高一数学-2015-2016学年高一上学期周练(二)数学试题
高一数学-2015-2016学年高一上学期期中数学试卷
2015-2016学年高一(上)期中数学试卷一、填空题:本大题共14小题,每小题5分,计70分.请把答案填写在答题卡相应位置上. 1.设集合A={1,2,3},B={2,4},则A∩B=__________.2.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是__________.3.=__________.4.若角α=﹣4,则角α的终边在第__________象限.5.已知幂函数y=f(x)的图象过点,则f(﹣2)=__________.6.函数的定义域为__________.7.函数y=3+log a x,(a>0且a≠1)必过定点__________.8.设a=log0.60.8,b=log1.20.9,c=1.10.8,则a、b、c由小到大的顺序是__________.9.已知定义域为[1,2]的函数f(x)=2+log a x(a>0,a≠1)的图象过点(2,3),若g(x)=f(x)+f(x2),则函数g(x)的值域为__________.10.已知f(x)=3kx3+﹣2(k∈R),f(lg7)=1(k∈R),则f(lg)=__________.11.设方程2x+x=4的根为x0,若x0∈(k﹣,k+),则整数k=__________.12.若2a=5b=10,则=__________.13.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(4)=0,则<0的解集__________.14.已知函数满足f(c2)=.则f(x)的值域为__________.二、解答题:本大题共6小题,计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知集合A={x|x2+3x+2=0},B={x|ax≥1,a<0}(1)当a=﹣时,求A∩B;(2)当A⊆B时,求a的取值范围.16.(14分)已知扇形的周长为16cm,圆心角为2rad,求该扇形的面积.17.(14分)已知二次函数f(x)满足=f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,(1)求f(x)的解析式;(2)当x∈[﹣1,1]时,求函数g(x)=f(x)﹣2x的值域.18.(16分)用一根细铁丝围一个面积为4的矩形,(1)试将所有铁丝的长度y表示为矩形的某条边长x的函数;(2)①求证:函数f(x)=x+在(0,2]上是减函数,在[2,+∞)上是增函数;②题(1)中矩形的边长x多大时,细铁丝的长度最短?19.(16分)已知函数f(x)=ln(1+x)+aln(1﹣x)(a∈R)的图象关于原点对称.(1)求定义域.(2)求a的值.(3)若有零点,求m的取值范围.20.(16分)已知函数f(x)=2x(x∈R),(1)解不等式f(x)﹣f(2x)>16﹣9×2x;(2)若函数q(x)=f(x)﹣f(2x)﹣m在[﹣1,1]上有零点,求m的取值范围;(3)若函数f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2ag (x)+h(2x)≥0对任意x∈[1,2]恒成立,求实数a的取值范围.2015-2016学年高一(上)期中数学试卷一、填空题:本大题共14小题,每小题5分,计70分.请把答案填写在答题卡相应位置上. 1.设集合A={1,2,3},B={2,4},则A∩B={2}.【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={1,2,3},B={2,4},∴A∩B={2},故答案为:{2}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是0.【考点】子集与真子集.【专题】计算题.【分析】由题意,集合{x|ax=1}是任何集合的子集,则此集合必是空集,a的值易求得.【解答】解:由于a是实数,若集合{x|ax=1}是任何集合的子集,则此集合必是空集,故方程ax=1无根,所以a=0故答案为:0.【点评】本题考查集合中的参数取值问题,空集的概念,解题的关键是理解题意,得出是任何集合的子集的集合必是空集.3.=2.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题.【分析】根据指数运算法则和对数运算法则化简即可得解【解答】解:原式=故答案为:2【点评】本题考查指数运算与对数运算,须能够对指数式和对数式灵活变形,熟练应用指数运算法则和对数运算法则.属简单题4.若角α=﹣4,则角α的终边在第二象限.【考点】象限角、轴线角.【专题】计算题;函数思想;三角函数的求值.【分析】判断角的所在范围,推出所在象限即可.【解答】解:因为α=﹣4,﹣4∈(﹣,﹣π),所以α的终边在第二象限.故答案为:二.【点评】本题考查象限角的判断,是基础题.5.已知幂函数y=f(x)的图象过点,则f(﹣2)=.【考点】幂函数的图像;函数的值.【专题】待定系数法.【分析】设出幂函数的解析式,由图象过(,8)确定出解析式,然后令x=﹣2即可得到f (﹣2)的值.【解答】解:设f(x)=x a,因为幂函数图象过,则有8=,∴a=﹣3,即f(x)=x﹣3,∴f(﹣2)=(﹣2)﹣3=﹣故答案为:﹣【点评】考查学生会利用待定系数法求幂函数的解析式.会根据自变量的值求幂函数的函数值.6.函数的定义域为(0,1].【考点】对数函数的定义域;函数的定义域及其求法.【专题】计算题.【分析】根据偶次根式下大于等于0,对数的真数大于0建立不等式组,解之即可求出所求.【解答】解:要使函数有意义则由⇒0<x≤1故答案为:(0,1].【点评】本题主要考查了对数函数的定义域,以及根式函数的定义域和不等式组的解法,属于基础题.7.函数y=3+log a x,(a>0且a≠1)必过定点(1,3).【考点】对数函数的图像与性质.【专题】数形结合;函数思想;分析法;函数的性质及应用.【分析】直接利用对数函数的图象经过的定点,再通过平移,求出函数y=3+log a x图象经过的定点.【解答】解:∵对数函数f(x)=log a x(a>0且a≠1)的图象恒过定点(1,0),而函数y=3+log a x的图象是由f(x)的图象向上平移3个单位得到,∴函数y=3+log a x的图象必过定点(1,3).故答案为:(1,3).【点评】本题主要考查了对数函数的图象经过的定点的应用,以及函数图象的平移变换,属于基础题.8.设a=log0.60.8,b=log1.20.9,c=1.10.8,则a、b、c由小到大的顺序是b<a<c.【考点】指数函数的图像与性质.【专题】函数的性质及应用.【分析】由y=log0.6x是减函数,知1=log0.60.6>a=log0.60.8>log0.61=0;由y=log1.2x是增函数,知b=log1.20.9<log1.21=0;由y=1.1x是增函数,知c=1.10.8>1.10=1,由此能比较a、b、c的大小【解答】解:∵y=log0.6x是减函数,∴1=log0.60.6>a=log0.60.8>log0.61=0;∵y=log1.2x是增函数,∴b=log1.20.9<log1.21=0;∵y=1.1x是增函数,∴c=1.10.8>1.10=1,∴b<a<c.故答案为:b<a<c.【点评】本题考查对数函数、指数函数的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.9.已知定义域为[1,2]的函数f(x)=2+log a x(a>0,a≠1)的图象过点(2,3),若g(x)=f(x)+f(x2),则函数g(x)的值域为[4,].【考点】对数函数的图像与性质;函数的值域.【专题】计算题;数形结合;函数的性质及应用.【分析】根据f(x)的图象过点(2,3),代入可得实数a的值,再确定g(x)的定义域,最后根据单调性求函数值域.【解答】解:∵f(x)=2+log a x的图象过点(2,3),∴3=2+log a2,即log a2=1,解得a=2,又∵g(x)=f(x)+f(x2)=4+3log2x,且f(x)的定义域为[1,2],∴g(x)的自变量x需满足,解得x∈[1,],又g(x)在x∈[1,]上单调递增,所以g(x)min=g(1)=4,g(x)max=g()=,因此,函数g(x)的值域为[4,],故填:[4,].【点评】本题主要考查了函数解析式和定义域的求法,以及应用单调性求函数的值域,忽视g(x)的定义域是本题的易错点,属于中档题.10.已知f(x)=3kx3+﹣2(k∈R),f(lg7)=1(k∈R),则f(lg)=﹣5.【考点】函数奇偶性的性质;函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】利用已知条件求出k,然后求解f(lg).【解答】解:f(x)=3kx3+﹣2(k∈R),f(lg7)=1(k∈R),可得3klg37+﹣2=1,可得3klg37+=3.f(lg)=f(﹣lg7)=﹣(3klg37+)﹣2=﹣5.故答案为:﹣5.【点评】本题考查函数值的求法,整体代入法的应用,考查计算能力.11.设方程2x+x=4的根为x0,若x0∈(k﹣,k+),则整数k=1.【考点】二分法求方程的近似解.【专题】计算题.【分析】令f(x)=2x+x﹣4,由f(x)的单调性知:f(k﹣)<0,且f(k+)>0,根据k 取整数,从而确定k 值.【解答】解:令f(x)=2x+x﹣4,则f(x0)=0,且f(x)=2x+x﹣4在定义域内是个增函数,∴f(k﹣)<0,且f(k+)>0即:+k﹣﹣4<0,且+k+﹣4>0又k 取整数,∴k=1;故答案为1.【点评】联系用二分法求函数近似解的方法,构造f(x)=2x+x﹣4,由f(k﹣)<0,且f(k+)>0 及k 取整数,来确定k 值.12.若2a=5b=10,则=1.【考点】对数的运算性质.【专题】计算题.【分析】首先分析题目已知2a=5b=10,求的值,故考虑到把a和b用对数的形式表达出来代入,再根据对数的性质以及同底对数和的求法解得,即可得到答案.【解答】解:因为2a=5b=10,故a=log210,b=log510=1故答案为1.【点评】此题主要考查对数的运算性质的问题,对数函数属于三级考点的内容,一般在高考中以选择填空的形式出现,属于基础性试题同学们需要掌握.13.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(4)=0,则<0的解集(﹣4,0)∪(4,+∞).【考点】奇偶性与单调性的综合.【专题】转化思想;转化法;函数的性质及应用.【分析】根据函数奇偶性和单调性的性质将不等式进行转化进行求解即可.【解答】解:若函数f(x)为偶函数,则不等式<0等价为=<0,即xf(x)<0,∵f(x)为偶函数,且在(0,+∞)上是减函数,f(4)=0,∴函数f(x)对应的图象为:则不等式等价为x>0时,f(x)<0,此时x>4,x<0时,f(x)>0,此时0<x<4,综上不等式的解集为(﹣4,0)∪(4,+∞),故答案为:(﹣4,0)∪(4,+∞)【点评】本题主要考查不等式的求解,利用函数奇偶性的性质,作出函数的图象,利用数形结合是解决本题的关键.14.已知函数满足f(c2)=.则f(x)的值域为(1,].【考点】函数的值域;分段函数的应用.【专题】函数思想;综合法;函数的性质及应用.【分析】由f(x)的定义域便可看出0<c<1,从而可判断0<c2<c,从而可求出,这样便可求出c=,然后根据一次函数、指数函数的单调性及单调性定义即可求出每段上f(x)的范围,然后求并集便可得出f(x)的值域.【解答】解:根据f(x)解析式看出0<c<1;∴0<c2<c;∴;∴;∴;①0时,f(x)=为增函数;∴;即;②时,f(x)=2﹣4x+1为减函数;∴;即;∴综上得f(x)的值域为.故答案为:.【点评】考查分段函数的概念,知道0<c<1时,c2<c,以及一次函数、指数函数的单调性,单调性的定义,函数值域的概念,分段函数值域的求法.二、解答题:本大题共6小题,计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知集合A={x|x2+3x+2=0},B={x|ax≥1,a<0}(1)当a=﹣时,求A∩B;(2)当A⊆B时,求a的取值范围.【考点】集合的包含关系判断及应用;交集及其运算.【专题】计算题;转化思想;综合法;集合.【分析】(1)化简集合A,B,再求A∩B;(2)当A⊆B时,,即可求a的取值范围.【解答】解:(1)A={x|x2+3x+2=0}={﹣1,﹣2},当a=﹣时,B=(﹣∞,﹣2],所以A∩B={﹣2};…(2)因为A⊆B,a<0时,,所以,解得a≤﹣1,所以a的取值范围是(﹣∞,﹣1].…(14分)【点评】考查描述法表示集合,不等式的性质,以及子集的定义,比较基础.16.(14分)已知扇形的周长为16cm,圆心角为2rad,求该扇形的面积.【考点】扇形面积公式.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】设扇形的半径为r,弧长为l,根据扇形周长和弧长公式列式,解之得r=4,l=8,再由扇形面积公式可得扇形的面积S.