无机及分析化学(化工版)第一章习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. NO 是汽车尾气的主要污染源,有人设想以加热分解的方法来消除之
2NO → N 2 + O 2
试从热力学角度判断该方法能否实现?
解: 518022590..H m r -=⨯-=θ
∆k J ·mol -1
62242762101420561191....S m r -=⨯-+=θ∆ J ·mol -1·K -1
该反应要实现必须
m r G ∆<0
所以高温不利
2. 设汽车内燃机内温度因燃料燃烧反应达到1573 K ,试计算此温度时下列反应 1/2 N 2(g )+ 1/2 O 2 (g ) → NO (g )
的θ∆r m G 和θK
解:
mol
kJ S H G m
B m f B m r /77.7010)138.2052
161.19121761.210(157325.9015733
=⨯⨯-⨯--=∆-∆=∆-∑∑θθθνν 3
31046.4ln 157310314.877.70ln --⨯=⨯⨯⨯-=-=∆θθθ
θ
K K K RT G m r
3. 蔗糖(C 12H 22O 11)在人体内的代谢反应为:
C 12H 22O 11(s) + 12O 2(g) → 12CO 2(g) + 11H 2O(l)
假设其反应热有30%可转化为有用功,试计算体重为70kg 的人登上3000m
高的山(按有效功计算),若其能量完全由蔗糖转换,需消耗多少蔗糖?
解: A =70kg ⨯3000m
= 2.1⨯105 kg ⋅m
=2.1⨯105⨯9.8J =2.1⨯103kJ ∆r H =2.1⨯103kJ/30%
=7.0⨯103kJ
∆ r
H m =11⨯(-285.830 kJ ⋅mol -1)+12⨯(-393.509 kJ ⋅mol -1) -(-2222 kJ ⋅mol -1)
= -5644kJ ⋅mol -1
ξ = ∆r H /∆ r
H m
=7.0⨯103kJ/5644kJ ⋅mol -1 =1.24mol
m (C 12H 22O 11)=1.24⨯342.3
= 425g
4. 利用附录III 的数据,计算298.15 K 时下列反应的r m H θ
∆
(1) Ca (OH )2 (s )+CO 2 (g )→CaCO 3 (s ) + H 2O (l ) (2) CuO (s )+CO (g )→Cu (s )+ CO 2 (g ) (3) 2SO 2(g )+O 2(g ) →2SO 3(g )
(4) CH 3COOH (l )+2O 2(g )→2CO 2(g )+2H 2O (l )
解:∑∆=
∆θ
θνm f B m r H H
(1)θ
m r H ∆=(–1206.92)+( –285.83) –(–986.09) –(–393.51)= –113.15kJ ⋅mol -1 (2)θ
m r H ∆=0+(–393.51)-( –157.3) –(–110.53)= -125.68 kJ ⋅mol -1 (3)θm r H ∆=2[(–395.72)–(–296.83)]= –197.78 kJ ⋅mol -1
(4)θm r H ∆=2 (–393.51)+2 ( –285.83) – (– 484.5)= –874.18 kJ ⋅mol -1
5.已知下列化学反应的反应热:
(1)C 2H 2(g) + 5/2O 2(g) → 2CO 2(g) + H 2O(g); ∆ r H m = -1246.2 kJ ⋅mol -1 (2) C(s) + 2H 2O(g) → CO 2(g) + 2H 2(g); ∆ r H m = +90.9 kJ ⋅mol -1 (3)2H 2O(g) → 2H 2(g) + O 2(g); ∆ r H m = +483.6 kJ ⋅mol -1 求乙炔(C 2H 2,g)的生成热 ∆ f H m 。
解:反应2⨯(2)-(1)-2.5⨯(3)为:
2C(s)+H 2(g)→C 2H 2(g)
∆ f
H m =2⨯∆ r
H m (2)-∆ r
H m (1)- 2.5∆ r
H m (3)
=[2⨯90.9-(-1246.2) -2.5⨯483.6] kJ ⋅mol -1 =219.0 kJ ⋅mol -1
6. 高炉炼铁中的主要反应有: C (s ) + O 2(g ) → CO 2(g )
1/2CO 2(g ) + 1/2C (s ) → CO (g ) CO (g ) +1/3Fe 2O 3(s ) → 2/3Fe (s )+CO 2(g )
(1)分别计算298.15K 时各反应的θ
∆r m H 和各反应θ∆r m H 值之和;
(2)将上列三个反应式合并成一个总反应方程式,应用各物质298.15K 时的θ
∆f m H 数据计算总反应的反应热,与⑴计算结果比较,并作出结论。
