概率的加法公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:不成立 ! 式是“ 有去路,没回路 式是“羊肉包子打狗 ”——有去路 没回路 有去路 为什么呢?学了几何概型便会明白.
U ∑

(
)

(
)
返回主目录
例1 小王参加“智力大冲浪”游戏, 他能答 出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王 (1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率 (3) 两类问题都答不出的概率 解 事件A , B分别表示“能答出甲,乙类问题 (1) P( AB) = P( A) P( AB) = 0.7 0.1 = 0.6 (2) P( A∪ B) = P( A) + P(B) P( AB) = 0.8 (3) P( AB) = P( A∪ B) = 0.2
第一章 概率论的基本概念
11.3 概率的加法公式
P( AU B) = P( A) + P(B) P( AB) 。
A
B S
返回主目录
第一章 概率论的基本概念
加法公式的推广
1) P(A U B U C) = P(A) + P(B) + P(C) P(AB) P(AC) P(BC) + P(ABC)
课后同学问: 例1 中小王他能答出第一类问题的概 率为0.7, 答出第二类问题的概率为0.2, 两 类问题都能答出的概率为0.1. 为什么不是 0.7×0.2 ? 若是的话, 则应有 P( A A2 ) = P( A )P( A2 ) 我们上述等式成立的 条件是 :事件 A , A2 相互独立. 1
2) 对任意 n 个事件 A1, A2 , L, An , 有 n n P( Ai ) P Ai = P Ai A j + P Ai A j Ak 1≤ i < j ≤ n 1≤ i < j < k ≤ n i =1 i =1 L + ( 1)n 1 P( A1 A2 L An )
最小值在 P( A ∪B) =1 时取得
P( AB) ≤ P( A) = 0.6
—— 最大值
最大值在 P( A ∪ B) = P(B) 时取得
课上有同学提问 例2 中回答当 A ∪B = 时, P( A B) 取得 最小值是否正确? 这相当于问如下命题是否成立
A ∪B = P( A ∪ B) =1
例2 设A , B满足 P ( A ) = 0.6, P ( B ) = 0.7, 在何条件下, P(AB) 取得最大(小)值? 最大(小)值是多少? 解
P(A ∪ B) = P( A) + P(B) P( AB)
P( AB) = P(A) + P(B) P(A ∪ B) ≥ P(A) + P(B) 1= 0.3 —— 最小值
相关文档
最新文档