【解答】解设扇形的半径为r,弧长为l,则有,得,…故扇形的面积为(cm2)…(14分)【点评】本题给出扇形的周长和圆心角的大小,求扇形的面积,着重考查了扇形的面积公式和弧长公式等知识,属于基础题.17.(14分)已知二次函数f(x)满足=f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,(1)求f(x)的解析式;(2)当x∈[﹣1,1]时,求函数g(x)=f(x)﹣2x的值域.【考点】二次函数的性质;函数的值域.【专题】计算题;函数思想;待定系数法;函数的性质及应用.【分析】(1)要求二次函数的解析式,利用直接设解析式的方法,一定要注意二次项系数不等于零,在解答的过程中使用系数的对应关系,解方程组求的结果;(2)求得二次函数g(x)的解析式,求得对称轴,可得[﹣1,]为减区间,即可得到最值,进而得到值域.【解答】解:(1)设二次函数的解析式为f(x)=ax2+bx+c (a≠0),由f(0)=1得c=1,故f(x)=ax2+bx+1.因为f(x+1)﹣f(x)=2x,所以a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=2x.即2ax+a+b=2x,根据系数对应相等,∴,所以f(x)=x2﹣x+1;(2)当x∈[﹣1,1]时,函数g(x)=f(x)﹣2x=x2﹣3x+1=(x﹣)2﹣,对称轴为x=,区间[﹣1,1]在对称轴的左边,为减区间,即有x=﹣1时取得最大值,且为5,x=1时取得最小值,且为﹣1.故值域为[﹣1,5].【点评】本题考查二次函数的解析式的求法,注意运用待定系数法,考查二次函数的值域的求法,注意运用函数的单调性,属于基础题.18.(16分)用一根细铁丝围一个面积为4的矩形,(1)试将所有铁丝的长度y表示为矩形的某条边长x的函数;(2)①求证:函数f(x)=x+在(0,2]上是减函数,在[2,+∞)上是增函数;②题(1)中矩形的边长x多大时,细铁丝的长度最短?【考点】基本不等式在最值问题中的应用.【专题】计算题;不等式的解法及应用.【分析】(1)利用面积求出另一条边长为,则可得铁丝的长度;(2)①利用导数证明即可;②由①可知x=3时,函数取得最小值.【解答】(1)解:由题意,另一条边长为,则铁丝的长度y=2x+(x>0);(2)①证明:∵f(x)=2(x+),∴f′(x)=2﹣,∴在(0,2]上,f′(x)<0,在[2,+∞)上,f′(x)>0,∴函数f(x)=2(x+)在(0,2]上是减函数,在[2,+∞)上是增函数;②解:由①可知x=2时,函数取得最小值8.【点评】本题考查函数模型的选择与应用,考查学生的计算能力,属于中档题.19.(16分)已知函数f(x)=ln(1+x)+aln(1﹣x)(a∈R)的图象关于原点对称.(1)求定义域.(2)求a的值.(3)若有零点,求m的取值范围.【考点】对数函数的单调区间;函数的零点.【专题】函数的性质及应用.【分析】(1)由函数的解析式可得,由此求得函数的定义域.(2)由题意可得,函数f(x)为奇函数,f(﹣x)=﹣f(x),即(1+a)ln(1﹣x)+(a+1)ln(1+x)=0,即(1+a)ln(1﹣x2)=0恒成立,由此可得a的值.(3)由题意可得:,在x∈(﹣1,1)上有解,即:,解得,由此利用不等式的性质求得m的范围.【解答】解:(1)由函数的解析式可得,求得﹣1<x<1,故函数的定义域为(﹣1,1).(2)由题意可得,函数f(x)为奇函数,f(﹣x)=﹣f(x),即ln(1﹣x)+aln(1+x)=﹣[ln(1+x)+aln(1﹣x)],即(1+a)ln(1﹣x)+(a+1)ln(1+x)=0,故(1+a)ln(1﹣x2)=0恒成立,∴a=﹣1.(3)∵,由题意可得:在x∈(﹣1,1)上有解,即:在x∈(﹣1,1)上有解,即在x∈(﹣1,1)上有解,即3x=﹣2m﹣1在x∈(﹣1,1)上有解,∴,即,解得﹣2<m<1,∴m∈(﹣2,1).【点评】本题主要考查求函数的定义域,奇函数的定义,求函数的零点,不等式的性质应用,属于中档题.20.(16分)已知函数f(x)=2x(x∈R),(1)解不等式f(x)﹣f(2x)>16﹣9×2x;(2)若函数q(x)=f(x)﹣f(2x)﹣m在[﹣1,1]上有零点,求m的取值范围;(3)若函数f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2ag (x)+h(2x)≥0对任意x∈[1,2]恒成立,求实数a的取值范围.【考点】函数与方程的综合运用;函数恒成立问题;二次函数的性质;指数函数的图像与性质.【专题】计算题;函数思想;方程思想;转化思想;函数的性质及应用.【分析】(1)设t=2x,利用f(x)>16﹣9×2x,转化不等式为二次不等式,求解即可.(2)设t=2x,求出,利用二次函数的性质求解最值.然后求解m的取值范围为.(3)利用函数的奇偶性以及函数恒成立,结合基本不等式求解函数的最值,推出结果.【解答】解:(1)设t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,即t2﹣10t+16<0.…∴2<t<8,即2<2x<8,∴1<x<3∴不等式的解集为(1,3).…(2)设t=2x,∵x∈[﹣1,1],∴,.∴f(x)的值域为.函数有零点等价于方程有解等价于m在f(x)的值域内,∴m的取值范围为.…(3)由题意得解得2ag(x)+h(2x)≥0即,对任意x∈[1,2]恒成立,又x∈[1,2]时,令,在上单调递增,当时,有最大值,所以…(16分)【点评】本题考查函数与方程的综合应用,二次函数的性质,基本不等式以及函数恒成立的转化,考查计算能力.。
青海师范大学附属二中2015-2016学年高一上学期第二次月考数学试卷 含解析
2015—2016学年青海师范大学附属二中高一(上)第二次月考数学试卷一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.把﹣1485°转化为α+k•360°(0°≤α<360°,k∈Z)的形式是()A.45°﹣4×360°B.﹣45°﹣4×360° C.﹣45°﹣5×360° D.315°﹣5×360°2.=()A.B.C. D.3.函数的定义域为()A.(,1)B.(,∞)C.(1,+∞) D.(,1)∪(1,+∞)4.已知α是第一象限角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角 D.第一或第三象限角5.函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2) B.(2,3) C.(1,) D.(e,+∞)6.若函数y=f(x+1)的定义域是[﹣2,3],则y=f(2x﹣1)的定义域为()A.[0,]B.[﹣1,4]C.[﹣5,5]D.[﹣3,7]7.已知函数f (x)=asinx+btanx+1,满足f (5)=7,则f (﹣5)的值为()A.5 B.﹣5 C.6 D.﹣68.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位9.设f(x)=,则f(f (2))的值为()A.0 B.1 C.2 D.310.设f(x)为定义于(﹣∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f (﹣2)、f(﹣π)、f(3)的大小顺序是()A.f(﹣π)>f(3)>f(﹣2)B.f(﹣π)>f(﹣2)>f(3)C.f(﹣π)<f(3)<f(﹣2)D.f(﹣π)<f(﹣2)<f(3)11.已知sin(﹣x)=,则cos(x+)=()A.B.C.﹣D.﹣12.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,则f()的值为()A.B.0 C.1 D.二、填空题:本大题共4个小题,共20分.(把答案填在第II卷相应的横线上)13.函数的最小正周期T=.14.已知sin(π﹣α)=﹣,且α∈(﹣,0),则tan(2π﹣α)=.15.函数的图象恒过定点P,P在幂函数f(x)的图象上,则f (x)=.16.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=(x>0),则给出以下四个结论:①函数f(x)的值域为[0,1];②函数f(x)的图象是一条曲线;③函数f(x)是(0,+∞)上的减函数;④函数g(x)=f(x)﹣a有且仅有3个零点时.其中正确的序号为.三、解答题(本大题共6小题,共70分。
2015-2016学年高一上学期第二阶段(期中)考试数学试卷5
高一数学一、选择题(本大题共12小题,共36.分)1.已知全集}6,5,4,3,2,1{=I ,集合{2,3,5,6},{1,3}A B ==,则B A C I ⋂)(等于( ) A.}4,3,1{ B.}3,1{ C.}1{ D.∅2.对于Z n m b a ∈≠>,,0,0,以下运算中正确的是( )A.mn n m a a a =⋅B.n m n m a a +=)(C.n m n m ab b a +=)(D.m m m b a a b -=÷)(3.若函数1,721,)(31->-+-≤-⎩⎨⎧=x xx x x x f ,则=-))8((f f ( ) A.-2 B.2 C.-4 D.4 4.若扇形的周长为4cm ,半径为1cm ,则其圆心角的大小为( )A.2B.4C. 2°D.4° 5.设1113341230.4,0.5,0.5y y y ===,则( )A.123y y y <<B.321y y y <<C.132y y y <<D.231y y y << 6.已知角α的终边上一点P 的坐标为)32cos ,32(sin ππ,则αsin 的值为( ) A.21 B. 21- C.23 D. 23- 7.函数xx x f )21(3)(-=的零点存在区间为( ) A.)1,2(-- B. )0,1(- C.)1,0( D.)2,1( 8.已知12()f x x =,若10<<<b a ,则下列各式中正确的是( )A.)()1()()1(b f b f a f a f <<<B.)()()1()1(a f b f bf a f <<< C.)1()1()()(b f a f b f a f <<< D.)1()1()()(af b f b f a f <<<9.在一次数学实验中,采集到如下一组数据: 则,x y 的函数关系与下列哪类函数最接近? (其中,a b 为待定系数) A.bx a y += B.xb y = C.b ax y +=2 D.xb y = 10.θ在第四象限,则2θ所在的象限为( )A.第二象限或第四象限B.第一象限或第三象限C.第三象限D.第四象限11.已知函数⎩⎨⎧>≤+=0,ln 0,2)(x x x kx x f ,若0>k ,则函数1)(-=x f y 的零点个数是( )A.1B.2C.3D.4 12.已知偶函数)(x f 在区间[)+∞,0内单调递减,0)2(=f .若0)1(>-x f ,则x 的取值范围是( )A. )3,1(-B.)2,1(-C.),2(+∞D.)2,2(- 二、填空题(本大题共4小题,共12.0分)13.与3π终边相同的角的集合是______.14.计算:=-+51lg 2lg 21(2-)____________.15.已知,6)3(,9)(35-=--++=f cx bx ax x f 则=)3(f ______ .16.定义运算⎩⎨⎧>≤=⊗b a b b a a b a ,,,已知函数)2()(2+-⊗=x x x f ,则)(x f 的最大值为 ______ . 三、解答题(本大题共6小题,共52.0分)17.(8分)已知集合},0{},41{<-=<≤=a x x B x x A (1)当3=a 时,求B A ⋂;(2)若B A ⊆,求实数a 的取值范围.18. (8分)已知αtan 是关于x 的方程0122=--x x 的一个实根,且α是第三象限角. (1)求ααααcos sin cos sin 2+-的值;(2)求ααsin cos +的值.19.(8分)已知函数)10()(≠>=a a a x f x 且经过点(2,4). (1)求a 的值;(2)求122-+=x x a a y 在[0,1]上的最大值与最小值.20. (9分)已知:函数)10)(2(log )2(log )(≠>--+=a a x x x f a a 且. (1)求)(x f 定义域,并判断)(x f 的奇偶性; (2)求使0)(>x f 的x 的解集.21(9分)某产品生产厂家生产一种产品,每生产这种产品x (百台),其总成本为)(x G (万元),其中固定成本为42万元,且每生产1百台的生产成本为15万元(总成本=固定成本+生产成本).销售收入)(x R (万元)满足⎩⎨⎧>≤≤+-=5,16550,636)(2x x x x x R ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述规律,完成下列问题:(1)写出利润函数)(x f y =的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使盈利最大?22.