解:
(1)∑∆=
∆θ
θ
ν
m
f B
m r H H 51.3930051.393)1(-=---=∆θ
m r H kJ ⋅mol -1
23.860)51.393(2
153.110)2(=----=∆θm r H kJ ⋅mol -1
25.8)2.824(3
1)53.110()51.393(0)3(-=----+=∆θ
m r H kJ ⋅mol -1
=∆θ
m r H )4()2()1(θθθm r m r m
r H H H ∆+∆+∆=53.315- kJ ⋅mol -1 (2)53.31500)2.824(3
1)51.393(230-=-----+=∆=∆∑θθ
νm f B m
r H H kJ ⋅mol -1
无论是一步反应或多步反应化学反应热效应总和总是相等的。
7. 利用附录III ,判断下列反应298.15K 能否自发向右进行。
(1) 2 Cu + (aq ) → Cu 2+ (aq ) + Cu (s ) (2) AgCl (s )+Br -(aq )→AgBr (s )+Cl -(aq ) (3) 4NH 3(g )+5O 2(g )→4NO (g )+6H 2O (g ) (4) 4NO (g )+6H 2O (g )→ 4NH 3(g ) +5O 2(g )
解:∑∆=
∆θ
θ
ν
m
f B
m r G G (1)θ
∆m r G =65.49+0-49.98⨯2 = -34.47 kJ ⋅mol -1<0 能自发反应
(2)θ
∆m r G =(-96.9)+( -131.22) -(-109.79)-(-103.96) = -14.38 kJ ⋅mol -1<0 能自发反应 (3)θ∆m r G =4(86.55)+6( -228.58) -4(-16.45)-0 = -959.48 kJ ⋅mol -1<0 (4)θ∆m r G =4(-16.45) +0-4(86.55) -6( -228.58) = 959.48kJ ⋅mol -1>0
8. 由软锰矿二氧化锰制备金属锰可采取下列两种方法:
(1)MnO 2(s ) + 2H 2(g ) → Mn (s ) + 2H 2O (g ); (2)MnO 2(s ) + 2C (s ) → Mn (s ) + 2CO (g );
上述两个反应在25℃,100 kPa 下是否能自发进行?如果考虑工作温度愈低愈好的话,则制备锰采用哪一种方法比较好?
解:(1)98.8)58.228(2)14.466()298(=-⨯+--=∆K G m r θ
kJ ⋅mol -1
>0
(2)819117137214466298.).().()K (G m r =-⨯+--=θ
∆ kJ ⋅mol -1>0
所以两个反应在25℃,100 kPa 下都不能自发进行。
一式的θ
m r H ∆=36.39 kJ ⋅mol -
1
θ
m r S ∆=95.24 kJ ⋅mol -1 T 1=382K
一式的θ
m r H ∆=298.98 kJ ⋅mol -
1
θm r S ∆=362.28 kJ ⋅mol -1 T 2=825K
仅考虑温度时,选(1)有利
9. 定性判断下列反应的θ∆r m
S 是大于零还是小于零: (1) Zn (s ) + 2HCl (aq ) → ZnCl 2(aq ) + H 2(g ) (2) CaCO 3(s ) → CaO (s ) + CO 2(g ) (3) NH 3(g ) + HCl (g ) → NH 4Cl (s ) (4)CuO (s ) + H 2(g ) → Cu (s ) + H 2O (l )
解:(1)θ
m r S ∆>0 (2)θ
∆m r S >0 (3)θ
m r S ∆<0 (4)θ∆m r S <0
10. 糖在人体中的新陈代谢过程如下:
C 12H 22O 11(s) + 12O 2(g) → 12CO 2(g) + 11H 2O(l)
若反应的吉布斯函数变∆ r G m 只有30%能转化为有用功,则一匙糖(~3.8g)在体温37℃时进行新陈代
谢,可得多少有用功?(已知C 12H 22O 11的∆f H m =-2222kJ ⋅mol -1 S m =360.2J ⋅mol -1⋅K -1)
解: C 12H 22O 11(s) + 12O 2(g) → 12CO 2(g) + 11H 2O(l)
∆f H m /kJ ⋅mol -1 -2222 0 -393.509 -285.830 S m /J ⋅mol -1⋅K -1 360.2 205.138 213.74 69.91
∆r H m =[11⨯(-285.830)+12⨯(-393.509) -( -2222)] kJ ⋅mol -1
= -5645kJ ⋅mol -1
∆r S m =[11⨯69.91+12⨯213.74-12⨯205.138-360.2] J ⋅mol -1⋅K -1
