睢宁县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
睢宁县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离
心率的倒数之和的最大值为( )
A .2
B .
C .
D .4
2. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45
B .90
C .120
D .360
3. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,
||||10MF NF +=,则直线MN 的方程为( )
A .240x y +-=
B .240x y --=
C .20x y +-=
D .20x y --=
4. 下列关系式中,正确的是( ) A .∅∈{0} B .0⊆{0} C .0∈{0}
D .∅={0}
5. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等
于( )
A .
B .
C .24
D .48
6. 已知双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的
渐近线方程是( )
A .y=±
x B .y=±
C .xy=±2
x
D .y=±
x
7. 设集合A={x||x ﹣2|≤2,x ∈R},B={y|y=﹣x 2,﹣1≤x ≤2},则∁R (A ∩B )等于( ) A .R
B .{x|x ∈R ,x ≠0}
C .{0}
D .∅
8. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 9. 下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y=2x 3
B .y=|x|+1
C .y=﹣x 2+4
D .y=2﹣|x|
10.已知命题:()(0x
p f x a a =>且1)a ≠是单调增函数;命题5:(,)44
q x ππ
∀∈,sin cos x x >.
则下列命题为真命题的是( )
A .p q ∧
B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 11.三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b
C .a <b <c
D .b <c <a
12.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )
A .若m ∥β,则m ∥l
B .若m ∥l ,则m ∥β
C .若m ⊥β,则m ⊥l
D .若m ⊥l ,则m ⊥β 13.已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则
|2|a b +=( )
A B . C . D .14.为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛
⎫=- ⎪⎝
⎭的图象( )
A .向左平移
3
π
个单位
B .向左平移
6
π
个单位 C.向右平移3π个单位 D .向右平移23
π
个单位
15.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没
有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
二、填空题
16.设函数f (x )=
,则f (f (﹣2))的值为 .
17.当0,1x ∈()时,函数()e 1x
f x =-的图象不在函数2()
g x x ax =-的下方,则实数a 的取值范围是
___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
18.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .
19.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C
相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .
三、解答题
20.求下列曲线的标准方程:
(1)与椭圆
+
=1有相同的焦点,直线y=
x 为一条渐近线.求双曲线C 的方程.
(2)焦点在直线3x ﹣4y ﹣12=0 的抛物线的标准方程.
21.已知命题p :∀x ∈[2,4],x 2﹣2x ﹣2a ≤0恒成立,命题q :f (x )=x 2﹣ax+1在区间上是增函数.若
p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.
22.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .
23.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.
24.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).
(Ⅰ)求矩阵M 的逆矩阵M ﹣1
;
(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.
25.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条
谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
睢宁县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】C
【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,
由椭圆和双曲线的定义可知,
设|MF1|=r1,|MF2|=r2,|F1F2|=2c,
椭圆和双曲线的离心率分别为e1,e2
∵∠F1MF2=,
∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①
在椭圆中,①化简为即4c2=4a2﹣3r1r2,
即=﹣1,②
在双曲线中,①化简为即4c2=4a12+r1r2,
即=1﹣,③
联立②③得,+=4,
由柯西不等式得(1+)(+)≥(1×+×)2,
即(+)2≤×4=,
即+≤,
当且仅当e
=,e2=时取等号.即取得最大值且为.
1
故选C.
【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.2.【答案】B
【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,
所以由分步计数原理有:C62C42C22=90个不同的六位数,
故选:B.
【点评】本题考查了分步计数原理,关键是转化,属于中档题.
【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.
设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).
由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,
而1222y y +=,∴12
12
1y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 4. 【答案】C
【解析】解:对于A ∅⊆{0},用“∈”不对,
对于B 和C ,元素0与集合{0}用“∈”连接,故C 正确; 对于D ,空集没有任何元素,{0}有一个元素,故不正确.
5. 【答案】C
【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,
∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,
由双曲线的性质知,解得x=6.
∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°,
∴△PF 1F 2的面积=.
故选C .
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
6. 【答案】A
【解析】解:抛物线y 2
=8
x 的焦点(2,0),
双曲线C 的一个焦点与抛物线y 2
=8
x 的焦点相同,c=2
,
双曲线C 过点P (﹣2,0),可得a=2,所以b=2.
双曲线C 的渐近线方程是y=±x .
故选:A .
【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.
7. 【答案】B
【解析】解:A=[0,4],B=[﹣4,0],所以A ∩B={0},∁R (A ∩B )={x|x ∈R ,x ≠0}, 故选B .
【解析】
试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .
考点:点、线、面之间的距离的计算.1
【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 9. 【答案】B
【解析】解:对于A .y=2x 3,由f (﹣x )=﹣2x 3
=﹣f (x ),为奇函数,故排除A ;
对于B .y=|x|+1,由f (﹣x )=|﹣x|+1=f (x ),为偶函数,当x >0时,y=x+1,是增函数,故B 正确;
对于C .y=﹣x 2
+4,有f (﹣x )=f (x ),是偶函数,但x >0时为减函数,故排除C ;
对于D .y=2﹣|x|
,有f (﹣x )=f (x ),是偶函数,当x >0时,y=2﹣x
,为减函数,故排除D .
