蓟州区第四高级中学2018-2019学年高二上学期第二次月考试卷数学模拟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蓟州区第四高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0
D .0<a <1且b <0
2. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l
3. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3
C .20152
3
D .20152
2
4. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)
C .(4,﹣3,1)
D .(﹣5,3,4)
5. 若命题“p 或q ”为真,“非p ”为真,则( )
A .p 真q 真
B .p 假q 真
C .p 真q 假
D .p 假q 假
6. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅ 7. 函数y=x+cosx 的大致图象是( )
A .
B .
C .
D .
8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2
(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2
B .3
C .4
D .5 9. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9
C .S 8
D .S 7
10.若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( ) A .45 B .9 C .﹣45 D .﹣9
11.函数y=2|x|的图象是( )
A .
B .
C .
D .
12.正方体的内切球与外接球的半径之比为( )
A .
B .
C .
D .
二、填空题
13.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,
)到直线l 的距离为 .
14.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
15.设函数32
()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .
16.在下列给出的命题中,所有正确命题的序号为 .
①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;
③若实数x ,y 满足x 2+y 2=1,则
的最大值为
;
④若△ABC 为锐角三角形,则sinA <cosB .
⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•
=5,则△ABC 的形状是直角三角形.
17.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系
是 .
18.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=(
)t ﹣a (a 为常数),
如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.
三、解答题
19.(本小题满分12分)求下列函数的定义域:
(1)()f x =;
(2)()
f x =.
20.已知:函数f (x )=log 2
,g (x )=2ax+1﹣a ,又h (x )=f (x )+g (x ).
(1)当a=1时,求证:h (x )在x ∈(1,+∞)上单调递增,并证明函数h (x )有两个零点;
(2)若关于x 的方程f (x )=log 2g (x )有两个不相等实数根,求a 的取值范围.
21.实数m 取什么数值时,复数z=m+1+(m ﹣1)i 分别是: (1)实数? (2)虚数? (3)纯虚数?
22.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*
∈N n ),11=a ,该数列的 前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .
23.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.
(I)求证:平面BCE⊥平面A1ABB1;
(II)求证:EF∥平面B1BCC1;
(III)求四棱锥B﹣A1ACC1的体积.
24.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
蓟州区第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】B
【解析】解:∵函数y=a x
﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限, ∴根据图象的性质可得:a >1,a 0
﹣b ﹣1<0,
即a >1,b >0, 故选:B
2. 【答案】C 111]
【解析】
考
点:线线,线面,面面的位置关系 3. 【答案】C 【解析】
试题分析:因为函数2
2
()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()
10
10f f -≤⎧⎪⎨≤⎪⎩,解得
3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等
比数列,T 122015...a a a =,201521...T a a a =,
两式相乘,根据等比数列的性质得()()
2015
2015
2
1201513T a a ==⨯,
T =20152
3
,故选C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 4. 【答案】C
【解析】解:设C (x ,y ,z ),
∵点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C ,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
5.【答案】B
【解析】解:若命题“p或q”为真,则p真或q真,
若“非p”为真,则p为假,
∴p假q真,
故选:B.
【点评】本题考查了复合命题的真假的判断,是一道基础题.
6.【答案】A
【解析】解:∵A={x|a﹣1≤x≤a+2}
B={x|3<x<5}
∵A∩B=B
∴A⊇B
∴
解得:3≤a≤4
故选A
【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.7.【答案】B
【解析】解:由于f(x)=x+cosx,
∴f(﹣x)=﹣x+cosx,
∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),
故此函数是非奇非偶函数,排除A、C;
又当x=时,x+cosx=x,
即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.
故选:B.
【点评】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力,属于中档题.8.【答案】C
【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,
∵a2014,a2016是函数f(x)=+6x﹣1的极值点,
∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.
数列{a n}中,满足a n+2=2a n+1﹣a n,
可知{a n}为等差数列,
∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,
从而log2(a2000+a2012+a2018+a2030)=log216=4.
故选:C.
【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.
9.【答案】C
【解析】解:∵S16<0,S17>0,
∴=8(a8+a9)<0,=17a9>0,
∴a8<0,a9>0,
∴公差d>0.
∴S n中最小的是S8.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
10.【答案】A
【解析】解:a8 是x10=[﹣1+(x+1)]10的展开式中第九项(x+1)8的系数,
∴a8==45,
故选:A.
【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.
11.【答案】B
【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)
∴y=2|x|是偶函数,
又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.
且当x=0时,y=1;x=1时,y=2,故A,D错误
故选B
【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.
12.【答案】C
【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,
设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,
所以,正方体的内切球与外接球的半径之比为:
故选C
二、填空题
13.【答案】3.
【解析】解:直线l的方程为ρcosθ=5,化为x=5.
点(4,)化为.
∴点到直线l的距离d=5﹣2=3.
故答案为:3.
【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.
14.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】正方体中,BC中点为E,CD中点为F,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为:
15.【答案】
1 (,1],2
2
⎡⎤-∞-⎢⎥
⎣⎦
【解析】
试题分析:因为12()()0f x f x +≤,故得不等式()()
()3322
12121210x x a x x a x x ++++++≤,即
()()
()()()2
2
1212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦
,由于
()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故
()12122133x x a a
x x ⎧
+=-+⎪⎪⎨
⎪=⎪⎩
,代入前面不等式,并化简得()1a +()2
2520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤
-∞-⎢⎥⎣⎦
.