=512.03 J ⋅mol -1⋅K -1 ∆ r
G m =∆r H m -T ∆r S m
= -5645kJ ⋅mol -1-310.15K ⨯512.03⨯10-3kJ ⋅mol -1⋅K -1 = -5803kJ ⋅mol -1 ξ = ∆n B /νB
= 3.8g/342g ⋅mol -1 =1.11⨯10-2mol W 有用功=30%∆ r
G
=30%∆ r
G m ⋅ξ
=30%⨯(-5803kJ ⋅mol -1) 1.11⨯10-2mol
= -19kJ 负号表示系统对环境做功。
11. 已知反应 2H 2(g ) + 2NO (g ) → 2H 2O (g ) + N 2(g ) 的速率方程 v = k c (H 2)⋅c 2(NO ),在一定温度下,若使容器体积缩小到原来的1/2时,问反应速率如何变化?
解:v = k c (H 2)⋅c 2(NO )
v 2 = k 2c (H 2)⋅[2c (NO )]2=8 v 反应速率将为原速率得8倍。
12. 某基元反应 A + B → C ,在1.20L 溶液中,当A 为4.0 mol ,B 为3.0mol 时,v 为0.0042mol ⋅L -1s -1,计
算该反应的速率常数,并写出该反应的速率方程式。
解: v = kc A c B
k =0.0042mol ⋅dm -3s -1/[(4.0 mol/1.20dm 3)⨯(3.0mol)/1.20dm 3] =3.5⨯10-4 mol -1⋅dm 3s -1
13. 已知反应HI (g ) + CH 3(g )
CH 4 + I 2 (g )在157o C 时的反应速率常数k =1.7×10-5 L·mol -1·s -1,
在227o C 时的速率常数k =4.0×10-5 L·mol -1·s -1,求该反应的活化能。
解: 由 ln
2
1
k k = -
⎪⎭
⎫ ⎝⎛-21a 11T T R E
得
)5001
4301(314.8100.4107.1ln 5
5--=⨯⨯--a E
E a =21.85 kJ ⋅mol -1
14. 某病人发烧至40℃时,使体内某一酶催化反应的速率常数增大为正常体温(37℃)的1.25倍,求该酶催化反应的活化能?
解: ⎪⎭⎫
⎝⎛-⨯⋅⋅⨯-=--K 3131K 3101K mol kJ 108.31425.11ln
113-a E E a =60.0 kJ ⋅mol -1
15. 某二级反应,其在不同温度下的反应速率常数如下:
T / K 645 675 715 750 k ⨯103/mol -1 L ⋅min -1 6.15 22.0 77.5 250 (1)作ln k ~1/T 图计算反应活化能E a ; (2)计算700 K 时的反应速率常数k 。
解:(1)画图略,E a = 140 kJ ⋅mol -1;
(2))7151
7001(314.8104.110
55.7ln 54
-⨯-=⨯k 410 4.56⨯=k mol -1 L ⋅min -1
16. 写出下列各化学反应的平衡常数K 表达式: 1)HAc(aq) H +(aq) + Ac -(aq) 2)Cu 2+(aq)+4NH 3(aq)
Cu(NH 3)4(aq)
3)C(s) + H 2O(g) CO(g) + H 2(g) 4)AgCl(s) Ag +(aq) + Cl -(aq)
5)CaCO 3(s) CaO(s) + CO 2(g)
6)2MnO 4-(aq) + 5SO 32-(aq) + 6H +(aq)
2Mn 2+(aq) + 5SO 42-(aq) + 3H 2O(l)
解:1) K = (c (H +)/c )⋅(c (Ac -)/ c )⋅(c (HAc) / c )-1 2) K =(c( Cu(NH 3)4/c ⋅(c (Cu 2+) / c )-1⋅(c (NH 3) / c )-4
3)K = (p (CO)/p )⋅(p (H 2)/ p )⋅(p (H 2O) / p )-1 4) K = (c (Ag +)/c )⋅(c (Cl -)/ c )
5) K = p (CO 2)/p
6) K = (c (Mn +2)/c )2⋅(c (SO 4-2)/ c )5⋅(c (MnO 4-1) / c )-2⋅(c (SO 3-2) / c )-5⋅(c (H +) / c )-6
17. 已知下列化学反应在298.15K 时的平衡常数:
(1)2N 2(g ) + O 2(g ) 2N 2O (g ); θK 1 = 4.8⨯10-37 (2)N 2(g ) + 2O 2 (g )
2NO 2 (g ); θK 2 =8.8⨯10-19 计算反应2 N 2O (g ) + 3O 2 (g )
4NO 2 (g ) 的平衡常数θK 。
解:(2)×2-(1)为所求反应:
6
110841088372191
223../).(K /)K (K =⨯⨯==--θθθ.