故选B .
10.【答案】D
【解析】
考点:1、指数函数与三角函数的性质;2、真值表的应用. 11.【答案】A
【解析】解:∵a=0.52=0.25, b=log 20.5<log 21=0, c=20.5>20=1, ∴b <a <c .
故选:A .
【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.
12.【答案】D
【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可
【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D 13.【答案】A 【解析】
考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系. 14.【答案】C 【解析】
试题分析:将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位,得2sin 2sin 233y x x ππ⎛
⎫=-
-=- ⎪⎝
⎭的图象,故选C .
考点:图象的平移. 15.【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )
那么安全存放的不同方法种数为2A 44
=48.
故选B .
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
二、填空题
16.【答案】 ﹣4 .
【解析】解:∵函数f (x )=
,
∴f (﹣2)=4﹣2
=
,
f (f (﹣2))=f (
)=
=﹣4.
故答案为:﹣4.
17.【答案】[2e,)-+∞
【解析】由题意,知当0,1x ∈()时,不等式2
e 1x
x ax -≥-,即21e x x a x +-≥恒成立.令()21e x
x h x x
+-=,
()()()2
11e 'x x x h x x
-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,x
k x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()
2
11e '0x x x h x x
-+-=
>,∴()h x 在()0,1x ∈为递增,∴
()()12e h x h <=-,则2e a ≥-.
18.【答案】 5 .
【解析】解:P (1,4)为抛物线C :y 2
=mx 上一点,
即有42
=m ,即m=16, 抛物线的方程为y 2
=16x ,
焦点为(4,0),
即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
19.【答案】.
【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,
过F斜率为的直线与抛物线C相交于A,B两点,
直线AO与l相交于D,
∴直线AB的方程为y=(x﹣),l的方程为x=﹣,
联立,解得A(﹣,P),B(,﹣)
∴直线OA的方程为:y=,
联立,解得D(﹣,﹣)
∴|BD|==,
∵|OF|=,∴==.
故答案为:.
【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.
三、解答题
20.【答案】
【解析】解:(1)由椭圆+=1,得a2=8,b2=4,
∴c 2=a 2﹣b 2
=4,则焦点坐标为F (2,0),
∵直线y=x 为双曲线的一条渐近线,
∴设双曲线方程为(λ>0),
即
,则λ+3λ=4,λ=1.
∴双曲线方程为:;
(2)由3x ﹣4y ﹣12=0,得
,
∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3), ∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:
y 2=16x 或x 2=﹣12y .
【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双
曲线方程是关键,是中档题.
21.【答案】
【解析】解:∀x ∈[2,4],x 2
﹣2x ﹣2a ≤0恒成立,
等价于a ≥x 2
﹣x 在x ∈[2,4]恒成立,
而函数g (x )=x 2
﹣x 在x ∈[2,4]递增,
其最大值是g (4)=4, ∴a ≥4,
若p 为真命题,则a ≥4;
f (x )=x 2﹣ax+1在区间上是增函数,
对称轴x=≤,∴a ≤1, 若q 为真命题,则a ≤1; 由题意知p 、q 一真一假,
当p 真q 假时,a ≥4;当p 假q 真时,a ≤1, 所以a 的取值范围为(﹣∞,1]∪[4,+∞).
22.【答案】(1)2=AD ;(2)3
π
=
B .
【
解
析
】
考点:正余弦定理的综合应用,二次方程,三角方程.
【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方. 23.【答案】3k ≤-或2k ≥. 【解析】
试题分析:根据两点的斜率公式,求得2PA k =,3PB k =-,结合图形,即可求解直线的斜率的取值范围.
试题解析:由已知,11212PA k --=
=-,12
310
PB k --==-- 所以,由图可知,过点()1,1P -的直线与线段AB 有公共点,
所以直线的斜率的取值范围是:3k ≤-或2k ≥.
考点:直线的斜率公式. 24.【答案】
【解析】解:(Ⅰ)设点P (x ,y )在矩阵M 对应的变换作用下所得的点为P ′(x ′,y ′),
则即=
,
∴M=
.
又det (M )=﹣3,
∴M ﹣1
=
;
(Ⅱ)设点A (x ,y )在矩阵M 对应的变换作用下所得的点为A ′(x ′,y ′),
则
=M ﹣1
=
,
即,
∴代入4x+y ﹣1=0,得
,
即变换后的曲线方程为x+2y+1=0.
【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.
25.【答案】
【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,
(0.0015+0.019)×20+(x﹣140)×0.025=0.5,
解得:x=143.6.
∴测试成绩中位数为143.6.
进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.
(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,
则ξ~B(3,),
∴E(ξ)=.
∴最后抢答阶段甲队得分的期望为[]×20=30,
∵P(η=0)=,
P(η=1)=,
P(η=2)=,
P(η=3)=,
∴Eη=.
∴最后抢答阶段乙队得分的期望为[]×20=24.
∴120+30>120+24,
∴支持票投给甲队.
【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.。