(10分)已知函数),,(1)(2R x R n m x n mx x f ∈∈++=为奇函数,且21)1(=f . (1)求函数)(x f 的解析式;(2)判定函数)(x f 在区间()+∞,1的单调性并用单调性定义进行证明;(3)若[)+∞∈,0x ,求函数)(x f 在区间)0(21,≥⎥⎦⎤⎢⎣⎡+k k k 内的最大值)(k g .高一数学答案【答案】1.C2.D3.C4.A5.B6.B7.C8.D9.B 10.A 11.D 12.A13.{α|α=2kπ+,k∈Z}14.515.-1216.117.解:(1)集合A={x|1≤x<4},B={x|x-a<0},∴B={x|x<a},a=3可得B={x|x<3},∴A∩B={x|1≤x<3};(4分)(2)∵A⊆B,∴集合A={x|1≤x<4},B={x|x<a},∴a≥4,当a=4,可得B={x|x<4},满足A⊆B,综上a≥4;(8分)18.解:∵2x2-x-1=0,∴,∴或tanα=1,又α是第三象限角,∴tanα=1…(2分)(1).…(4分)(2)∵且α是第三象限角,∴,∴…(8分)19.解:(1)由函数f(x)=a x(a>0且a≠1)经过点(2,4),可得a2=4,∴a=2.(2分)(2)令t=a x,∵x∈[0,1],可得t∈[1,2],y=t2+2t-1=(t+1)2-2,再根据y=t2+2t-1在[1,2]上是增函数,可得当t=1时,函数取得最小值为-2,当t=2时,函数取得最大值为7.(8分)20.(1)解:∵f(x)=log a(2+x)-log a(2-x)(a>0且a≠1)∴,解得-2<x<2,故所求函数f(x)的定义域为{x|-2<x<2}.且f(-x)=log a(-x+2)-log a(2+x)=-[log a(x+2)-log a(2-x)]=-f(x),故f(x)为奇函数.(4分)(2)解:原不等式可化为:log a(2+x)>log a(2-x)①当a>1时,y=log a x单调递增,∴即0<x<2,②当0<a<1时,y=log a x单调递减,∴即-2<x<0,综上所述:当a>1时,不等式解集为(0,2);当0<a<1时,不等式解集为(-2,0)(9分)21.解:(1)由题意得G(x)=42+15x.∴f(x)=R(x)-G(x)=.(4分)(2)当x>5时,∵函数f(x)递减,∴f(x)<f(5)=48(万元).当0≤x≤5时,函数f(x)=-6(x-4)2+54,当x=4时,f(x)有最大值为54(万元).所以,当工厂生产400台时,可使赢利最大为54万元.(9分)22.解:(1)∵函数是奇函数,∴f(0)=n=0;由f(1)==,得m=1,∴函数f(x)的解析式f(x)=;(2分)(2)设1<x1<x2,则f(x1)-f(x2)=-=,∵+1>0,+1>0,x2-x1>0,x1x2-1>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数在区间(1,+∞)上是减函数;(5分)(3)由(2)知函数在区间[1,+∞)上单调递减,在[0,1]上单调递增,①当k+≤1时,即0≤k≤时,g(k)=f(k+)=;gb②当k<1时,即<k<1时,g(k)=f(1)=;③当k≥1时,g(k)=f(k)=;综上g(k)=(10分)【解析】1. 解:因为全集I={1,2,3,4,5,6},集合A={2,3,5,6},所以∁I A={1,4},又B={1,3},则(∁I A)∩B={1},故选:C.根据题意和补集、并集的运算分别求出∁I A和(∁I A)∩B.2. 解:由有理数指数幂的运算法则可知:A.a m.a n=a m+n,∴A错误.B.(a m)n=a mn,∴B错误.C.a m b n=(ab)m+n,a m+n b m+n.∴C错误.D.(b÷a)m=a-m b m,∴D正确.故选:D.根据有理数指数幂的运算性质进行计算即可.本题主要考查有理数指数幂的运算,利用指数幂的运算法则是解决本题的关键,比较基础.3. 解:∵函数f(x)=∴f(-8)==2,∴f[f(-8)]=f(2)=2+=-4.故选:C.利用分段函数的性质求解.本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.4. 解:设扇形的周长为C,弧长为l,圆心角为α,根据题意可知周长C=2+l=4,∴l=2,而l=|α|r=α×1,∴α=2,故选:C.先根据扇形的周长求出扇形的弧长,然后利用弧长公式l=|α|r进行求解即可.本题主要考查了弧长公式,以及扇形的周长公式,属于基础题.5. 解:因为y=0.5x为减函数,而,所以y2<y3,又因为是R上的增函数,且0.4<0.5,所以y1<y2,所以y1<y2<y3故选B构造函数y=0.5x和,利用两个函数的单调性进行比较即可.本题考查比较大小知识、指数函数和幂函数的单调性等知识,属基本知识的考查.6. 解:∵角α终边上一点P的坐标是(sin,cos),∴x=sin,y=cos,r=|OP|=1,∴sinα=cos=-.故选:B.由条件利用任意角的三角函数的定义,求得sinα的值.本题主要考查任意角的三角函数的定义,属于基础题.7. 解:因为函数f(x)=3x-()x,f(-2)=-10、f(-1)=-5、f(2)=6-=,f(0)=-1<0,f(1)=3->0,所以根据根的存在性定理可得:函数f(x)=3x-()x的零点存在区间为(0,1).根据题意分别计算出f(-2)、f(-1)、f(0),f(1)与f(2),判断它们的符号再结合根的存在性定理可得答案.本题考查函数的零点问题,解决此类问题的关键是熟练掌握根的存在性定理的应用.8. 解:因为函数在(0,+∞)上是增函数,又,故选C.函数的单调性,对a、b、、,区分大小,即可找出选项.本题考查幂函数的性质,数值大小比较,是基础题.9. 散点图如图所示:由散点图可知,此函数图象不是直线,排除A;此函数图象是上升的,是增函数,排除C、D,故选择B.10. 解:∵θ在第四象限,∴+2kπ<θ<2π+2kπ,k∈Z;∴+kπ<<π+kπ,k∈Z;当k为偶数时,为第二象限角,当k为奇数时,为第四象限角;∴角所在的象限为第二或第四象限.故选:B.根据θ所在的象限,写出θ的取值范围,从而求出角所在的象限即可.本题考查了象限角的概念与应用问题,是基础题目.11. 解:由y=|f(x)|-1=0得|f(x)|=1,即f(x)=1或f(x)=-1.当x>0时,由lnx=1或lnx=-1,解得x=e或.当x≤0时,由kx+2=1或kx+2=-1,解得或.所以函数y=|f(x)|-1的零点个数是4个,故选D.问题转化成f(x)=1或f(x)=-1.当x>0时,可解得x=e或;当x≤0时,可解得本题考查根的存在性及根的个数的判断,转化为对应方程的根是解决问题的关键,属中档题.12. 解:∵偶函数f(x)在区间[0,+∞)内单调递减,f(2)=0,∴若f(x-1)>0,则等价为f(|x-1|)>f(2),即|x-1|<2,得-2<x-1<2,即-1<x<3,即不等式的解集为(-1,3),故选:D根据函数奇偶性和单调性的关系将不等式进行转化进行求解即可.本题主要考查不等式的求解,根据奇偶性和单调性的关系将不等式转化为f(|x-1|)>f(2)是解决本题的关键.13. 解:终边相同的角相差了2π的整数倍,设与角的终边相同的角是α,则与终边相同的角的集合是:{α|α=2kπ+,k∈Z}.故答案为:{α|α=2kπ+,k∈Z}.终边相同的角相差了2π的整数倍,从而写出结果即可.本题考查终边相同的角的概念及终边相同的角的表示形式,基本知识的考查.14. 解:====1,故答案为:1.15. 解:令函数g(x)═ax5+bx3+cx,显然函数g(x)═ax5+bx3+cx是奇函数,f(-3)=g(-3)-9=-6,g(-3)=3,f(3)=g(3)-9,g(-3)=-g(3),∴f(3)=-g(-3)-9=-3-9=-12.故答案为:-12.利用函数g(x)═ax5+bx3+cx的奇偶性,结合f(-3)=-6,可求f(3).本题考查奇函数性质的应用,注意灵活解题.16. 解:∵算a⊗b=,∴f(x)=x⊗(-x2+2)=,在同一坐标系中画出函数y=x的图象与y=-x2+2的图象,两个图象位置靠下的即为函数f(x)的图象,由图可得:当x=1时,函数f(x)取最大值1,故答案为:1.先画出函数y=x的图象与y=-x2+2的图象,然后根据新的定义找出函数f(x)的图象,结合图象一目了然,即可求出f(x)的最大值.本题主要考查了二次函数与一次函数的图象,以及函数的最值及其几何意义等基础知识,利用数形结合法求解一目了然.17. (1)已知集合A={x|1≤x<4},B={x|x-a<0},分别解出集合A、B,再根据交集的定义进行求解;(2)已知A⊆B,A是B的子集,根据子集的性质进行求解;18.(1)利用已知条件求出正切函数值,化简所求表达式为正切函数的形式,计算即可.(2)利用同角三角函数的基本关系式,通过解方程求解即可.本题考查三角函数的化简求值,同角三角函数的基本关系式的应用,考查计算能力.19.(1)由函数f(x)=a x(a>0且a≠1)经过点(2,4),可得a2=4,从而求得a的值.(2)令t=a x,可得t∈[1,2],y=(t+1)2-2,再根据y=(t+1)2-2在[1,2]上是增函数,求得函数在[0,1]上的最大值与最小值.本题主要考查指数函数的定义域和值域,二次函数的性质,属于基础题.20.(Ⅰ)根据对数函数的定义可求出f(x)定义域,再利用函数奇偶性定义判断出f(x)为奇函数;(Ⅱ)f(x)>0可以转化为log a(2+x)>log a(2-x),根据对数函数的图象和性质进行分类讨论即可求出.本题主要考查了对数函数的定义和函数的奇偶性和单调性以及不等式的解法,属于基础题21.(1)根据利润=销售收入-总成本,且总成本为42+15x即可求得利润函数y=f(x)的解析式.(2)分段函数y=f(x)中各段均求其值域求最大值,其中最大的一个即为所求.本题主要考查函数的应用问题,根据条件建立分段函数模型,进行求解是解决本题的关键.22.(1)根据函数是奇函数与求得n与m的值,即可得函数的解析式;(2)设1<x1<x2,判断f(x1)-f(x2)的符号,利用定义法判断并证明函数在区间(1,+∞)的是减函数;本题考查了函数的奇偶性及解析式的求法,考查了函数单调性的判断与证明,综合性强,体现了分类讨论思想.页11第。
2015-2016学年度第一学期期末考试高一数学试题及参考答案
2015-2016学年度第一学期期末考试高一数学试题一、选择题(该大题共12小题,每小题5分,共计60分) 1.下列图形中,表示⊆M N 的是 ( ▲ )2.120cos ︒= ( ▲ ) A.12-B.12C.32-D.223.下列命题正确的是 ( ▲ )A .向量AB 与BA 是两平行向量;B .若,a b 都是单位向量,则a b =;C .若AB =DC ,则A B CD 、、、四点构成平行四边形; D .两向量相等的充要条件是它们的始点、终点相同. 4.45154515cos cos sin sin ︒︒-︒︒= ( ▲ )A.22 B.32C.12D.12-5.如图,在ABC ∆中,D 是AC 的中点,向量AB a =,AC b =,那么向量BD 可表示为 ( ▲ ) A.b a 1122- B.a b 12-C.b a 12-D.a b 12-6.函数2212()()=+-+f x x a x 在区间(],4-∞上是递减的,则实数a 的取值范 ( ▲ ) A.3≤-a B.3≥-a C.5≤a D.5≥a 7.已知指数函数()xf x a =和函数2()g x ax =+,下列图象正确的是 ( ▲ )A. B. C. D.8.已知平面向量,a b ,8a =||,4||=b ,且,a b 的夹角是150︒,则a 在b 方向上的射影是 ( ▲ )A.4-B.43-C.4D.439.要得到函数2sin 2=y x 的图像,只需将2sin(2)6π=-y x 的图像 ( ▲ )A.向右平移6π个单位 B.向右平移12π个单位 C.向左平移6π个单位D.向左平移12π个单位10.若平面向量(3,4)b =与向量(4,3)a =,则向量,a b 夹角余弦值为 ( ▲ )A.1225 B. 1225- C. 2425- D.2425 11.设()338x f x x =+-,用二分法求方程(),338012xx x +-=∈在内近似解的过程中得()()(),.,.,101501250f f f <><则方程的根落在区间 ( ▲ )A .(,.)1125B .(.,.)12515C .(.,)152D .不能确定12.若函数tan ,0(2)lg(),0x x f x x x ≥⎧+=⎨-<⎩,则(2)(98)4f f π+⋅-= ( ▲ )A.12B.12- C.2 D.2-二、填空题(共4小题,每小题5分,共计20分) 13.函数212()log ()=-f x x 的定义域是 ▲ .14.有一半径为4的扇形,其圆心角是3π弧度,则该扇形的面积是 ▲ . 15.已知平面向量(4,3)a =-和单位向量b ,且b a ⊥,那么向量b 为 ▲ . 16.