18.已知下列反应在298.15K 的平衡常数:
1) SnO 2(s) + 2H 2(g) 2H 2O(g) + Sn(s); K 1 = 21 2 ) H 2O(g) + CO (g)
H 2(g) + CO 2(g); K 2 = 0.034
计算反应 2CO(g) + SnO 2(s)
Sn(s) + 2CO 2 (g) 在298.15K 时的平衡常数K 。
解:反应 (1) +2⨯ (2)为所求反应:K = K 1 ⨯ (K 2)2 = 21⨯0.0342 = 2.4⨯10-2
19. 密闭容器中反应 2NO(g) + O 2(g)
2NO 2(g) 在1500K 条件下达到平衡。
若始态
p (NO ) =150kP a ,p (O 2) = 450kP a ,p (N O 2) = 0;平衡时p (N O 2) = 25kP a 。
试计算 平衡时p (NO),p (O 2)的分压及平衡常数K 。
解:V 、T 不变,p ∝ n ,各平衡分压为:
p (NO) =150-25=125kPa ; p (O 2) =450-25/2=437.5kPa
K = (p (NO 2)/p )2(p (NO)/ p )-2(p (O 2)/ p )-1
= (25/100) 2(125/100) -2(437.5/100) -1 =9.1⨯10-3
20. 密闭容器中的反应 CO(g) + H 2O(g)
CO 2(g) + H 2(g) 在750K 时其K = 2.6,求:
(1)当原料气中H 2O(g)和CO(g)的物质的量之比为1:1时,CO(g)的转化率为多少? (2)当原料气中H 2O(g):CO(g)为4:1时,CO(g)的转化率为多少?说明什么问题?
解:(1) V 、T 不变 CO(g) + H 2O(g) CO 2(g) + H 2(g)
起始n /mol 1 1 0 0
平衡n /mol 1-x 1-x x x ∑n =2(1-x )+2x =2
平衡分压 2
1x -p 总 2
1x -p 总 2
x p 总 2
x p 总
K = (p (H 2)/p ) (p (CO 2)/ p ) (p (H 2O)/ p )-1 (p (CO)/ p )-1
2.6 = (2
x )2 (2
1x -)-2
x =0.617
ε (CO)= 61.7%
(2) x 2/[(1-x )(5-x )]=2.6
x =0.92
ε (CO)= 92%
H 2O(g)浓度增大,CO 转化率增大。
21. 在317K ,反应 N 2O 4(g )
2NO 2(g ) 的平衡常数θK = 1.00。
分别计算当体系总压为400kPa
和800kPa 时N 2O 4(g )的平衡转化率,并解释计算结果。
解: N 2O 4(g ) 2NO 2(g ) 平衡时 1-α 2α 平衡总体系物质量=1+α p 总为总压力,则p (N 2O 4)= p 总
αα+-11 ; p (NO 2)= p 总
α
α
+12
θθθp /)O N (p ]p /)NO (p [K 4222==θ
θα
αααp /p ]p /p [+-+11122总总
把总压为400kPa 和800kPa ,θ
p =100 kPa 分别代入上式 可求得总压400kPa 时,=1α24.3%
总压800kPa 时,=2α 17.4%
增大压力,平衡向气体分子数减少的方向移动,α(N 2O 4)下降。
22. 某反应 3A (g ) + B (g )
