曲阳县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲阳县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设a 是函数
x 的零点,若x 0>a ,则f (x 0)的值满足( )
A .f (x 0)=0
B .f (x 0)<0
C .f (x 0)>0
D .f (x 0)的符号不确定
2.
某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π
3. 已知集合{
}
{
2
|5,x |y ,A y y x B A B ==-+===( )
A .[)1,+∞
B .[]1,3
C .(]3,5
D .[]3,5
【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.
4. 已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )
A .﹣2
B .2
C .﹣
D .
5. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)
6. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )
A .2
B .1
C .
D .
7.已知集合A={x|x≥0},且A∩B=B,则集合B可能是()
A.{x|x≥0} B.{x|x≤1} C.{﹣1,0,1} D.R
8.已知集合A={x|a﹣1≤x≤a+2},B={x|3<x<5},则A∩B=B成立的实数a的取值范围是()
A.{a|3≤a≤4} B.{a|3<a≤4} C.{a|3<a<4} D.∅
9.如图,AB是半圆O的直径,AB=2,点P从A点沿半圆弧运动至B点,设∠AOP=x,将动点P到A,B 两点的距离之和表示为x的函数f(x),则y=f(x)的图象大致为()
10.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为()
A.15B.
C.15D.15
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 11.如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
12.已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( ) A .{2,1,0}-- B .{1,0,1,2}- C .{2,1,0}-- D .{1,,0,1}- 【命题意图】本题考查集合的交集运算,意在考查计算能力.
二、填空题
13.若实数x ,y 满足x 2
+y 2
﹣2x+4y=0,则x ﹣2y 的最大值为 . 14.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范
围是 .
15.已知某几何体的三视图如图所示,则该几何体的体积为 .
16.下列命题:
①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;
③2
()(21)2(21)f x x x =+--既不是奇函数又不是偶函数;
④A R =,B R =,1
:||
f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1
()f x x
=
在定义域上是减函数. 其中真命题的序号是 .
17.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .
18.定积分
sintcostdt= .
三、解答题
19.如图,直三棱柱ABC ﹣A 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AB=2,
(1)证明:BC 1∥平面A 1CD ;
(2)求异面直线BC 1和A 1D 所成角的大小; (3)求三棱锥A 1﹣DEC 的体积.
20.【常州市2018届高三上武进区高中数学期中】已知函数()()2
21ln f x ax a x x =+--,R a ∈.
⑴若曲线()y f x =在点()()
1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1
sin 8
g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.
21.已知函数()()x f x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.
(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤
∀∈⎢⎥⎣⎦
及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.
22.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n (单位:台,n ∈N )的函数解析式f (n );
10n
(单位:元),求X 的分布列及数学期望.
23.(本小题满分10分)
已知曲线
22
:1
49
x y
C+=,直线
2,
:
22,
x t
l
y t
=+
⎧
⎨
=-
⎩
(为参数).
(1)写出曲线C的参数方程,直线的普通方程;
(2)过曲线C上任意一点P作与夹角为30的直线,交于点A,求||
PA的最大值与最小值.
24.已知,且.
(1)求sinα,cosα的值;
(2)若,求sinβ的值.
曲阳县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:作出y=2x
和y=log
x 的函数图象,如图:
由图象可知当x 0>a 时,2>log x 0,
∴f (x 0)=2﹣log
x 0>0.
故选:C .
2. 【答案】
【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.
依题意得(2r ×2r +1
2πr 2)×2+5×2r ×2+5×2r +πr ×5=92+14π,
即(8+π)r 2+(30+5π)r -(92+14π)=0, 即(r -2)[(8+π)r +46+7π]=0, ∴r =2,
∴该几何体的体积为(4×4+1
2π×22)×5=80+10π.
3. 【答案】D
【解析】
{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.
4. 【答案】A
【解析】解:∵ =(2,﹣3,1),=(4,2,x ),且⊥,
∴=0,
∴8﹣6+x=0;
∴x=﹣2;
故选A.
【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值.
5.【答案】B
【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,
∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),
故选:B.
