高二数学课程教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学课程教案
高二数学课程教案篇1
教材分析
因式分解是代数式的一种重要恒等变形。

《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。

本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。

分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。

分解因式这一章在整个教材中起到了承上启下的作用。

本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

学情分析
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

教学目标
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

3、能运用提公因式法、公式法进行综合运用。

4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

教学重点和难点
重点:灵活运用平方差公式进行分解因式。

难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

高二数学课程教案篇2
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。

你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。

活动3
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。

学生回答:这个运动场要准备(10+20)平方米的草皮。

教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

教师巡视、指导,学生完成、交流,师生评价。

提醒学生注意先化简成最简二次根式后再判断。

高二数学课程教案篇3
【教学目标】
知识目标:了解中心对称的概念,了解平行四边形是中心对称图形,掌握中心对称的性质。

能力目标:灵活运用中心对称的性质,会作关于已知点对称的中心对称图形。

情感目标:通过提问、讨论、动手操作等多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

【教学重点、难点】
重点:中心对称图形的概念和性质。

难点:范例中既有新概念,分析又要仔细、透彻,是教学的难点。

关键:已知点A和点O,会作点Aˊ,使点Aˊ与点A关于点O 成中心对称。

【课前准备】
叫一位剪纸爱好的学生,剪一幅类似书本第108页哪样的图案。

【教学过程】
一.复习
回顾七下学过的轴对称变换、平移变换、旋转变换、相似变换。

二.创设情境
用剪好的图案,让学生欣赏。

师:这剪纸有哪些变换?生:轴对称变换。

师:指出对称轴。

生:(能结合图案讲)。

生:还有
旋转变换。

师:指出旋转中心、旋转的角度?生:90°、180°、270°。

三、合作学习
1、把图1、图2发给每个学生,先探索图1:同桌的两位同学,把两个正三角形重合,然后把上面的正三角形绕点O旋转180°,观察旋转180°前后原图形和像的位置情况,请学生说出发现什么?生(讨论后):等边三角形旋转180°后所得的像与原图形不重合。

探索图形2:把两个平形四边形重合,然后把上面一个平形四边形绕点O旋转180°,学生动手后发现:平行四边形ABCD 旋转180°后所得的像与原图形重合。

师:为什么重合?师:作适当解释或学生自己发现:∵OA=OC,∴点A绕点O旋转180°与点C重合。

同理可得,点C绕点O旋转180°与点A 重合。

点B绕点O旋转180°与点D重合。

点D绕点O旋转180°与点B重合。

2、中心对称图形的概念:如果一个图形绕一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称(pointsymmetry)图形,这个点叫对称中心。

师:等边三角形是中心对称图形吗?生:不是。

3、想一想:等边三角形是轴对称图形吗?答:是轴对称图形。

平形四边形是轴对称图形吗?答:不是轴对称图形。

4、两个图形关于点O成中心对称的概念:如果一个图形绕着一个点O旋转180°后,能够和另外一个图形互相重合,我们就称这两个图形关于点O成中心对称。

中心对称图形与两个图形成中心对称的不同点:前者是一个图形,后者是两个图形。

相同点:都有旋转中心,旋转180°后都会重合。

做一做: P109
5、根据中心对称图形的定义,得出中心对称图形的性质:
对称中心平分连结两个对称点的线段
通过中心对称的概念,得到P109性质后,主要是理解与应用。

如右图,若A、B关于点O的成中心对称,∴点O是A、B 的对称中心。

反之,已知点A、点O,作点B,使点A、B关于以O为对称中心的对称点。

让学生练习,多数学生会做,若不会做,教师作适当的启发。

做P106例2,让学生思考1~2分钟,然后师生共同解答。

(P106)例2 解:∵平行四边形是中心对称图形,O是对称中心,
EF经过点O,分别交AB、CD于E、F。

∴点E、F是关于点O的对称点。

∴OE=OF。

四、应用新知,拓展提高
例如图,已知△ABC和点O,作△A′B′C′,使△A′B′C′与△ABC关于点O成中心对称。

分析:先让学生作点A关于以点O为对称中心的对称点Aˊ,
同理:作点B关于以点O为对称中心的对称点Bˊ,
作点C关于以点O为对称中心的对称点Cˊ。

∴△AˊBˊCˊ与△ABC关于点O成中心对称也会作。

解:
略。

课内练习P110
小结
今天我们学习了些什么?
1、中心对称图形的概念,两个图形成中心对称的概念,知道它们的相同点与不同点。

2、会作中心对称图形,关键是会作点A关于以O为对称中心的对称点Aˊ。

3、我们已学过的中心对称图形有哪些?
作业
P110 A组1、2、3、4,B组5、6必做C组7选做。

高二数学课程教案篇4
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用__解题,许多时候能以简驭繁。

因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
四、教学目标
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用__解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.
五、教学重点与难点:
教学重点
1.对圆锥曲线定义的理解
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程
教学难点:
巧用圆锥曲线__解题
六、教学过程设计
【设计思路】
开门见山,提出问题
例题:
(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m 的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在
(2)已知动点m(_,y)满足(_1)2(y2)2|3_4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。

但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(_1)2(y2)2这样,很快就能得出正确结果。

如若不然,我将启发他们从等式两端的式子|3_4y|入
手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。

以深化对概念的理解。

高二数学课程教案篇5
教学目标
熟练掌握三角函数式的求值
教学重难点
熟练掌握三角函数式的求值
教学过程
【知识点精讲】
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。

仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。

找出已知角与所求角之间的某种关系求解
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。

将已知式或所求式进行化简,再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
【课堂小结】
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。

仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。

找出已知角与所求角之间的某种关系求解
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。

将已知式或所求式进行化简,再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
高二数学课程教案篇6
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

二、教学重点:
向量的性质及相关知识的综合应用。

三、教学过程:
(一)主要知识:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。

高二数学课程教案篇7
【教学目标】
1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2.能根据几何结构特征对空间物体进行分类。

3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】
1.情景导入
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2.展示目标、检查预习
3、合作探究、交流展示
(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
(2)棱柱的任何两个平面都可以作为棱柱的底面吗?
(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
(5)绕直角三角形某一边的几何体一定是圆锥吗?。

相关文档
最新文档