2C (g ),按V (A ) : V (B ) = 3 : 1 配制原料气。
在某种催化
剂作用下,于温度为T 、压力为20.0 kPa 时达到平衡。
这时C (g )的体积分数为6.00 %。
试计算在此温度下该反应的标准平衡常数θK 。
解: 3A (g ) + B (g )
2C (g )
平衡时气体体积百分比 70.5% 23.5% 6%
=⨯⨯⨯⨯==)
%.()%.()
%(
)p /p ()p /p ()p /p (K B A C
100
523201005702010062032
32
θ
θθ
θ 1.09 23. 已知尿素CO (NH 2)2的∆f G m =-197.15kJ ⋅mol -1,求尿素的合成反应
2NH 3(g ) + CO 2(g )
H 2O (g ) + CO (NH 2)2(s )
在298.15K 时的θ
∆r m G 和θK 。
解:()r m B f m G v G B ∆=∑∆θθ
=(-228.58)+(-197.15) -2×(-16.45)-( -394.36) =1.53 kJ ⋅mol -1
θθ
∆K ln RT G m r -=
所以θK (298.15K )=0.539
24. 25℃时,反应2H 2O 2(g 2H 2O (g )+O 2(g )的∆r H m 为-210.9kJ ⋅mol -1,θ
∆r m S 为131.8J ⋅mol -1⋅K -1。
试计算该反应在25℃和100℃时的θK ,计算结果说明问题。
解:θ∆m r G (298.15K ).=θ
θ∆∆m r m r S .H ⨯-15298
=-210.9×103-298.15×131.8=-2.502×105 J ⋅mol -1
θ
∆m r G (373.15K ).=θθ∆∆m r m r S .H ⨯-15373
=-210.9×103-373.15×131.8=-2.601×105 J ⋅mol -1
θθ∆K ln RT G m r -=
所以θ
K (298.15K )=6.8×1043
θK (373.15K )=2.5×1036
H 2O 2分解反应为放热反应,随着温度升高,平衡向左移动。
25. 在一定温度下Ag 2O 的分解反应为 Ag 2O(s) 2Ag(s) + 1/2O 2(g)
假定反应的∆r H m ,∆r S m 不随温度的变化而改变,估算Ag 2O 的最低分解温度和在该温度下的p (O 2)分压是多少?
解: ∆r H m = 31.05kJ ⋅mol -1
∆
r S m =[2⨯42.5+205.138/2-121.3]J ⋅mol -1⋅K
-1 =66.269J ⋅mol -1⋅K -1 T = ∆r H m /∆r S m
=31.05kJ ⋅mol -1/66.269⨯10-3kJ ⋅mol -1⋅K -1 = 468.5 K
此时,∆r G m =0 kJ ⋅mol -1 , K =1 , K =(p (O 2)/p )1/2 , p (O 2)=100kPa 。
26:乙苯(C 6H 5C 2H 5)脱氢制苯乙烯有两个反应:
(1) 氧化脱氢 C 6H 5C 2H 5(g ) + 1/2 O 2(g )
C 6H 5CH═CH 2(g ) + H 2O (g )
(2) 直接脱氢 C 6H 5C 2H 5(g )
C 6H 5CH═CH 2(g )
+ H 2(g )
若反应在298.15K 进行,计算两反应的平衡常数,试问哪一种方法可行?