6.【答案】C
【解析】解:作出不等式对应的平面区域,(阴影部分)
由z=2x+y,得y=﹣2x+z,
平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,
由,解得,
即C(1,﹣1),
∵点C也在直线y=a(x﹣3)上,
∴﹣1=﹣2a,
解得a=.
故选:C.
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
7.【答案】A
【解析】解:由A={x|x≥0},且A∩B=B,所以B⊆A.
A、{x|x≥0}={x|x≥0}=A,故本选项正确;
B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;
C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;
D、给出的集合是R,不合题意,故本选项错误.
故选:A.
【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.
8.【答案】A
【解析】解:∵A={x|a﹣1≤x≤a+2}
B={x|3<x<5}
∵A∩B=B
∴A⊇B
∴
解得:3≤a≤4
故选A
【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.
9.【答案】
【解析】选B.取AP的中点M,
则P A =2AM =2OA sin ∠AOM
=2sin x
2,
PB =2OM =2OA ·cos ∠AOM =2cos x
2
,
∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π
4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,
故选B. 10.【答案】C
【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面
ABCD ,如图所示,所以此四棱锥表面积
为1S =262创
?11
23+2
2622
创创?
15=,故选C .
46
46
10
10
1
1
32
6
E V
D C
B
A
11.【答案】D
【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,
∴sin θcos θ<0,cos θ>0,
∴sin θ<0, ∴θ是第四象限角. 故选:D .
【点评】本题考查了象限角的三角函数符号,属于基础题.
12.【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .
二、填空题
13.【答案】10
【解析】
【分析】先配方为圆的标准方程再画出图形,设z=x ﹣2y ,再利用z 的几何意义求最值,只需求出直线z=x ﹣2y 过图形上的点A 的坐标,即可求解.
【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,
即圆心为(1,﹣2),半径为的圆,(如图)
设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,
经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,
最大值为:10.
故答案为:10.
14.【答案】(0,1).
【解析】解:画出函数f(x)的图象,如图示:
令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,
即方程f(x)=k有三个不同的实根,
故答案为(0,1).
【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.
15.【答案】 .
【解析】解:由三视图可知几何体为四棱锥,其中底面是边长为1的正方形,有一侧棱垂直与底面,高为2.
∴棱锥的体积V==.
故答案为.
16.【答案】①② 【解析】
试题分析:子集的个数是2n
,故①正确.根据奇函数的定义知②正确.对于③()2
41f x x =-为偶函数,故错误.
对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n
个;对于
奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个
元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 17.【答案】63
【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.
因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根, 所以a 1=1,a 3=4.
设等比数列{a n }的公比为q ,则,所以q=2.
则
.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n 项和,是基础的计算题.
18.【答案】 .
【解析】解: 0sintcostdt=
0sin2td (2t )=
(﹣cos2t )|=×(1+1)=.
故答案为:
三、解答题
19.【答案】
【解析】(1)证明:连接AC 1与A 1C 相交于点F ,连接DF , 由矩形ACC 1A 1可得点F 是AC 1的中点,又D 是AB 的中点,
∴DF ∥BC 1,
∵BC 1⊄平面A 1CD ,DF ⊂平面A 1CD ,
∴BC 1∥平面A 1CD ; …
(2)解:由(1)可得∠A 1DF 或其补角为异面直线BC 1和A 1D 所成角.
DF=BC 1=
=1,A 1D=
=
,A 1F=A 1C=1.
在△A 1DF 中,由余弦定理可得:cos ∠A 1DF==
,
∵∠A 1DF ∈(0,π),∴∠A 1DF=
,
∴异面直线BC 1和A 1D 所成角的大小;…
(3)解:∵AC=BC ,D 为AB 的中点,∴CD ⊥AB ,
∵平面ABB 1A 1∩平面ABC=AB ,∴CD ⊥平面ABB 1A 1,CD==1.
∴
=
﹣S △BDE ﹣
﹣=
∴三棱锥C ﹣A 1DE 的体积V=
…
【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC 1和A 1D 所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.
