据:V<2.405,渐变单模光纤的判据:V<3.508。
注意我们经常见到的2.405 是对阶跃光纤而言的)。
简单了解其它种类的光纤,例如保偏光纤与有源光纤(后面的课程会学到)。
3.光纤的制备工艺简单的了解一下。
第二章.光纤光学的基本方程(2学时)1.分析光纤波导的两种理论“几何光学方法”与“波动光学理论”的应用条件(几何光学方法:芯径远大于光波长;波动光学理论:芯径与波长可比例)与特点。
2.由麦克斯韦方程组出发推导波导场方程(1)“三次分离”,基本过程以及能够这样分离的依据“电磁”分离:由麦克斯韦方程组到波动方程“时空”分离:由波动方程到亥姆霍兹方程“横纵”分离:由亥姆霍兹方程到波到场方程(2)SIOF与GIOF中光线方程的意义,即SIOF与GIOF中光线的传播形式3.模式及其基本性质(1)模式的基本概念与定义(2)TEM、TE、TM、HE、EH模式的特点(3)纵向传播常数β横向传播常数W、U的意义(重点了解W的意义),以及W、U、V之间的关系(4)截止与远离截止的概念与基本条件(W=0截止,W=∞远离截止)(5)相速度、群速度、群延时的基本概念(6)线偏振模的概念第三章.阶跃折射率分布光纤(6学时)1.几何光学分析方法主要掌握一些基本的概念,“子午光线”与“偏斜光线”的定义;数值孔径的表达式,以及其物理意义(标志着光纤收光能力以及与光源耦合时偶和效率的大小),数值孔径与传输带宽的关系(成反比)。
光纤的双折射及偏振特性
2019/4/7
Copyright Wang Yan
HE11 是由两个旋转方向不同的光分成的。
Faraday 磁光效应,光纤的扭转。 椭圆双折射:当线和圆同时存在时,形成椭圆双折射。 Ex , E y E x E x 0 cos(t x z ) E y E y 0 cos(t y z ) 幅度比 R E y 0 / E x 0 相位差 y x ( y x ) z
A. 参数: 1、线双折射率: L
x y
BL x y 2、归一化双折射B: B nx n y neff k0 k0
J 0 (Ur / a) j x z j y z E E x i E y j E0 exp jt (e ie j) J 0 (U ) J 0 (Ur / a) E x E0 exp j (t x z ) J 0 (U ) J 0 (Ur / a) E y E0 exp j (t y z ) J 0 (U )
Copyright Wang Yan
双折射越厉害,拍长越短。如光纤的拍长远小于某种外界 干扰的长度周期,它就可抵御这种干扰而有保持偏振状态 的能力。 4、消光比和功率耦合系数 在传输过程中,两个正交的线偏振模之间存在耦合,如在光 x 纤输入端激发x方向的线偏振模,其功率为P ,由于耦合, y 在光纤的输出端出现了y方向的线偏振模,其功率为 P 。用 消光比 和功率耦合系数h来表示这一对正交线偏振模的耦
Optical fiber communications 1-6
2019/4/7
Copyright Wang Yan
例:n1 1.46, 0.003, 1.3m, 若LB min 50m, b / a 95.5 %。 B. 应力双折射 光纤中的应力双折射是由于光弹效应引起的,光纤材料 本身是各向同性的介质。因而不同方向的电场分量所遇到的 折射指数相同,设为n。当光纤受力时,引起了弹性形变, 通过光弹效应该形变可引起折射指数的变化,使材料变为各 向异性,从而呈现出双折射。 2. 光纤侧向受压力 1. 光纤弯曲 y F A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年3月4日
2
渐变折射率分布
• 渐变折射率分布光纤的纤芯中 折射率n(r)是 渐变折射率分布光纤的纤芯中,折射率 折射率 是 径向距离r的函数; 径向距离 的函数; 的函数 2 n1 1 − 2∆ ( r / a ) g r<a 2 n (r ) = 2 r>a n2 • g=1: 三角分布 • g=2: 平方率分布 ∞ • g=∞: 阶跃分布 ∞ • 实际使用的光纤绝大多数 是弱导光纤,纤芯中折射率 是弱导光纤 纤芯中折射率 变化很缓慢。 变化很缓慢。
弱导光纤中存在线偏振模 LPmL , (l , m = 0,1, 2,3...)
• 主模式标号: p=2L+M+1 主模式标号 • 最高阶导模主模式标号pmax近似对应于光纤 最高阶导模主模式标号p 中的导模数目。 对应于β= β=n 中的导模数目。而pmax对应于β= 2k0, 得到: 得到:pmax= V/2 ,或
W0 = 2a n1k 0 aλ 0 = 2∆ n1π 2∆
2012年3月4日
8
导模数目
M=V2[g/(2(g +2)] g=2: M=V2/4 g=∞: Μ= 2/2 ∞ Μ=V
2012年3月4日 9
场的输出特性
• 输出近场图:
Pout (r ) = Pout (0) 1 − (r / a ) g
[
]
2/ g
• 输出远场图:
sin θ 2 Pout (θ ) = Pout (0) 1 − ( ) NA
2012年3月4日
10
2m + l + 1 ≤ V / 2
• 导模数目: 导模数目: M= V2/4
2012年3月4日 7
基模场分布与模场半径
• 基模为 LP00, 此时 00=1, 则场分布为: 此时L 则场分布为: E00 ∝ exp(-r2/W02) • 平方率分布光纤基模场分布为高斯函数,其 平方率分布光纤基模场分布为高斯函数, 模场半径W 模场半径 0为基模场的振幅衰减到最大值 时场分布的半宽度: 的1/e时场分布的半宽度: 时场分布的半宽度
1.6 渐变折射率分布光纤中的场解
• 抛物线分布光纤的场解
2012年3月4日
1
波导场方程
• 采用与阶跃型光纤类似的处理方法 可将渐变 采用与阶跃型光纤类似的处理方法,可将渐变 型光纤中的场分为角向函数e φ 型光纤中的场分为角向函数 jmφ与径向函数 F(r)的乘积 的乘积; 的乘积 • F(r)满足的方程为 满足的方程为: 满足的方程为
[
]
2012年3月4日
3
平方率分布光纤中的波导场方程
2012年3月4日
4
平方率分布光纤中的场解
2012年3月4日
5
本征值与本征解
2012年 β = n k 1 − 2 2∆ (2 L + M + 1) mL 1 0
n1k0 a
1/ 2