解:
所以反应(1)可行。
27. 已知反应 2SO 2(g) + O 2(g) → 2SO 3(g) 在427℃和527℃时的K 值分别为1.0⨯105和1.1⨯102,求该温度范围内反应的∆r H m 。
130.6 213.8
-228.57
0mol 145.4kJ 130.6228.57213.8)(B,298.15K G Δν(298.15K)G Δ (1)1θm f B B θm r <⋅-=--==-∑
25
θ3θm r θθ
θm r 102.98K 58.65
298.15)/(8.31410145.4/RT G ΔlnK RTlnK
G Δ⨯==⨯⨯=-=-=得由0mol 83.2kJ 130.6
213.8)(B,298.15K G Δν(298.15K)G Δ (2)1θm f B
B θ
m r >⋅=-==-∑
15
θ3θm r θ102.65K 33.56298.15)/(8.3141083.2/RT G ΔlnK -⨯=-=⨯⨯-=-=1θm f m
ol kJ (298.15K)/G Δ-⋅(g)H C H C 5256)
CH(g CH H C 56=O(g)
H 2
解: ⎪⎭
⎫ ⎝⎛--=21m r 2111Δln
T T R H K K ⎪⎭
⎫
⎝⎛+-+⨯-=⨯⨯-15.273527115.273427110314.8Δ101.1100.1ln 3
m r 25H ∆r H m = -317 kJ ⋅mol -1
28. 计算密闭容器中反应CO (g ) + H 2O (g )
CO 2 + H 2(g ) 在800K 时的平衡常数θK ;若
欲使此时CO 的转化率90%,则原料气的摩尔比[n (CO )]:[n (H 2O )]应为多少?
解:
3
10)674.197825.188684.13074.213(800)818.241525.110(509.3931573-⨯--+-----=∆-∆=∆∑∑θθθννm
B m f B m r S H G mol kJ /506.7-=
09
.3ln 80010314.8506.7ln 3=⨯⨯⨯-=--=∆-θθθ
θ
K K K RT G m r
假设是CO 的转化率为90%,假设
a
n n o H co 2
2= CO + H 2O = CO 2 + H 2 1 a
0.9 0.9 0.9 0.9
平衡 0.1 a-0.9 0.9 0.9
)
9.0(1.09.02
-=a K θ
a=3.52
7
2
2=o H co n n 29. NH 3的分解反应为2NH 3(g )
N 2(g ) + 3H 2(g ),在673 K 和100 kPa 总压下的解离度为
98%,求该温度下反应的平衡常数θK 和θ
∆r m G 。
解: 2NH 3(g )
N 2 (g ) + 3H 2(g )
1 0 0
平衡 (1-a) 1/2a 3/2a
αα+-=11)(3总
p NH p ; αα+=12/1)(2总p N p ; α
α+=12/3)(2总p H p 23)()()(322θθθθp p p p p p K NH H N ⋅==6.992)98.102.0()98.147.1()98.149.0(23
=⋅ 6.992ln 673314.8ln ⨯⨯-=-=∆θθK RT G m r
410861.3⨯-= mol J /
61.38-= mol kJ /
30. Write equations for the two reactions corresponding to the following θm f H ∆ values. Combine these
equations to give that for the reaction. 2NO 2(g ) N 2O 4(g )
Caculate the θm r H ∆ value for this reaction , and state whether the reaction is endothemic or exothermic.
mol kJ g NO H m f /84.33),(2=∆θ mol kJ g O N H m f /66.9),(42=∆θ
Solution: 1/2N 2 (g ) + O 2(g )
NO 2(g ) , mol kJ g NO H m f /84.33),(2=∆θ N 2 (g ) + 2O 2(g ) N 2O 4(g ) , mol kJ g O N H m f /66.9),(42=∆θ
02.58)84.33(266.9-=-⨯-=∆=∆∑θθνm f B m r H H mol kJ / , The reaction is exothermic.
31. The enthalpy change for which of the following process represents the enthalpy of formation of AgCl? Explain. (a ) )s (AgCl Cl )aq (Ag →+-+ (b ) )s (AgCl )g (Cl 2
1)s (Ag 2→+ (c ) )g (Cl 21)s (Ag AgCl 2+→ (d ) )s (Au )s (AgCl )s (AuCl )s (Ag +→+
Solution: (b )
32. Under standard state , caculate the enthalpy of decompsition of NaHCO 3 (s ) into Na 2CO 3 (s ), CO 2 (g )and H 2O (g ) at 298.15K. 2NaHCO 3 (s ) Na 2CO 3 (s ) + CO 2 (g ) + H 2O (g ) Solution:
)81.950(2)82.241()51.393()68.1130(-⨯--+-+-=∆=∆∑θθνm f B m r H H
91.33= J ⋅mol -1
33. Without consulting entropy tables , predict the sign of △S for each the following process.
(a ) )g (O 2)g (O 2→ (b ) )g (NH 2)g (H 3)g (N 322→+
(c ) )g (O H )g (CO )g (O H )s (C 22+→+
(d ) )g (Br )l (Br 22→ (e ) Desaltination of seawater
(f ) Hard boiling of an egg.
