(初中数学)七年级数学下册 第2章 二元一次方程组 2.5 三元一次方程组及其解法课件 (新版)浙教版
七年级下册数学二元一次方程组习题及答案
二元一次方程组》8.1二元一次方程组一、填空题1、二元一次方程 4x-3y=12,当 x=0,1,2,3 时, y=2、在 x+3y=3 中,若用 x 表示 y ,则 y= ,用 y 表示 x,则 x=3、已知方程 (k 2-1)x 2+(k+1)x+(k-7)y=k+2 ,当 k= 时,方程为一元一次方程;当k= _____ 时,方程为二元一次方程。
4、对二元一次方程 2(5-x)-3(y-2)=10 ,当 x=0 时,则 y= ______________ ;当 y=0 时,则 x= _______________________________5、方程 2x+y=5 的正整数解是_。
6、若 (4x-3) 2+|2y+1|=0 ,则 x+2= 。
x y a x 27、方程组的一个解为,那么这个方程组的另一个解是。
xy b y 31ax 2y 18、若x 时,关于 x、y的二元一次方程组的解互为倒数,则2x by 2a 2b 。
二、选择题321、方程2x-3y=5,xy= 3,x 3 ,3x-y +2z=0,x2 y 6 中是y二元一次方程的有( )个。
A、1B、2C、3D、42、方程 2x+y=9 在正整数范围内的解有( )A、1个B、2个C、3个 D 、4 个3、与已知二元一次5x-y=2 组成的方程组有无数多个解的方程是( )方程A、2B、-2C、2 或-2D、以上答案都不对.A 、10x+2y=4 B、4x-y=7 C、20x-4y=3 D、 15x-3y=64、若是5x2y m与4x n m1y2n 2同类项,则m 2n的值为()A、1B、-1 C 、- 3 D、以上答案都不对5、在方程(k2-4)x 2+(2-3k)x+(k+1)y+3k=0 中,若此方程为二元一次方程,则k值为(6、若 x 2是二元一次方程组的解,则这个方程组是( ) y17、在方程 2(x y ) 3(y x ) 3中,用含 x 的代数式表示 y ,则 (A 、 y 5x 3B 、 y x 3C 、 y 5x 38、已知x=3-k,y=k+2,则y与x的关系是() A、x+y=5 B、x+y=1 C、x-y=1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成3x 5y 610、若方程组 的解也是方程3x+ky=10 的解,则k的值是( =)A、k=6 = B、k=10 C、k=91D、k=三、解答题1、解关于 x 的方程 (a 1)(a 4)x a 2(x 1)xy72、已知方程组 ,试确定 a 、c 的值,使方程组:ax 2y c (1)有一个解;(2)有无数解;(3)没有解3、关于 x 、y 的方程 3kx 2y 6k 3,对于任何 k 的值都有相同的解,试求它的解。
数学七年级下册二元一次方程组性质
数学七年级下册二元一次方程组性质数学七年级下册二元一次方程组性质导语:书是人类进步的阶梯,这句话说得真不错,我总是爱看书。
因为我从书本里明白了很多很多的道理。
下面是小编为大家整理的,数学知识,想要知更多的资讯,请多多留意CNFLA学习网!第一章二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:a1x + b1y = c1 已知二元一次方程组a2x + b2y = c2①、②、③、当a1/a2 ≠ b1/b2 时,有唯一解; 当a1/a2 = b1/b2 ≠ c1/c2时,无解; 当a1/a2 = b1/b2 = c1/c2时,有无数解。
x + y = 4 2x + 2y = 8x + y = 4 x + y = 3 例如:对应方程组:①、②、③、 3x - 5y = 9 2x + 2y = 5例:判断下列方程组是否为二元一次方程组:a +b = 2 ②、x = 4 ③、3t + 2s = 5 ④、x = 11 ①、b +c = 3 y = 5 ts + 6 = 0 2x + 3y = 03、用含一个未知数的代数式表示另一个未知数:用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。
2022-2023学年七年级数学下学期复习二元一次方程精讲精练
2022-2023学年七年级数学下学期复习二元一次方程组精讲精练【目标导航】【知识梳理】1.二元一次方程:(1)二元一次方程的定义含有未知数,并且含有未知数的,像这样的方程叫做二元一次方程(2)二元一次方程需满足三个条件:①首先是方程.②方程中共含有未知数.③所有未知.不符合上述任何一个条件的都不叫二元一次方程.(3)二元一次方程有解.求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.2.二元一次方程组的定义:(1)二元一次方程组的定义:由两个方程组成,并含有未知数的方程组叫做二元一次方程组.(2)二元一次方程组也满足三个条件:①方程组中的两个方程都是.②方程组中共含有未知数.③每个方程都是方程.3.二元一次方程组的解法:(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较的方程,将这个方程组中的一个未知数用表示出来.