关于函数sin (()42)3f x x =+π,(R)x ∈有下列命题: ①()y f x =是以2π为最小正周期的周期函数;②()y f x =可改写为cos (6)42y x =-π; ③()y f x =的图象关于(0)6-,π对称; ④()y f x =的图象关于直线6x =-π对称; 其中正确的序号为 ▲ .M N D.N M C. M N B. MN A. o 2 1 y x2 1 oy x2 1 oyx2 1 oy xD C AB 第5小题三、解答题(共6小题,共计70分) 17.化简或求值:(1)log lg lg 223212732548--⨯++ (2)已知3sin ,054x x =<<π,求cos 2cos()4xx +π. 18.已知全集U R =,集合{}A x x =<<17,集合{}B x a x a 125=+<<+,若满足A B B =,求 (1)集合U C A ;(2)实数a 的取值范围.19.若平面向量(1,2)a =,(3,2)b =-, k 为何值时: (1)()(3)ka b a b +⊥-;(2)//()(3)ka b a b +-?20.设函数()2sin(2)(0)f x x =+<<ϕϕπ,()y f x =图象的一个对称中心是(,0)3π.(1)求ϕ;(2)在给定的平面直角坐标系中作出该函数在(0,)2x ∈π的图象;(3)求函数()1()f x x R ≥∈的解集21.已知函数2()3sin 22cos f x x x =+.(1)求函数()f x 的最小正周期和单调递增区间;(2)将()f x 的图象向右平移12π个单位长度,再将周期扩大一倍,得到函数()g x 的图象,求()g x 的解析式.22.已知定义域为R 的函数2()21x x af x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.2015-2016学年度第一学期期末考试高一数学试题参考答案一、选择题(该大题共12小题,每小题5分,共计60分)CAACC ADBDD BC二、填空题(共4小题,每小题5分,共计20分) 13. 2{|>x x ,且3}≠x 或者填(2,3)(3,)+∞ .14.83π. 15.34(,)55和 34(,)55--.16. ② ③ .三、解答题(共6小题,共计70分) 17.(本小题满分8分) 解:(1)原式=()lg lg 2193549-⨯-++=()lg 1931009-⨯-+=()19329-⨯-+=1113(2)3sin ,054x x π=<<2cos 1sin xx ∴=-=45227cos 2cos sin cos sin 72552222cos()cos sin 42222x x x x x x x x π-+∴====+-18.(本小题满分10分)解;(1)(,][,)U C A =-∞+∞17(2)A B B =B A ∴⊆(i )当B φ=时,由a a 251+≤+得a 4≤-(ii )当B φ≠时,由a a a a 11257125+≥⎧⎪+≤⎨⎪+<+⎩解得a 01≤≤a ∴的取值范围是(,][,]401-∞-.19.(本小题满分12分) 解:(1)a b (1,2),(3,2)==- ka b k k (3,22)∴+=-+ a b 3(10,4)-=-()(3)ka b a b +⊥-(k 3)10(2k 2)(4)0∴-⨯++⨯-=解得 k 19=(2)由(1)及//()(3)ka b a b +-得(k 3)(4)(2k 2)100-⨯--+⨯=解得 1k 3=-20.(本小题满分14分) 解: (1)(,)π03是函数()y f x = 的图像的对称中心sin()πϕ∴⨯+=2203()k k Z πϕπ∴+=∈23()k k Z πϕπ∴=-∈23(,)πϕπϕ∈∴=03()sin()f x x π∴=+223(2)列表:(3)()f x ≥1即sin()x π+≥2213sin()x π+≥1232解得,k x k k Z πππππ+≤+≤+∈5222636亦即,k x k k Z ππππ-+≤≤+∈124所以,()f x ≥1的解集是[,],k k k Z ππππ-++∈12421.(本小题满分12分)解:(1)依题意,得f x x x =++()3sin 2cos 21x x =++312(sin 2cos 2)122x π=++2sin(2)16将()y f x =的图像向右平移12π个单位长度,得到函数f x x x ππ=-++=+1()2sin[2()]12sin 21126的图像,该函数的周期为π,若将其周期变为π2,则得g x x =+()2sin 1 (2)函数f x ()的最小正周期为T π=,(3)当,k x k k Z πππππ-≤+≤-∈222262时,函数单调递增,解得,k x k k Zππππ-≤≤+∈36∴函数的单调递增区间为 [,],k k k Z ππππ-+∈36. 22.(本小题满分14分) 解:(1)由题设,需(),,()xxa f a f x +-==∴=∴=+112001212经验证,()f x 为奇函数,a ∴=1xπ12π3 π712 π56πx π+23 π3π2 ππ32π2π73 ()f x32-23(2)减函数.证明:任意,,,x x R x x x x ∈<∴->1212210由(1)得()()()()()x x x x x x x x f x f x --⨯--=-=++++2112212121121222212121212 ,x x x x x x <∴<<∴-<121212022220,()()x x ++>2112120()()f x f x ∴-<210所以,该函数在定义域R 上是减函数(3)由22(2)(2)0f t t f t k -+-<得f t t f t k -<--22(2)(2)()f x 是奇函数∴f t t f k t -<-22(2)(2),由(2),()f x 是减函数. ∴原问题转化为t t k t ->-2222,即t t k -->2320对任意t R ∈恒成立.∴k ∆=+<4120,解得k <-13即为所求.。
2015-2016学年高一上数学第二次月考试卷
====Word 行业资料分享--可编辑版本--双击可删====考试时间:120分钟;满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案......填涂..在答题...卷.上.).{}{}{},,B ,,,A ,,,,U 322103210=== 则U B C A ⋃等于 ( ) A. {}3 B.{}2,3 C. ∅ D. {}0,1,2,32.函数1()2f x x x =+-的定义域是( )A .[0,2)(2,)+∞ B.[0,)+∞ C.(0,2)(2,)+∞ D.(0,)+∞3.平面α∥平面β,a ⊂α,b ⊂β,则直线a ,b 的位置关系是( ).A .平行B .相交C .异面D .平行或异面 4、下列函数中,既是奇函数又是增函数的为( ) A.1y x =+ B.2y x =- C.1yx=D.||y x x =5.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .其中真命题的序号是( ).A .①②B .②③C .①④D .③④6.已知函数21,(2)()(3),(2)x x f x f x x ⎧+≥=⎨+<⎩,则(1)(3)f f -=( )A.7-B.2-C.7D.277.设0.912a ⎛⎫= ⎪⎝⎭,0.312b -⎛⎫= ⎪⎝⎭,c 7.0log 3=,则有( )A .c b a <<B .a b c <<C .c a b <<D . b a c <<8某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )2015-2016学年度第一学第二次月考高一级数学试题卷A . 3B .1 C. 2 D .39. 函数()2x f x e x =+-的零点所在的一个区间为 ( )A .()2,1--B .()1,0-C .()0,1D .()1,210.函数211, 10()2, 0<x 2xx f x x ⎧⎛⎫--≤≤⎪ ⎪=⎨⎝⎭⎪≤⎩,若方程()f x x a =+恰有两个不相等的实数根,则实数a 的取值范围是 ( )A . 1(, 2]4-B .1[1, ]4- C .1[, 2]4-D .1[1, )4-11.如果函数()x f y=在区间I 上是增函数,而函数()xx f y =在区间I 上是减函数,那么称函数()x f y =是区间I 上“缓增函数”,区间I 叫做“缓增区间”,若函数()2322+-=x x x f 是区间I 上“缓增函数”,则“缓增区间”I 为 ( ) A .[1,+∞) B .[1,3] C .[0,1] D .[0,3]12.设定义在区间(),b b -上的函数1()lg12axf x x+=-是奇函数(,a b R ∈且2)a ≠-,则b a 的取值范围是 ( )A (]2,1B (]2,0C ()2,1D ()2,0二、填空题(本大题共4小题,每小题5分,共20分).13.在如图的正方体中,M ,N 分别为棱BC 和棱CC1的中点,则异面直线AC 和MN 所成的角为____ ____.14.已知f (x )是偶函数,当x <0时,f (x )=x (2x -1),则当x >0时,f (x )=15.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x ∈(0,2)时,f(x)=2x 2,则f(7)=________16.函数,0,220,3|ln |)(2⎩⎨⎧≤--->+=x x x x x x f 若关于x 的方程013)()(2=+++b x bf x f 有4个不同的实数根,则实数b 的取值范围是 .三、解答题(本大题共6小题,共80分,解答应写出文字说明或演算步骤.) 17. (本小题满分10分)计算以下式子的值:(1)421033)21(25.0)21()4(--⨯+--;(2)1log 45lg 20lg 81log 52log 34++++.18.已知函数()11f x x =-的定义域为集合A ,函数()()0121≤≤-⎪⎭⎫ ⎝⎛=x x g x的值域为集合B ,U R =. (1)求 ()U C A B ⋂;(2)若{}|21C x a x a =≤≤-且B C ⊆,求实数a 的取值范围,19.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥平面ACD ;(2)BD ⊥平面EFC20.(本小题满分10分)设2(),21x f x a x R =+∈+,a 为常数(1)若f(x)为奇函数,求a ,(2)判断f(x)在R 上的单调性,并用单调性的定义予以证明。
2015-2016学年度第一学期期中高一数学试卷
高一数学期中试卷一、填空题(本大题共14小题,每小题5分,计70分)1.设集合{}1,0,1,2A =-,{}0,2,5B =,则A B = ▲ . 2.函数1y x=+的定义域为 ▲ . 3. 用列举法...表示集合{}2|1log 2,A x x x =-<<∈z ,其表示结果应为 ▲ . 4. 函数223(03)y x x x =-++≤<的值域是 ▲ .5.已知函数21(0)()1()(0)3x x x f x x -≥⎧⎪=⎨<⎪⎩则1(())2f f -= ▲ .6. 若{}1,3,5B =-,下列集合A ,使得:21f x x →+是A 到B 的映射的是________(填写序号)①{}1,2A = ②{}1,7,11A =- ③{}1,1,2A =- ④{}1,0,1A =- 7. 已知幂函数25*()m y xm -=∈N 在(0,)+∞上是减函数,且它的图像关于y 轴对称,则m = ▲ .8.已知函数222()x x y x --+=∈R ,对于任意x 恒有0()()f x f x ≤成立,则0x = ▲ .9. 函数143y x =-+的图象的对称中心的坐标是 ▲ . 10. 计算:3298542lg 4lg log 16log 818-+++⋅= ▲ .11.函数lg 25y x x =+-的零点0(1,3)x ∈,对区间(1,3)利用两次“二分法”,可确定0x 所在的区间为 ▲ .12. 已知()y f x =是R 上的偶函数,且当[0,)x ∈+∞时,()23xf x =-,则满足()0f x <的x 的取值范围是 ▲ .13.函数3()||3f x x x x =⋅++在区间[2015,2015]-上的最大值与最小值之和为= ▲ . 14.下列命题:① 函数22(2)2x x y x -=-是奇函数; ② 函数|3|2x y -+=在(,4)-∞上是增函数; ③ 将函数2log (2)y x =-的图象向左平移3个单位可得到2log (1)y x =+的图象; ④ 若1.4 1.51ab=<,则0a b <<;则上述正确命题的序号是 ▲ .(将正确命题的序号都填上)二、解答题 (共6道题,计90分) 15.