高中数学对数与对数运算训练题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学对数与对数运算训练题(含答案)
1.2-3=18化为对数式为()
A.log182=-3 B.log18(-3)=2
C.log218=-3 D.log2(-3)=18
解析:选C.根据对数的定义可知选C.
2.在b=log(a-2)(5-a)中,实数a的取值范围是() A.a>5或a B.2<a<3或3<a<5
C.25 D.3<a<4
解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5. 3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()
A.①③ B.②④
C.①② D.③④
解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.
4.方程log3(2x-1)=1的解为x=________.
解析:2x-1=3,x=2.
答案:2
1.logab=1成立的条件是()
A.a=b B.a=b,且b0
C.a0,且a D.a0,a=b1
解析:选D.a0且a1,b0,a1=b.
2.若loga7b=c,则a、b、c之间满足()
A.b7=ac B.b=a7c
C.b=7ac D.b=c7a
解析:选B.loga7b=cac=7b,b=a7c.
3.如果f(ex)=x,则f(e)=()
A.1 B.ee
C.2e D.0
解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.
f(e)=lne=1.
4.方程2log3x=14的解是()
A.x=19 B.x=x3
C.x=3 D.x=9
解析:选A.2log3x=2-2,log3x=-2,x=3-2=19. 5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x +y+z的值为()
A.9 B.8
C.7 D.6
解析:选A.∵log2(log3x)=0,log3x=1,x=3.
同理y=4,z=2.x+y+z=9.
6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且
1),则logx(abc)=()
A.47
B.27
C.72
D.74
解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.
7.若a0,a2=49,则log23a=________.
解析:由a0,a2=(23)2,可知a=23,
log23a=log2323=1.
答案:1
8.若lg(lnx)=0,则x=________.
解析:lnx=1,x=e.
答案:e
9.方程9x-63x-7=0的解是________.
解析:设3x=t(t0),
则原方程可化为t2-6t-7=0,
解得t=7或t=-1(舍去),t=7,即3x=7. x=log37.
答案:x=log37
10.将下列指数式与对数式互化:
(1)log216=4;(2)log1327=-3;
(3)log3x=6(x>0); (4)43=64;
(5)3-2=19; (6)(14)-2=16.
解:(1)24=16.(2)(13)-3=27.
(3)(3)6=x.(4)log464=3.
(5)log319=-2.(6)log1416=-2.
11.计算:23+log23+35-log39.
解:原式=232log23+353log39=233+359=24+27=51. 12.已知logab=logba(a0,且a1;b0,且b1).
求证:a=b或a=1b.
证明:设logab=logba=k,
则b=ak,a=bk,b=(bk)k=bk2.
∵b0,且b1,k2=1,
即k=1.当k=-1时,a=1b;
当k=1时,a=b.a=b或a=1b,命题得证.。