②将变形后的关系式另一个方程,一个未知数,得到一个方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数.②把两个方程的两边分别,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用{x=ax=b的形式表示.4.二元一次方程组的应用(一)、列二元一次方程组解决实际问题的一般步骤:(1):找出问题中的已知条件和未知量及它们之间的关系.(2):找出题中的两个关键的未知量,并用字母表示出来.(3):挖掘题目中的关系,找出两个等量关系,列出方程组.(4).(5):检验所求解是否符合实际意义,并作答.(二)、设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.【典例剖析】【考点1】二元一次方程(组)的有关定义【例1】方程(m﹣1009)x|m|﹣1008+(n+3)y|n|﹣2=2018是关于x、y的二元一次方程,则()A.m=±1009;n=±3B.m=1009,n=3C.m=﹣1009,n=﹣3D.m=﹣1009,n=3【变式训练】1.(2022春•鹿城区校级期中)下列式子中是二元一次方程的是()A.x+2=2x﹣1B.2xy﹣1=3C.3﹣x=5+2y D.2x﹣3y2.(2022春•拱墅区期中)如果3x m+1+5y n﹣2=0是关于x、y的二元一次方程,那么()A.{m=0n=1B.{m=1n=1C.{m=0n=3D.{m=1n=33.(2022春•富阳区期中)下列方程组中是二元一次方程组的是()A .{xy =1x +y =2B .{5x −2y =31x +y =3C .{2x +z =03x −y =15D .{x =5x 2+y 3=7【考点2】二元一次方程(组)的解【例2】若{x =−2y =m 是方程nx +6y =4的一个解,则代数式3m ﹣n +1的值是( )A .3B .2C .1D .﹣1【变式训练】4.(2022春•普陀区期末)已知{x =2ky =−3k 是二元一次方程x ﹣y =10的解,则k 的值是( )A .2B .﹣2C .10D .﹣105.(2022春•临海市期末)下列各组数是方程x +y =2解的是( ) A .{x =1y =2B .{x =2y =1C .{x =1y =1D .{x =−1y =16.(2022春•龙游县月考)二元一次方程组{7x −3y =22x +y =8的解是( )A .{x =−1y =−3B .{x =2y =4C .{x =4y =2D .{x =1y =6【考点3】解二元一次方程组【例3】(2021春•拱墅区月考)解下列方程组: (1){3x +2y =133x −2y =5(2){x+y 2+x−y3=64(x +y)−5(x −y)=2.【变式训练】7.(2022•婺城区模拟)解方程组:{4x +y =15x −2y =6.8.(2022春•鹿城区校级期中)解方程组: (1){3x +2y =8y =x −1;(2){3x +4y =−55x −2y =9.9.(2022春•富阳区期中)解方程组: (1){x −2y =3x +4y =−3;(2){x−12+y+13=1x +y =4.【考点4】二元一次方程组的含参问题【例4】(2022•富阳区一模)已知关于x ,y 的方程组{ax +by =5cx +dy =−1的解是{x =1y =2,则关于x 1,y 1的方程组{a(x −3)+b(y +1)=5c(x −3)+d(y +1)=−1的解为( ) A .{x =4y =1B .{x =1y =2C .{x =−2y =1D .{x =−2y =−1【变式训练】10.(2022春•杭州期中)关于x ,y 的方程组为{ax +2y =−5−x +ay =2a ,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a 每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是( ) A .{x =2y =1B .{x =3y =−1C .{x =1y =2D .{x =−1y =311.(2022春•普陀区期末)若方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =4y =−2,则方程组{3a 1x +2b 1y =a 1−c 13a 2x +2b 2y =a 2−c 2的解是( ) A .{x =−1y =1B .{x =−1y =−1C .{x =53y =1D .{x =53y =−112.(2022春•嘉兴期末)关于x ,y 的方程组{x +y =1−ax −y =3a +5有以下两个结论:①当a =1时,方程组的解也是方程x +y =2的解;②不论a 取什么实数,代数式2x +y 的值始终不变.则( ) A .①②都正确 B .①正确,②错误 C .①错误,②正确 D .①②都错误考点5同解方程组【例5】(2021春•上城区校级期中)若方程组{x +y =3x −y =1与方程组{x −my =−2nx −y =3同解,则mn = 8 .【变式训练】13.