(本题满分14分)设全集U =R ,集合{}|14A x x =≤<,{}|23B x a x a =≤<-. (1)若2a =-,求B A ,U B A ð (2)若B A ⊆,求实数a 的取值范围; 16、(本题满分14分)已知函数22231()log (1)1x x x f x x x ⎧--+≤=⎨->⎩(1) 画出函数()y f x =的简图(要求标出关键的点、线); (2) 结合图象,直接写出函数()y f x =的单调增区间;(3) 观察图象,若关于x 的方程()f x t =有两个不相等的实数解,求实数 t 的取值范围.17、(本题满分15分)已知0a >且1a ≠,函数1()log (1),()log (3),a af x xg x x =-=-(1)若()()()h x f x g x =-,求函数()h x 的定义域; (2)若2,a = 求函数()()()h x f x g x =-的值域; (3)讨论不等式()()0f x g x +≥中x 的取值范围.18、(本题满分15分)物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是0T ,经过一段时间t 后的温度是T ,则有01()()2T T T T αα-=-⋅th,其中T α表示环境温度,h 称为半衰期且10h =. 现有一杯用89℃热水冲的速溶咖啡,放置在25℃的房间中20分钟,求此时咖啡的温度是多少度?如果要降温到35℃,共需要多长时间?(lg 20.301≈,结果精确到0.1) 19、(本题满分16分)已知函数()af x x x=+,()2g x a x =- (1) 若4,a =判断函数()y f x =在[2,)+∞上的单调性,并证明你的结论;(2) 若不等式()()f x g x ≥在[1,)+∞上恒成立,求实数a 的取值范围.20、(本题满分16分)已知函数2()21(0,1)g x ax ax b a b =-++≠<,在区间[2,3]上有最大值4,有最小值1, 设()()g x f x x=. (1) 求,a b 的值;(2) 不等式(2)20x x f k -⋅≥在[1,1]x ∈-时恒成立,求实数k 的取值范围; (3) 若方程2(|21|)(3)0|21|xx f k -+-=-有三个不同的实数解,求实数k 的取值范围.高一数学期中考试参考答案一、填空题(本大题共14小题,每小题5分,计70分)1、{}1,0,1,2,5-2、{}|1,0x x x ≥-≠3、{}1,2,34、(0,4]5、16、①③7、18、12-9、(3,4)- 10、912411、5(2,)212. 22(log 3,log 3)- 13. 6 14、 ①②③④ 二、解答题 (共6道题,计90分)15.(本题满分14分)解:(1){}|14U A x x x =<≥或ð, 2a =-时,{}45B x =-≤<, ………………2分 所以[1,4)B A = ,U B A ð={}|4145x x x -≤<≤<或 ………………6分(2)若B A ⊆,分以下两种情形:①B =∅时,则有23a a ≥-,∴1a ≥ ………………8分②B ≠∅时,则有232134a aa a <-⎧⎪≥⎨⎪-≤⎩,∴112a ≤< ………………12分综上所述,所求a 的取值范围为12a ≥………………14分 (注:画数轴略,不画数轴不扣分)16、(本题满分14分) 解:(1),其中图象正确得3分,关键点、线的标注3分. ………………6分以下要素有一处不标注的,扣1分:x 、y 轴、原点O ,对称轴,渐近线,顶点(-1,4),点(1,0),点(2,0).(2)增区间为:(,1]-∞-,(1,)+∞ ………………10分(3)观察图象,方程()f x t =有两个不相等的解等价于函数()y f x =的图象与直线y t =只有两个交点. 所以实数 t 的取值范围是4t =或0t < ………………14分 17、(本题满分15分) 解:(1)x 应满足1030x x ->⎧⎨-<⎩,∴13x <<,所求定义域为{}|13x x << …………4分注:如对原来函数变形后求定义域,则扣2分. (2)2a =时, 函数2()log (1)(3)h x x x =--,令(1)(3)t x x =--,由于13x <<,∴01t <≤, …………7分 ∴ ()0h x ≤, 所以,所求函数()h x 的值域为(,0]-∞ …………9分 (3)1()()log 03a x f x g x x-+=≥-,分以下两种情形: 情形一:当1a >时,得113x x -≥-,等价于:3013x x x ->⎧⎨-≥-⎩或3013x x x -<⎧⎨-≤-⎩解得:23x ≤<. …………12分情形二:当01a <<时,得1013x x -<≤-,等价于:301013x x x x ->⎧⎪->⎨⎪-≤-⎩或301013x x x x-<⎧⎪-<⎨⎪-≥-⎩解得:12x <≤.…………15分 18、(本题满分15分)解:由条件知,089,T =25T α=,20t=, …………2分代入01()()2T T T T αα-=-⋅t h 得125(8925)()2T -=-⋅2010,解得41T = …………………6分如果要降温到35℃,则13525(8925)()2-=-⋅t 10, …………8分则1lg 18lg 2102t ⋅=-,解得26.8t ≈ …………13分 答:此时咖啡的温度是41℃,要降温到35℃,共需要约26.8分钟. …………15分19、(本题满分16分) 解:(1)4a =时,函数()y f x =在[2,)+∞上是增函数 ………………1分 任取12,[2,)x x ∈+∞,设12x x > 则211212121212444()()()()()()x x f x f x x x x x x x x x --=+-+=-+ =1212124()x x x x x x --⋅………………4分 ∵ 122x x >≥,∴ 120x x ->,124x x >,∴121240x x x x -> ………………6分∴12()()0f x f x ->,即:12()()f x f x >所以,函数)(x f =xx 4+在[2,)+∞上是增函数 ………………8分(2)不等式()()f x g x ≥就是:2a x a x x +≥-,即:3ax a x+≥由于[1,)x ∈+∞,等价于230x ax a -+≥在[1,)+∞上恒成立 ………………9分① 当16a≤时,2()3g x x ax a =-+在[1,)+∞是增函数,则(1)0g ≥,这显然成立 ………………12分 ② 当16a ≥时,2()3g x x ax a =-+在[1,]6a 是减函数,在[,)6a+∞上增函数,则()06ag ≥,解得612a ≤≤ ………………15分综上,所求实数a 的取值范围是12a ≤ ………………16分注:用分离参数法解,相应给分。
高一数学-2015-2016学年高一上学期阶段测试(二)数学试题
2015~2016学年第一学期高一数学阶段测试二2015.12姓名_________ 成绩____________一、填空题:本大题共10小题,每小题4分,共40分.1. 已知全集U ,集合A ={1,3,5},∁U A ={2,4,6},则全集U =_______________.2. 方程x 2-2x +3=0的解集是_______________.3. 设A ={(x ,y )|y =x +1,x ∈R },B ={(x ,y )|y =-2x +4,x ∈R },则A ∩B =__________________.4. 已知幂函数f (x )=x α的图象过点(2,4),则其解析式为_____________________.5. 函数f (x )=log a (x -1)+2(a >0且a ≠1)的图象必经过点_______________________.6. 计算:lg25+lg2lg50+(lg2)2=__________________________.7. 已知函数f (x )=⎩⎨⎧x -2, x ≤0-x -2,x >0,则f =_________________. 8. 函数f (x )= x 2-mx +3是偶函数,则函数f (x )的递增区间是_____________________.9. 函数f (x )= (x -1)2+1, x ∈{-1,0,1,2,3},则函数的值域为________________.10. 若函数f (x )=2x + x -5的零点在区间(a ,b )(a ,b 是整数且b -a =1)内,则a+b =____________.二、解答题:本大题共8小题,共60分.11. (本题满分6分) 写出下列集合的所有子集:(1){1}; (2){1,2}; (3){1,2,3}.12. (本题满分6分) 说明下列每组函数图象之间的关系.(1) y =log 3x 与y =3x ______________________________________________________________________________;(2) y =2x 与y =2x +1______________________________________________________________________________.13. (本题满分6分)求下列函数的定义域:(1) f (x )=x +1+1x -1; (2) g (x )=log 2(3-4x ).1. (本题满分6分) 求下列函数的值域:(1) f (x )= x 2+2x ; (2) g (x )= 1x ,x ∈.2. 解:(1) x = 12;(2) x =1;(3) x =log 532-1.3. 解:(1) x <-1;(2) 2<x <2.2;(3) x >log 52-2.4. 解:图略(1)偶函数;上减,在上减,在.。
高中数学 2.3.4圆与圆的位置关系课时作业(含解析)新人教B版必修2-新人教B版高一必修2数学试题
【成才之路】2015-2016学年高中数学圆与圆的位置关系课时作业新人教B版必修2一、选择题1.(2015·某某某某市高一期末测试)圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是( )A.外切B.内切C.外离D.内含[答案] A[解析]圆x2+y2=1的圆心C1(0,0),半径r1=1,圆x2+y2-6y+5=0的圆心C2(0,3),半径r2=2,∴两圆心的距离|C1C2|=0-02+3-02=3,∴|C1C2|=r1+r2=3,故两圆外切.故选A.2.两圆x2+y2=r2,(x-3)2+(y+4)2=4外切,则正实数r的值为( )A.1 B.2C.3 D.4[答案] C[解析]两圆心的距离d=5,由题意,得r+2=5,∴r=3.3.(2015·某某某某一中高一期末测试)圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A、B两点,则AB的垂直平分线的方程是( )A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0[答案] C[解析]圆x2+y2-4x+6y=0和圆x2+y2-6x=0的圆心坐标分别为(2,-3)和(3,0),AB的垂直平分线必过两圆圆心,只有选项C正确.4.两圆C1:x2+y2+2x+2y-2=0和C2:x2+y2-4x-2y+1=0的公切线有且仅有( ) A.1条B.2条C.3条D.4条[答案] B[解析]⊙C1圆心C1(-1,-1),半径r1=2,⊙C2圆心C2(2,1),半径r2=2,|C1C2|=13,0<13<4,∴两圆相交.5.圆(x -2)2+(y +3)2=2上与点(0,-5)距离最大的点的坐标是( ) A .(1,-2) B .(3,-2) C .(2,-1) D .(2+2,2-3)[答案] B[解析] 验证法:所求的点应在圆心(2,-3)与点(0,-5)确定的直线x -y -5=0上,故选B.6.动点P 与定点A (-1,0),B (1,0)连线的斜率之积为-1,则P 点的轨迹方程为( ) A .x 2+y 2=1 B .x 2+y 2=1(x ≠±1) C .x 2+y 2=1(x ≠0) D .y =1-x 2[答案] B[解析] 直接法,设P (x ,y ),由k PA =y x +1,k PB =y x -1及题设条件yx +1·yx -1=-1(x ≠±1)知选B.二、填空题7.(2015·某某某某市一中高一期末测试)圆x 2+y 2+6x -7=0和圆x 2+y 2+6y -27=0的位置关系是________.[答案] 相交[解析] 圆x 2+y 2+6x -7=0的圆心为O 1(-3,0),半径r 1=4,圆x 2+y 2+6y -27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=-3-02+0+32=32,∴r 2-r 1<|O 1O 2|<r 1+r 2. 故两圆相交.8.两圆x 2+y 2-6x =0和x 2+y 2=4的公共弦所在直线的方程是____________. [答案]x =23[解析] 两圆的方程x 2+y 2-6x =0和x 2+y 2=4相减,得公共弦所在直线的方程为x =23. 三、解答题9.判断下列两圆的位置关系.