考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.
【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实
数的取值范围.111]
16.【答案】 :①②③
【解析】解:对于①函数y=2x 3
﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x 0,y 0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x 0,2﹣y 0)也满足函数的解析式,则①正确; 对于②对∀x ,y ∈R ,若x+y ≠0,对应的是直线y=﹣x 以外的点,则x ≠1,或y ≠﹣1,②正确;
对于
③若实数x ,y 满足x 2+y 2
=1
,则
=
,可以看作是圆x 2+y 2
=1上的点与点(﹣2,0)连线
的斜率,其最大值为,③正确;
对于④若△ABC 为锐角三角形,则A ,B
,π﹣A
﹣B 都是锐角, 即
π﹣A ﹣B <,即A+B
>,B >
﹣A ,
则cosB <cos (
﹣A ),
即cosB <sinA ,故④不正确.
对于⑤在△ABC 中,G ,O 分别为△ABC 的重心和外心,
取
BC 的中点为D ,连接AD 、
OD
、GD ,如图:则
OD ⊥BC
,GD=
AD
, ∵=
|,
由
则
,
即
则
又BC=5
则有
由余弦定理可得cosC <0, 即有C 为钝角.
则三角形ABC 为钝角三角形;⑤不正确. 故答案为:①②③
17.【答案】12()()f x f x ] 【
解
析
】
考
点:不等式,比较大小.
【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等. 18.【答案】0.6
【解析】解:当t >0.1时,可得1=()0.1﹣a
∴0.1﹣a=0 a=0.1
由题意可得y ≤0.25=, 即(
)t ﹣0.1≤,
即t ﹣0.1≥ 解得t ≥0.6,
由题意至少需要经过0.6小时后,学生才能回到教室. 故答案为:0.6
【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.
三、解答题
19.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.
【解析】
考
点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环. 20.【答案】
【解析】解:(1)证明:h (x )=f (x )+g (x )=log 2+2x ,
=log 2(1﹣)+2x ;
∵y=1﹣
在(1,+∞)上是增函数,
故y=log 2(1﹣
)在(1,+∞)上是增函数;
又∵y=2x 在(1,+∞)上是增函数; ∴h (x )在x ∈(1,+∞)上单调递增; 同理可证,h (x )在(﹣∞,﹣1)上单调递增;
而h (1.1)=﹣log 221+2.2<0, h (2)=﹣log 23+4>0;
故h (x )在(1,+∞)上有且仅有一个零点,
同理可证h (x )在(﹣∞,﹣1)上有且仅有一个零点, 故函数h (x )有两个零点;
(2)由题意,关于x 的方程f (x )=log 2g (x )有两个不相等实数根可化为
1﹣=2ax+1﹣a 在(﹣∞,﹣1)∪(1,+∞)上有两个不相等实数根;
故a=
;
结合函数a=的图象可得,
<a <0;
即﹣1<a <0.
【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题.
21.【答案】
【解析】解:(1)当m ﹣1=0,即m=1时,复数z 是实数; (2)当m ﹣1≠0,即m ≠1时,复数z 是虚数;
(3)当m+1=0,且m ﹣1≠0时,即m=﹣1时,复数z 是纯虚数. 【点评】本题考查复数的概念,属于基础题.
22.【答案】(1)12-=n a n ,n
n b 21=;(2)n n
n T 23
23+-=. 【解析】
试题分析:(Ⅰ1)设d 为等差数列{}n a 的公差,且0>d ,利用数列的前三项分别加上3,1,1后成等比数列,
求出d ,然后求解n b ;(2)写出n
n n T 212...232321321-++++=
利用错位相减法求和即可. 试题解析:解:(1)设d 为等差数列{}n a 的公差,0>d ,
由11=a ,d a +=12,d a 213+=,分别加上3,1,1后成等比数列,] 所以)24(2)2(2d d +=+ 0>d ,∴2=d ∴122)1(1-=⨯-+=n n a n
又1log 22--=n n b a ∴n b n -=2log ,即n
n b 21
=
(6分)
考点:数列的求和. 23.【答案】
【解析】(I )证明:在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥底面ABC ,
所以,BB 1⊥BC .
又因为AB ⊥BC 且AB ∩BB 1=B , 所以,BC ⊥平面A 1ABB 1. 因为BC ⊂平面BCE ,
所以,平面BCE ⊥平面A 1ABB 1. (II )证明:取BC 的中点D ,连接C 1D ,FD .
因为E ,F 分别是A 1C 1,AB 的中点,
所以,FD∥AC且.
因为AC∥A1C1且AC=A1C1,
所以,FD∥EC1且FD=EC1.
所以,四边形FDC1E是平行四边形.
所以,EF∥C1D.
又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,
所以,EF∥平面B1BCC1.
(III)解:因为,AB⊥BC
所以,.
过点B作BG⊥AC于点G,则.
因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1
所以,平面A1ACC1⊥底面ABC.
所以,BG⊥平面A1ACC1.
所以,四棱锥B﹣A1ACC1的体积.
【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.24.【答案】
【解析】解:(1)…
=…
定义域是(0,7]…
(2)∵,…
当且仅当即x=6时取=…
∴y≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…。