Solution: (a )S ∆>0
(b )S ∆<0
(c )S ∆>0
(d )S ∆>0
(e )S ∆<0
(f )S ∆<0
34. θ∆m
f G for the formation of HI (
g ) from its gaseous elements is -10.10 kJ/mol at 500K. When the partial pressure of HI is 10.0 atm , and of I 2 0.001 atm , what must the partial pressure of hydrogen be at this temperature ot reduce the magnitude of G ∆for the reaction to 0.
Solution: I 2 (g ) + H 2(g )
2HI (g )
Q RT G G m r ln -+∆=∆θ Q ln 500314.8210.100⨯-+⨯-=
2
001.0102
H p Q ⋅==129 2.7752=H p atm
35. Calculate the enthalpy change for the reactions
)g (O H 2)g (SiF )g (HF 4)s (SiO 242+→+
)g (O H 2)g (SiCl )g (HCl 4)s (SiO 242+→+
Explain why hydrofluoric acid attacks glass , whereas hydrochloric acid does dot.
Solution:
反应(1))1.271()49.910()82.241()9.1614(-----+-=∆=∆∑θθνm f B m r H H
11.675-= J ⋅mol -1 反应(2))31.92()49.910()82.241()01.657(----+-=∆=∆∑θθνm f B m r H H
99.103= J ⋅mol -1 反应(1)是放热反应,而反应(2)是吸热反应,所以(1)更容易进行。
36. In a catalytic experiment involving the Haber process ,
223N 3H 2NH +→, the rate of reaction was mesured as 11433100.2][)(---⋅⨯=∆∆=s L mol t
NH NH v
If there were no side reactions , what was the rate of reaction expressed in terms of (a ) N 2 (b )H 2?
Solution:
11442100.1100.22
1
)(----⋅⋅⨯=⨯⨯=s L mol N υ
11442100.3100.223)(----⋅⋅⨯=⨯⨯=s L mol H υ
37. In terms of reaction kinetics , explain why each of the following speeds up a chemical reaction: (a ) catalyst (b ) increase in temperature (c ) increase in concentration.
Solution:
(a ) 由于催化剂降低了化学反应的活化能,加快了化学反应的进行。
(b ) 温度升高,参与反应的分子的平均能量升高,从而降低了活化能;另外,温度升高,同时分子碰撞频率增快,所以加快了化学反应。
(c ) 浓度升高,活化分子数目增多,所以化学反应加快。
38. What is the rate law for the single-step reaction A + B → 2C?
A possible mechanism for the reaction O H 2N NO 2H 2222+→+is
2NO N 2O 2
O H O N O N H 22222+→+
O H 2N O N H 2222+→+
If the second step is rate determining , what is the rate law for this reaction?
Solution:
B A
C C k ⋅=υ
NO C k 2⋅=υ
39. C a l c u l a t e t h e v a l u e o f t h e t h e r m o d y n a m i c d e c o m p o s i t i o n t e m p e r a t u r e (T d )
react ion NH 4Cl (s).= NH 3(g) + HCl(g) at th e st andard st ate.
Solution: ∆r H m =[- 46.11- 92.307+314.43] kJ ⋅mol -1
=176.01 kJ ⋅mol -1
∆r S m =[192.45+186.908-94.6] J ⋅mol -1⋅K -1
=284.758J ⋅mol -1⋅K -1
T d = ∆r H m /∆r S m
=176.01 kJ ⋅mol -1/284.758⨯10-3kJ ⋅mol -1⋅K -1
=618.12K
40. The rate constant for the reaction of oxygen atoms with aromatic hydrocarbons was 3.03×107 L·mol -1·s -1 at
341.2K , and 6.91×107 L·mol -1·s -1 at 392.2K. Calculate the activation energy of this reaction.
Solution:
mol kJ Ea Ea /9.17)2.34112.3921(314.8303.210
03.31091.6lg 77=-⨯-=⨯⨯。