(1)C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0; (2)C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0;(3)C 1:x 2+y 2-4x -6y +9=0,C 2:x 2+y 2+12x +6y -19=0; (4)C 1:x 2+y 2+2x -2y -2=0,C 2:x 2+y 2-4x -6y -3=0.[解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=2-12+-12= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),r1=2,圆C2的圆心坐标为(-6,-3),r2=8,d=|C1C2|=2+62+3+32=10.∵r1+r2=10,∴d=r1+r2,两圆外切.(4)∵C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),r1=2,圆C2的圆心坐标为(2,3),r2=4,d=|C1C2|=2+12+3-12=13.∵r1+r2=6,r2-r1=2,∴r2-r1<d<r1+r2,两圆相交.10.已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l:mx+y-7=0与C2相切.求:(1)圆C2的标准方程;(2)m的值.[解析](1)由题知C1:(x-1)2+(y-2)2=18,C2:(x-a)2+(y-3)2=8.因为C1与C2相外切,所以圆心距d=r1+r2,即a-12+3-22=32+22,所以a=8或-6(舍去).所以圆C2的标准方程为(x-8)2+(y-3)2=8.(2)由(1)知圆心C 2(8,3),因为l 与C 2相切, 所以圆心C 2到直线l 的距离d =r , 即|8m +3-7|m 2+1=22,所以m =1或17.一、选择题1.半径为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程是( ) A .(x -4)2+(y -6)2=6B .(x +4)2+(y -6)2=6或(x -4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x +4)2+(y -6)2=36或(x -4)2+(y -6)2=36 [答案] D[解析] 由题意可设圆的方程为(x -a )2+(y -6)2=36, 由题意,得a 2+9=5,∴a 2=16,∴a =±4.2.过圆x 2+y 2-2x +4y -4=0内的点M (3,0)作一条直线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .x +y -3=0B .x -y -3=0C .x +4y -3=0D .x -4y -3=0[答案] A[解析] 圆x 2+y 2-2x +4y -4=0的圆心C (1,-2),当CM ⊥l 时,l 截圆所得的弦最短,k CM =-2-01-3=1,∴k l =-1,故所求直线l 的方程为y -0=-(x -3),即x +y -3=0.二、填空题3.⊙O :x 2+y 2=1,⊙C :(x -4)2+y 2=4,动圆P 与⊙O 和⊙C 都外切,动圆圆心P 的轨迹方程为______________________.[答案] 60x 2-4y 2-240x +225=0[解析]⊙P 与⊙O 和⊙C 都外切,设⊙P 的圆心P (x ,y ),半径为R , 则|PO |=x 2+y 2=R +1, |PC |=x -42+y 2=R +2,∴x -42+y 2-x 2+y 2=1,移项、平方化简得:60x 2-4y 2-240x +225=0.4.已知集合A ={(x ,y )|y =49-x 2},B ={(x ,y )|y =x +m },且A ∩B ≠∅,则m 的取值X 围是________________.[答案] -7≤m ≤7 2[解析] 由A ∩B ≠∅,即直线y =x +m 与半圆y =49-x 2有交点,如图所示.如图可知,-7≤m ≤7 2. 三、解答题5.求经过两圆x 2+y 2-2x -3=0与x 2+y 2-4x +2y +3=0的交点,且圆心在直线2x -y =0上的圆的方程.[解析] 解法一:由两圆方程联立求得交点A (1,-2),B (3,0),设圆心C (a ,b ),则由|CA |=|CB |及C 在直线2x -y =0上,求出a =13,b =23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.解法二:同上求得A (1,-2)、B (3,0),则圆心在线段AB 的中垂线y =-x +1上,又在y =2x 上,得圆心坐标⎝ ⎛⎭⎪⎫13,23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.6.求⊙C 1:x 2+y 2-2y =0与⊙C 2:x 2+y 2-23x -6=0的公切线方程. [解析]⊙C 1:x 2+(y -1)2=12,圆心C 1(0,1),半径r =1, ⊙C 2:(x -3)2+y 2=32,圆心C 2(3,0),半径R =3,圆心距|C 1C 2|=2,∴|C 1C 2|=R -r ,故两圆内切,其公切线有且仅有一条过该两圆的公共点(切点),又由内切两圆的连心线过切点且垂直于两圆的公切线知,切点在直线C 1C 2上, ∵C 1C 2:x +3y -3=0,∴切线斜率k = 3.设切线方程为y =3x +b ,由圆心C 1(0,1)到切线距离d =1,得|-1+b |2=1,∴b =3或-1.由C 2(3,0)到切线距离d ′=3,得|3+b |2=3,∴b =3或-9,∴b =3,∴公切线方程为y =3x +3,即3x -y +3=0.7.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程.[解析] 解法一:设圆B 的半径为r ,∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2,即x 2+y 2-2tx -4ty +5t 2-r 2=0. ①∵圆A 的方程x 2+y 2+2x +2y -2=0. ②∴②-①,得两圆的公共弦方程(2+2t )x +(2+4t )y -5t 2+r 2-2=0. ③又∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③,并整理得:r 2=5t 2+6t +6=5⎝ ⎛⎭⎪⎫t +352+215≥215,所以t =-35时,r min=215. 此时,圆B 的方程是⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=215.解法二:如图,设圆A 、圆B 的圆心分别为A 、B .则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M 、N 两点.∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M 、N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4. 欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得B ⎝ ⎛⎭⎪⎫-35,-65,r min =215, 故圆B 的方程是⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=215.。
河南省天一大联考2015-2016学年高一上学期阶段性测试(二)数学试题
天一大联考2015-2016学年高一年级阶段性测试(二)数 学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{1,},{log ,}A a B a b =-=,若{}1A B =,则A B =( )A .{}1,0-B .{}0,1,3C .{}1,1-D .{}1,0,1-2、已知在空间中,下列命题:①初值于同一直线的两条直线平行;②平行于同一平面的两条直线共面;③过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;④垂直于同一条直线的两个平面互相平行。
其中正确命题的个数为( )A .1B .2C .3D .43、已知函数()y f x =是函数log (0,1)a y x a a =>≠的反函数,若()f x 的图象过点1(2,)4,则2l o g (1)f -的值为( )A .1B .2C .14D .14- 4、已知直线:(0)l y kx b k =+≠,且l 不经过第三象限,若[]2,4x ∈时,[1,11]y ∈-,则,k b 的值分别为( )A .2,3k b ==B .2,3k b =-=C .1,1k b ==D .1,1k b =-=5、如图所示是某几何体的三视图,则该几何体的体积是( )A .2B .3C .6D .86、与圆221:410130C x y x y +--+=和圆222:2690C x y x y ++++=都相切的直线共有( )A .1条B .2条C .3条D .4条7、函数()log (5)(0,1)a f x ax a a =->≠在[]1,3上是减函数,则a 的取值范围是( )A .5[,)3+∞B .1(,1)5C .5(1,)3D .5(1,]38、已知直线:30l x y ++=与x 轴,y 轴交点分别为A 、B ,幂函数()y f x =的图象经过点()2,4, 若点P 在()y f x =的图象上,则使得ABP ∆的面积等于3的P 点的个数为( )A .4B .3C .2D .19、已知直线(32)(32)50x y λλλ++-+-=恒过定点P ,则与圆22:(2)(3)16C x y -++=有公共的圆心且过点P 的圆的标准方程为( )A .22(2)(3)36x y -++=B .22(2)(3)25x y -++=C .22(2)(3)18x y -++=D .22(2)(3)9x y -++=10、如果一条直线与一个平面平行,那么就称次直线与平面构成一个“平行线面对”,在正方体1111ABCD A B C D -中,由任意两条棱的中点确定的直线与平面11ACC A 构成的“平行线面对”的个数是( )A .4B .8C .12D .1611、已知定义在R 上的函数()31(x m f x m -=-为实数)为偶函数,记133(log 4),(log 5)a f b f ==,()c f m =,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<12、已知函数()y f x =,给出下列结论:①若对于任意12,x x R ∈,且12x x ≠,都有2121()()0f x f x x x ->-,则()f x 为R 上的增函数; ②若()f x 为R 上的偶数,且在(,0]-∞上是减函数,(1)0f -=,则()0f x >的解集为(1,1)-③若()f x 是奇函数,在定义域(2,2)-上单调递增,则不等式(2)(12)0f x f x ++->的解集为(,3)-∞ 其中正确结论的个数是( )A .0B .1C .2D .3第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
高一数学-2015-2016学年高一上学期第二次月考数学试题
第一学期高一第二次月考试题2015.12一 填空题(共14小题,每小题5分计70分.请把答案写在答题卡相应序号的横线上...........) 1.已知全集U ={1, 2, 3, 6}, 集合A ={1, 3}, 则=A C U ____________;{2,6}2.计算sin690o = 2-. 3.2. .函数y =13x -2的定义域是__________. 4.已知幂函数()=(f x x αα为常数)的图象过点(2,8),则(3)f = 275. 计算25log 20lg 100+的值为_________;6. 不等式1)2(log 3>-x 的解集是______________________;7.若函数2()(1)3f x kx k x =+++是偶函数,则该函数的递减区间是 .8.=++++________________________________。