20.【答案】⑴2a =⑵11,,64
⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝
⎦⎣⎭
⑶2
【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =() 在点
11f (,())处的切线方程,代入点
211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;
(3)由题意得,2min max f x g x +≥()(),
分析可得必有()()2
15
218
f x ax a x lnx +--≥= ,对f x ()求导,
对a 分类讨论即可得答案. 试题解析:
⑵
()()()
211'ax x f x x
-+=
,
∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,
410{ 610
a a -≥∴-≥,得14a ≥;
若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,
410{
610
a a -≤∴-≤,得1
6a ≤,
综上,实数a 的取值范围为11,,64
⎛⎤
⎡⎫-∞⋃+∞ ⎪⎥⎢⎝
⎦
⎣
⎭
;
⑶由题意得,()()min max 2f x g x +≥,
()max 1
28g x g π⎛⎫== ⎪⎝⎭,
()min 158f x ∴≥,即()()215
21ln 8
f x ax a x x =+--≥,
由()()()()()2
22112111'221ax a x ax x f x ax a x x x
+---+=+--==, 当0a ≤时,()10f <,则不合题意;
当0a >时,由()'0f x =,得1
2x a
=或1x =-(舍去), 当1
02x a
<<时,()'0f x <,()f x 单调递减, 当1
2x a
>
时,()'0f x >,()f x 单调递增.
()min 115
28f x f a ⎛⎫∴=≥ ⎪⎝⎭
,即117ln 428a a --≥, 整理得,()117
ln 2228a a -⋅
≥, 设()1ln 2h x x x =-,()211
02h x x x
∴=+>',()h x ∴单调递增,
a Z ∈,2a ∴为偶数,
又()172ln248h =-<,()17
4ln488
h =->,
24a ∴≥,故整数a 的最小值为2。
21.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,
1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.
【解析】
(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值;
当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2
()(2)(2)f x f k e ==-最小值;
当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1
()(1)k f x f k e
-=-=-最小值.
(3)()(221)x
g x x k e =-+,∴'()(223)x
g x x k e =-+,
由'()0g x =,得32
x k =-
,
当3
2x k <-
时,'()0g x <; 当3
2
x k >-时,'()0g x >,
∴()g x 在3(,)2k -∞-上递减,在3
(,)2
k -+∞递增,
故323
()()22
k g x g k e -=-=-最小值,
又∵35,22k ⎡⎤
∈⎢⎥⎣⎦
,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,
∴()g x λ≥对[]0,1x ∀∈恒成立等价于32
()2k g x e λ-
=-≥最小值;
又32
()2k g x e λ-
=-≥最小值对35,22k ⎡⎤
∀∈⎢⎥⎣⎦
恒成立.
∴3
2
min (2)k e
k --≥,故2e λ≤-.1
考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的. 22.【答案】
【解析】解:(I )当n ≥20时,f (n )=500×20+200×(n ﹣20)=200n+6000, 当n ≤19时,f (n )=500×n ﹣100×(20﹣n )=600n ﹣2000,
∴
.
( II )由(1)得f (18)=8800,f (19)=9400,f (20)=10000,f (21)=10200,f (22)=10400, ∴P (X=8800)=0.1,P (X=9400)=0.2,P (X=10000)=0.3,P (X=10200)=0.3,P (X=10400)=0.1, X
23.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩
,26y x =-+;(2.
【解析】
试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θ
θ
=⎧⎨
=⎩,(为参数),直线的普通方程为26y x =-+.
(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=
+-.
则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取
.当sin()1θα+=时,||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程. 24.【答案】
【解析】解:(1)将sin +cos
=
两边平方得:(sin
+cos
)2=sin
2
+2sin cos
+cos 2
=1+sin α=,
∴sin α=,
∵α∈(,π),
∴cos α=﹣=﹣
;
(2)∵α∈(,π),β∈(0,),
∴α+β∈(
,
),
∵sin (α+β)=﹣<0,
∴α+β∈(π,),
∴cos (α+β)=﹣
=﹣,
则sin β=sin=sin (α+β)cos α﹣cos (α+β)sin α=﹣×(﹣)﹣(﹣)×=
+
=
.
【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.。