(2022春•东阳市校级月考)已知方程组{5x +y =3ax +5y =4与{5x +by =1x −2y =5有相同的解,则a ,b 的值为( )A .{a =1b =2B .{a =−4b =−6C .{a =−6b =2D .{a =14b =214.(2021春•奉化区校级期末)已知方程组{x =y +5x +y +m =0和方程组{2x −y =5x +y +m =0有相同的解,则m 的值是 .15.(2022春•柯桥区期中)如果方程组{x +y =3mx +ny =8与方程组{x −y =1mx −ny =4有相同的解,则m ﹣n = .【考点6】三元一次方程组【例6】(2020春•奉化区期中)已知{x +7y +11z =92x +5y +4z =15,则x +y ﹣z = 7 .【变式训练】16.(2022春•东莞市期中)解方程组:{x +y +z =62x +y −z =1y =x +1.17.(2022秋•浑南区校级月考)解方程组:{x +y +z =23①x −y =1②2x +y −z =20③.18.(2022春•义乌市校级月考)若方程组{3x +2y =2k5x +4y =k +3的解x 、y 的和为﹣5,求k 的值,并解此方程组.19.(2021•下城区一模)已知x ﹣2y +z =2x ﹣y +z =3,且x ,y ,z 的值中仅有一个为0,解这个方程组. 考点7由实际问题抽象出二元一次方程【例7】某人步行了5小时,先沿着平路走,然后上山,最后又沿原路返回.假如他在平路上每小时走4里,上山每小时走3里,下山的速度是6里/小时,则他从出发到返回原地的平均速度是 里/小时.【变式训练】20.(2022春•萧山区期中)现有1元的人民币x 张,5元的人民币y 张,共120元,这个关系用方程可以表示为 .21.(2022•上虞区模拟)我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?若设鸡x 只,兔y 只,则由头数可列出方程x +y =35,那么由足数可列出的方程为 .22.(2022•江北区开学)某果园计划种植梨树和苹果树共1000株,实际上梨树种植量比计划增长10%,而苹果树种植量比计划减少5%.若设实际种植梨树x 株,苹果树y 株,列二元一次方程为 . 考点8由实际问题抽象出二元一次方程组【例8】(2021春•奉化区校级期末)《九章算术》是我国东汉年间编订的一部数学经典著作,在它的“方程”一章里一次方程组是由算筹排布而成的,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与对应的常数项,把图1所示的算筹图中方程组形式表述出来,就是{3x +2y =19x +4y =23.类似地,图2所示的算筹图可用方程组表述为 {2x +y =114x +3y =27.【变式训练】23.(2022春•婺城区期末)浙教版七(下)数学书P 44中有这样一个合作学习:游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍.设男孩有x 人,女孩有y 人,可列方程组 .24.(2022春•诸暨市期末)在我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:由大小两种盛酒的桶,已知五个大桶和一个小桶共可盛酒3斛(斛:古代是一种容量单位),一个大桶和五个小桶共可盛酒2斛,问一个大桶和一个小桶各可以盛酒几斛?若设一个大桶可以盛酒x 斛,一个小桶可盛酒y 斛,根据题意,可列方程组: . 考点9二元一次方程的应用【例9】(2021春•镇海区期中)某校准备组织七年级400名学生参加夏令营,已知用1辆小客车和2辆大客车每次可运送学生110人;用4辆小客车和1辆大客车每次可运送学生125人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车x 辆,大客车y 辆,一次送完,且恰好每辆车都坐满; ①请你设计出所有的租车方案;②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.【变式训练】25.(2021春•北仑区期中)阅读下列材料,解答下面的问题:我们知道方程2x +3y =12有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2x +3y =12,得:y =12−2x3,根据x 、y 为正整数,运用尝试法可以知道方程2x +3y =12的正整数解为{x =3y =2.问题:(1)请你直接写出方程3x ﹣y =6的一组正整数解. (2)若12x−3为自然数,则满足条件的正整数x 的值有 个.A .5B .6C .7D .8(3)2020﹣2021学年七年级某班为了奖励学生学习的进步,购买单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有哪几种购买方案?26.(2020秋•西湖区校级期末)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元. (1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为 元.27.