9.点P 从(1,0)出发,沿单位圆x 2+y 2=1按顺时针方向运动π3弧长到达Q 点,则Q 的坐标为 .10. 已知函数⎩⎨⎧≤>-=.0 ,2,0 ,2)(x x x x f x 则)]1([f f 的值是_________;11. 用二分法求函数32lg )(-+=x x x f 的一个零点,其参考数据如下:若精确到0.1, 则方程032lg =-+x x 的一个近似解x≈__________;1.412. 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围为 .13.若函数1,0()1(),03x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式)(x f 的解集为 . 14.已知f (x )=1cos 2x π+,则()()()()1232011f f f f ++++= . 2010二、解答题:(15-17每小题14分,18-20每小题16分,共计90分)15. 已知函数x x f lg )(=的定义域为集合A, 函数x x g -=4)(的定义域为集合B ,集合C =] ,(a -∞.(Ⅰ)求B A ⋂; (Ⅱ)若φ=⋂C A , 求实数a 的取值范围.16..判断下列函数的奇偶性.(1) x x f =)( (2) f (x )=(x +1)1-x 1+x ; (3) f (x )=9-x 2+x 2-916(1)因为定义域为R ,())(x f x f =- ,()x f ∴为偶函数 [5分](2)定义域要求1-x 1+x≥0, ∴-1<x ≤1,∴f (x )定义域不关于原点对称,∴f (x )是非奇非偶函数 [10分](3)由⎪⎩⎪⎨⎧≥-≥-090922x x 得{}3,3-∈x ,定义域关于原点对称, 且()0=x f ()x f ∴为既奇又偶函数 [14分]17.已知角α的终边经过点P (-4a,3a ) (a ≠0),求sin α,cos α,tan α的值17.解 r =(-4a )2+(3a )2=5|a |. [2分]若a >0,则r =5a ,α角在第二象限,sin α=y r =3a 5a =35,cos α=x r =-4a 5a =-45, tan α=y x =3a -4a =-34. [10分] 若a <0,则r =-5a ,α角在第四象限,sin α=y r =3a -5a =-35,cos α=x r =-4a -5a =45, tan α=y x =3a -4a =-34. [14分]18.已知α是三角形的内角,且sin α+cos α=15. (1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值 18.解 (1)联立方程⎩⎪⎨⎪⎧ sin α+cos α=15, ①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得25sin 2α-5sin α-12=0.[2分] ∵α是三角形的内角,∴⎩⎨⎧sin α=45cos α=-35, [4分] ∴tan α=-43. [7分] (2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2cos 2α-sin 2αcos 2α=tan 2α+11-tan 2α, [10分] ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=-257. [16分]19.19、解:(1)12,[1,20]5,18,(20,30]10t t P t N t t +⎧+∈⎪⎪=∈⎨⎪-+∈⎪⎩ …………………………6分 (2)Q=40t - t ∈[1,30], t N +∈ …………………………8分 (3)221680,[1,20]5112320,(20,30]10t t t y t t t ⎧-++∈⎪⎪=⎨⎪-+∈⎪⎩ t N +∈ ………………………………20.(本小题满分16分)已知函数2()21x f x a =-+是奇函数()a R ∈. (1)求实数a 的值;(2)试判断函数()f x 在(-∞,+∞)上的单调性,并证明你的结论;(3)若对任意的t R ∈,不等式0)1())2((22>--+--m t f t m t f 恒成立,求实数m 的取值范围. 20.解:(1)由题意可得:()f x =2221x x a a +-+∵()f x 是奇函数 ∴()()f x f x -=-即 2221x x a a --+-=-+2221x x a a +-+∴(2)221x x a a +-=-+2221x x a a +-+ ∴2a a -=,即1a = ……………………………………4分 即2()121x f x =-+ (2)设12,x x 为区间(),-∞+∞内的任意两个值,且12x x <,则12022x x <<,12220x x -<,∵12()()f x f x -=21222121x x -++ =12122(22)(21)(21)x x x x -++0< 即12()()f x f x <∴()f x 是(),-∞+∞上的增函数. ………………………10分(3)由(1)、(2)知,()f x 是(),-∞+∞上的增函数,且是奇函数.∵2((2))f t m t --2(1)f t m +-->0∴2((2))f t m t -->2(1)f t m ---=2(1)f t m -++∴2(2)t m t -->21t m -++ …………………………13分 即0)1()2(22>+---m t m t 对任意t R ∈恒成立.只需∆=2(2)42(1)m m -+⨯+=24120m m ++<,解之得 ……16分。
高一数学周练(含答案)
高一数学周练一、单选题(共40分)1.若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭2.函数 y = ) A .3,2⎛⎫-∞- ⎪⎝⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3∞--][)0,+∞.3.“角α,β的终边关于y x =轴对称”是“22sin sin 1αβ+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【分析】根据三角函数的性质的即可判断求解.【详解】若角α,β的终边关于y x =轴对称,则sin α=cos β,则2222sin sin cos sin =1αβββ+=+;若22sin sin 1αβ+=,则22sin =cos αβ,则sin α=±cos β,则角α,β的终边关于y x =或y =-x 轴对称;综上,“角α,β的终边关于y x =轴对称”是“22sin sin 1αβ+=”的充分不必要条件. 故选:A.4.已知方程ln 112x x =-的实数解为0x ,且()0,1x k k ∈+,*k ∈N ,则k =( ) A .1 B .2 C .3 D .4【答案】D【解析】先转化为两个简单函数判断交点所在区间的大致范围,再由零点判定定理确定即可.【详解】解:112lnx x =-,令()g x lnx =,()112h x x =-在同一坐标系画出图象可得 由图可知01x >,令()211f x lnx x =+-,()()129(27)0f f ln =-->,()()23(27)(35)0f f ln ln =-->, ()()34(35)(43)0f f ln ln =-->, ()()45(43)(51)0f f ln ln =--<,()04,5x ∴∈4k ∴=,故选:D .【点睛】本题主要考查函数零点所在区间的求法,图象法和零点判定定理.将函数的零点问题转化为两个函数交点的问题是常用的手段,属于基础题.5.如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+6.将函数()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .127.记函数()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52 D .38.已知函数()131,0ln ,0x x f x x x +⎧-⎪=⎨>⎪⎩若函数()()g x f x a =-有3个零点,则a 的取值范围是( ) A .()0,1 B .(]0,2C .()2,+∞D .()1,+∞【答案】A【分析】要使函数()()g x f x a =-有三个零点,则()f x a =有三个不相等的实根,即()f x 与y a =的图象有三个交点,结合函数的性质及图象即可得出.【详解】要使函数()()g x f x a =-有三个零点,则()f x a =有三个不相等的实根,即()f x 与y a =的图象有三个交点, 当1x ≤-时,113x f x在(],1-∞-上单调递减,()0,1f x ; 当10-<≤x 时,()131x f x +=-在(]1,0-上单调递增,()0,2f x ;当0x >时,()ln f x x =在()0,∞+上单调递增,()f x ∈R ; 由()f x 与y a =的图象有三个交点,结合函数图象可得()0,1a ∈, 故选:A.二、多选题(共20分)9.已知函数f (x )=2sin (2x ﹣6π),则如下结论:其中正确的是( ) A .函数f (x )的最小正周期为π; B .函数f (x )在[6π,512π]上的值域为[1; C .函数f (x )在7(,)312ππ上是减函数;D .函数y =f (x )的图象向左平移6π个单位得到函数y =2sin2x 的图象,10.下列结论正确的是( )A .若α,β的终边相同,则αβ-的终边在x 的非负半轴上B .函数()log 1a f x x =+(0a >且1a ≠)恒过定点(),2aC .函数()22x f x x =-只有两个零点D .己知一扇形的圆心角60α=︒,且其所在圆的半径3R =,则扇形的弧长为π11.如图,摩天轮的半径为40m ,其中心O 点距离地面的高度为50m ,摩天轮按逆时针方向匀速转动,且20min 转一圈,若摩天轮上点P 的起始位置在最高点处,则摩天轮转动过程中( )A .转动10min 后点P 距离地面10mB .若摩天轮转速减半,则转动一圈所需的时间变为原来的12C .第17min 和第43min 点P 距离地面的高度相同D .摩天轮转动一圈,点P 距离地面的高度不低于70m 的时间为5min 【详解】解:摩天轮2010t t ππ=,(02)ϕπ是以轴正半轴为始边,轴正半轴为始边,为终边的角为P 的纵坐标为又由题知,P 点起始位置在最高点处,2π5070,1102t,020t , 0210t ππ,103t ππ或52310tπππ,解得1003t 或50203t , 20min 3,故D 错误. 故选:AC .12.给出下面四个结论,其中正确的是( ) A .函数()()ln sin f x x =的定义域是()0,π. B .()sin sin 122x xf x =+的值域为52,2⎡⎤⎢⎥⎣⎦.C .函数()sin 2f x x x =-+在区间()2,4上有唯一一个零点.D .角πα6=是1cos 22α=-的必要不充分条件.三、填空题(共20分)13.已知sin π3a ⎛⎫- ⎪⎝⎭=13,则cos 5π()6a -=________.【详解】sin 14.定义在R 上的偶函数()f x ,当],(0x ∈-∞时,()f x 单调递减,则()()231f x f x +<-的解集为______.15.已知α为第二象限角,cos 2sin()24απα⎛⎫--+= ⎪⎝⎭,则cos α=___________.16.函数sin(2)4y x π=+的图像与直线y =a 在(0,98π)上有三个交点,其横坐标分别为1x ,2x ,3x ,则123x x x ++的取值范围为_______.8442⎝⎭πππ利用对称性求出答案四、解答题(共70分)17.已知全集U =R ,集合{}2|2150A x x x =--<,集合()(){}2|210B x x a x a =-+-<. (1)若1a =,求UA 和B ;(2)若A B A ⋃=,求实数a 的取值范围. )UA ={x ∴x {|3U A x x ∴=-或5}x ,若1a =,则集合{|(2B x x =-(2)因为A B A ⋃=,所以当B =∅时,221a a =-,解当B ≠∅时,即1a ≠时,)可知集合{|A x =-22135a a --,解得15a,且综上所求,实数a 的取值范围为:15a-.【点睛】本题主要考查了集合的基本运算,考查了一元二次不等式的解法,是基础题.18.已知函数()()()sin 20f x x ϕϕ=+<<π的图象关于点,012⎛⎫- ⎪⎝⎭对称.(1)求ϕ的值;(2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象.当0,4x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.19.已知函数2()2sin 1f x x x θ=+-,1[]2x ∈. (1)当6πθ=时,求()f x 的最大值和最小值;(2)若()f x 在1[]2x ∈上是单调函数,且[0,2)θπ∈,求θ的取值范围.443366【详解】试题分析:(1)当时,在上单调递减,在上单调递增当时,函数有最小值当时,函数有最小值(2)要使在31[,]22x ∈-上是单调函数,则或即或,又解得:20.已知函数()sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)写出函数f (x )的最小正周期T 及ω、φ的值;(2)求函数f (x )在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值.,44ππ⎡⎤-⎢⎥⎣⎦当23x π+=21.已知二次函数2()21(0)g x mx mx n m =-++>在区间[0,3]上有最大值4,最小值0. (1)求函数()g x 的解析式; (2)设()2()g x x f x x-=.若()220x xf k -⋅在[3,3]x ∈-时恒成立,求k 的取值范围.22.已知函数()21log 1x f x x -=+. (1)若()1f a =,求a 的值;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)若()f x m ≥对于[)3,x ∈+∞恒成立,求实数m 的范围. 【答案】(1)3- (2)奇函数,证明见解析f a=,)()1-3为奇函数,证明如下:,解得:x。
高一数学上学期周测二 试题
卜人入州八九几市潮王学校正阳县第二高级二零二零—二零二壹上期高一数学周练〔二〕一.选择题:1.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4}那么()B C A U ⋂=() A{1,2,5,6}B{1}C{2}D{1,2,3,4}2.1)21(2+=-x x f ,那么=)21(f 〔〕 A16B17C 1617D 1716 3.以下选项里面,表示的是同一函数的是() A .f(x)=,g(x)=()2B .f(x)=x 2,g(x)=(x -2)2C .f(x)=,g(t)=|t|D .f(x)=392--x x ,g(x)=x+3 4.集合M ={x|-3<x≤5},N ={x|x <-5或者x >5},那么M∪N=()A .{x|x <-5或者x >-3}B .{x|-5<x <5}C .{x|-3<x <5}D .{x|x <-3或者x >5}5.设A ={x|0≤x≤2},B ={y|1≤y≤2},在图中能表示从集合A 到集合B 的映射的是()6.函数y 5x =-的定义域为〔〕7.集合A={a ,b ,c},以下可以作为集合A 的子集的是〔〕A.aB.{a ,c}C.{a ,e}D.{a ,b ,c ,d}8.⎩⎨⎧<+≥-=)6()2()6(5)(x x f x x x f ,那么f(3)为〔〕 A2B3C4D5A 和集合B 都是实数集R ,映射B A f →:是把集合A 中的元素x 映射到集合B 中的元素246x x -+,那么在映射f 下,B 中的元素2在A 中所对应的元素组成的集合是〔〕A .{2}-B .{2}C .{2,2}-D .{0}10.假设R y x ∈,,且)()()(y f x f y x f +=+,那么函数)(x f 〔〕 A.0)0(=f 且)(x f 为奇函数B.0)0(=f 且)(x f 为偶函数 C.)(x f 为增函数且为奇函数D.)(x f 为增函数且为偶函数11.函数y=x 2﹣2x 的定义域为{0,1,2,3},那么其值域为〔〕A .{y|﹣1≤y≤3}B .{y|0≤y≤3}C .{0,1,2,3}D .{﹣1,0,3}12.函数221,1()3,1x x f x x x x ⎧-≤⎪=⎨-->⎪⎩那么1[](3)f f 的值是〔〕 A .1516 B .2716- C .89 D .18二.填空题:13.函数f(x)是R 上的奇函数,假设f 〔1〕=2那么f 〔﹣1〕+f 〔0〕=.14.函数f(x)=x 2+2x +1,x∈[-2,2]的最大值是______ 15.假设函数21(1)()lg (1)x x f x x x ⎧+≤=⎨>⎩,那么f[f(10)]=.16.1,(0)()1,(0)x f x x ≥⎧=⎨-<⎩,那么不等式(2)(2)5x x f x ++⋅+≤的解集为______________ 三.解答题:17.全集U =R ,A ={x|-4≤x≤2},B ={x|-1<x≤3},P =,(1)求A∩B;(2)求(∁U B)∪P;(3)求(A∩B)∩(∁U P).18.f(x)=(x∈R,且x≠-1),g(x)=x 2+2(x∈R). (1)求f(2)、g(2)的值;(2)求f[g(x)]和g[f(x)].19.求证:函数f(x)=--1在区间(-∞,0)上是增函数.20.函数f(x)=.(1)求f(2)+f ,f(3)+f 的值;(2)求f(2)+f +f(3)+f +…+f(2014)+f 的值.21.函数211,[1,)21(),(0,1)1,(,0]x x f x x x x x ⎧-∈+∞⎪⎪⎪=∈⎨⎪⎪--∈-∞⎪⎩〔1〕求3[()]2f f 的值〔2〕请作出此函数的图像〔3〕假设1()2f x =-,恳求出此时自变量x 的值 22.函数21)(-+=x x x f ,其中]5,3[∈x .〔Ⅰ〕用定义证明函数)(x f 在]5,3[上单调递减;〔Ⅱ〕结合单调性,求函数21)(-+=x x x f 在区间]5,3[上的最大值和最小值. 1-6.BCCADD7-12.BABADC13.-21116.3(,]2-∞ 17.〔1〕{|12}A B x x =-<≤〔2〕(){|0U C B P x x =≤或者5}2x ≥〔3〕{02}x <≤ 18.(1)f(2)=13,g(2)=6(2)f[g(x)]=213x +g[f(x)]=21()21x ++ 19.略20.〔1〕1,1〔2〕202121.〔1〕8〔2〕略〔3〕1和12- 22.〔1〕略〔2〕最大值为4,最小值为2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015级第一学期高一周练(二)
数学试题
2015-10-22
一、填空题:(每题5分,共50分)
1.已知集合},3,1{m A =,}4,3{=B ,}4,3,2,1{=B A ,则实数m = 2.设集合{}20|≤≤=x x M ,{}20|≤≤=x x N ,则在下面四个图形中,能表示集合M 到集合N 的函数关系的是
(填序号).
3.若函数2
()2(1)2f x x a x =+-+在(,4]-∞上是减函数,则a 的取值范围是_ ____ 4. 函数21--=x x y 的定义域为_____________
5. 函数6
2-=
x y 在区间]9,8(上的值域为
6. 设()f x 为定义在R 上的奇函数,当0>x 时,1)(2
++=x x x f ,则当0<x 时, =)(x f ___________
7.函数2+=x x y 的单调减区间为__________ 8.已知集合{}23,(5,)
A
x a x a B =
≤≤+=+∞,若A B A = ,则实数a 的取值范围
9. 已知偶函数()f x 在区间),0[+∞上单调递增,则满足)3
1
()13(f x f <-的x 的取值范围
是 .
10.已知函数⎩⎨⎧<≥+=0
,10,1)(2
x x x x f ,则满足不等式)2()1(2
x f x f >-的实数x 的取值范是
二、解答题:(共50分)
11. (15分)已知集合{}016102
≤+-=x x x A ,⎭⎬⎫
⎩⎨⎧<--=061
x x x
B ,{}|
C x x a =>,全集
U =R .
求(1)求B A (2)B A C U )( (3)若A C ⋂≠∅,求a 的取值范围
12.(15分)已知函数2
()1(,),f x a x b x a b x R
=++∈为实数,设函数()()2g x f x kx
=-,
(1)若
(1)0
f =,且函数()
f x 的值域为[0,)+∞,求
()
f x 的表达式;
(2)若()g x 在[1,1]x ∈-上是单调函数,求实数k 的取值范围.
……………………………………
密………………………………封…………………………线……………………………………
高一( )班 姓名 学号 考试号
13. (20分)已知定义域为R 的函数1
13()3
x
x f x a +-=+
(1)a =1,求证函数()f x 不是奇函数.
(2)若此函数是奇函数①判断并证明函数f(x)的单调性;②对任意的+
∈R x ,不等式
2
33[m (lo g )1][(lo g )2]0
f x f m x ++-->恒成立,求实数m 的取值范围.
2015级第一学期高一周练(二)
数学试题
命题:姜小建 审核:丁华干 2015-10-22
一、填空题:(每题5分,共50分)
1.已知集合},3,1{m A =,}4,3{=B ,}4,3,2,1{=B A ,则实数m = 2 2设集合{}20|≤≤=x x M ,{}20|≤≤=x x N ,则在下面四个图形中,能表示集合M 到集合N 的函数关系的是
(填序号). ②③
3.若函数2
()2(1)2f x x a x =+-+在(,4]-∞上是减函数,则a 的取值范围是_3-≤a ____ 4.函数21--=x x y 的定义域为_____________]1,2()2,(---∞ 5. 函数6
2-=
x y 在区间]9,8(上的值域为 )1,32
[
6. 设()f x 为定义在R 上的奇函数,当0>x 时,1)(2
++=x x x f ,则当0<x 时,
=)(x f ____________12
-+-x x
7.函数2+=x x y 的单调减区间为__________)1,2(-- 8.已知集合
{}23,(5,)A x a x a B =
≤≤+=+∞,若A
B A = ,则实数a 的取值范围
2
5>
a
9. 已知偶函数()f x 在区间),0[+∞上单调递增,则满足)31
()13(f x f <-的x 的取值范围
是 . )94
,9
2
(
10.已知函数⎩⎨⎧<≥+=0
,10,1)(2
x x x x f ,则满足不等式)2()1(2
x f x f >-的实数x 的取值范围
是 )12,1(-- 二、解答题:(共50分)
15. (14分)已知集合{}016102
≤+-=x x x A ,⎭⎬⎫
⎩⎨⎧<--=061
x x x
B ,{}|
C x x a =>,全集
U =R .
求(1)求B A (2)B A C U )( (3)若A C ⋂≠∅,求a 的取值范围
解:]8,2[=A
;)6,1(=B 2分
(1)]8,1(=B A 5分
(2))
2,1()(),8()2,(=⋂∴+∞-∞=B A C A C U U , 9分
(3)8<a
14
分
18.(16分)已知函数2
()1(,),f x a x b x a b x R
=++∈为实数,设函数()()2g x f x kx
=-,
(1)若
(1)0
f =,且函数()
f x 的值域为[0,)+∞,求
()
f x 的表达式;
(2)若()g x 在[1,1]x ∈-上是单调函数,求实数k 的取值范围.
解: (1)显然0a ≠
(1)010
f a b =
∴++=
,()
x R f x ∈且的值域为2
[0,)=b 40
a +∞∴∆-=
由2
2
101
()21
240
a b a f x x
x b b a ++==⎧⎧⇒∴=-+⎨⎨=--=⎩⎩
(2) 2
()(2)1
g x a x b k x =+-+
1
当0
a =时, ()(2)1g x
b k x =-+,
()g x 在[1,1]x ∈-上单调,∴2b k ≠
2 当0
a
≠时,()g x 图象满足:对称轴:22k b x
a
-= ()g x 在[1,1]x ∈-上单调
∴212k b a
-≤-或212k b a -≥
①当0
a
>时, 2
b k a ≤-+或2
b k a ≥+
②当0
a
<时, 2
b k a ≤+
或2
b k a ≥-+
综上:略
已知定义域为R 的函数1
13()3
x
x f x a +-=
+
(1)a =1,求证函数()f x 不是奇函数.
(2)若此函数是奇函数①判断并证明函数f(x)的单调性;②对任意的+
∈R x ,不等式
2
33[m (lo g )1][(lo g )2]0f x f m x ++-->恒成立,求实数m 的取值范围.
解:(1)1a =时,
1
1313
x
x f +-+(x )=
,
13f (-1)=
,
15f (1)=-
()f x ∴不是奇函数(定义证明也可以)…………………(4分) (2)①()f x 为奇函数,()()f x f x ∴-=-
11
1313133
33
3
x
x
x
x
x
x f f a
a a
-+--=
=-++⨯+1-(-x )=
(x )=
,所以a=3……………(6分)
1
13(31)21213
3
3(31)
3
3
31
x
x
x x
x
f +--++=
=-
+
⨯
+++(x )=
,03
x
x R y R ∈=
>因为且是上的单调增函数 ,所以,y=f(x)是R 上的减函数。
接下来用定义法证明…………………(12分)
②3+
∈∈令t =l o g x (x R ),则t R ,
2(f m t ∴原不等式化为+1)
-f(-mt-2)∈t R
恒
成立 又
()-f x f -=(x )
,
2
(f m t ∴不等式化为+1)
f(mt+2)
,∈t R 恒成立。
2
m 1
2,,
t m t m R ∴++∈不等式化为:恒成立
2
m --1
0,,
t m t m R ∈即恒成立
讨论: ①m=0满足条件。
②
2
040
m m m ⎧
⇒∈⎨=+⎩m (-4,0)
(]
∈总之:m -4,0 (没有考虑m=0 :扣1分 ) …………(20分)。