(2021春•越城区期末)今年疫情期间某物流公司计划用两种车型运输救灾物资,已知:用2辆A 型车和1辆B 型车装满物资一次可运10吨;用1辆A 型车和2辆B 型车一次可运11吨.某物流公司现有31吨货物资,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满. (1)1辆A 型车和1辆B 型车都装满物资一次可分别运多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金每次100元,B 型车租金每次120元,请选出最省钱的租车方案,并求出最少租车费.考点10二元一次方程组的应用【例10】(2020春•上虞区期末)确保室内空气新鲜,一方面是提高生活质量的需要,另一方面也是有效防控新型冠状病毒传播的需要,因而越来越多的居民选购家用空气净化器以净化室内空气.阳光商场抓住商机,从厂家购进了A、B两种型号的净化器共160台,A型号净化器进价是1500元/台,B型号净化器进价是3500元/台,购进两种型号净化器共用去360000元(1)求商场各进了A、B两种型号的净化器多少台?(2)为使每台B型号净化器的毛利润是A型号的2倍,且保证售完这160台净化器的毛利润达到110000元,求每台A型号净化器的售价.(注:毛利润=售价﹣进价)【变式训练】28.(2022秋•西湖区期中)某中学准备购进A、B两种教学用具共40件,A种每件价格比B种每件贵6元,同时购进3件A种教学用具和2件B种教学用具恰好用去113元.(1)A和B两种教学用具的单价分别是多少元?(2)学校准备用不超过850元的金额购买A、B两种教学用具,问至多能购买多少件A种教学用具?29.(2022春•鹿城区校级期中)2022年北京冬奥会吉祥物“冰墩墩”和“雪容融”深受大家喜爱,某工厂计划生产两种吉祥物,已知甲车间里的工人每人每天可以制作2个冰墩墩和5个雪容融,乙车间里的工人每人每天可以制作3个冰墩墩和1个雪容融,已知该工厂每天生产的两种吉祥物数量相同.(1)设甲车间有x名工人,乙车间有y名工人.①完成下列表格冰墩墩(个)雪容融(个)甲车间2x乙车间y总计②若该工厂共有60名工人,则甲、乙车间的工人数分别是多少?(2)由于市场需求旺盛,工厂决定从甲车间抽调a名工人去乙车间,使得每天生产的冰墩墩数量等于雪容融的数量,则要抽调的工人数a为.(直接写出答案)30.(2022春•鹿城区校级期中)某单位计划购进A,B,C三种型号的礼品(每种型号至少1件),要求C 型号礼品件数是A型号礼品件数的2倍,三种型号礼品的单价如下表:型号A B C单价(元/件)907075设购进x件A型号礼品,y件B型号礼品.(1)根据信息填表:A B C数量(件)x y费用(元)90x(2)①若购买三种型号的礼品总数为100件,共花费7600元,则三种型号的礼品分别购进多少件?②若购买三种型号的礼品共花费5600元,且A,B两种型号的礼品件数之和超过礼品总数的一半,则三种型号的礼品总数为件(直接写出答案).。
2.5 三元一次方程组及其解法(解析版)
2020-2021学年浙教版七年级下册第2章《二元一次方程组》同步练习【2.5 三元一次方程组及其解法】一、单选题:1.下列方程组中,是三元一次方程组的是( )A. {x +y =0y +z =1z +w =5B. {x +y =0y +2x =1C. {3x +4z =72x +3y =9−z 5x −9y +7z =8D. {x 2−2y =0y +z =3x +y +z =1 【答案】 C【考点】三元一次方程组解法及应用【解析】【解答】解: A.4个未知数,不符合题意;B.2个未知数,不符合题意;C.有三个未知数,每个方程的次数是1,是三元一次方程组,符合题意;D.方程的次数为2,不符合题意;故答案为:C .【分析】利用三元一次方程组的定义判断即可.2.解方程组 {3x −y +2z =32x +y −4z =117x +y −5z =1,若要使计算简便,消元的方法应选取( ) A. 先消去x B. 先消去y C. 先消去z D. 以上说法都不对【答案】 B【考点】三元一次方程组解法及应用【解析】【解答】 y 的系数为1或1,故先消去 y .故B 符合题意.故答案为:B.【分析】经观察发现,3个方程中先消去y ,即可得到一个关于x 、z 的二元一次方程组,再用加减消元法和代入法解方程即可.三元一次方程组的解法,先把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”,把复杂问题转化为简单问题的思想方法.3.已知方程组 {2x −y +z =3①3x +4y −z =8②x +y −2z =−3③,若消去z , 得二元一次方程组不正确的为( )A. {5x +3y =115x −y =3B. {5x +3y =115x +7y =19C. {5x −y =35x +7y =19D. {5x +y =35x +7y =19【答案】 D【考点】三元一次方程组解法及应用【解析】【解答】解:在方程组 {2x −y +z =3①3x +4y −z =8②x +y −2z =−3③中,①+②得 5x +3y =11④ ,①×2+③得 5x −y =3⑤ , ②×2-③得 5x +7y =19⑥ ,所以由④与⑤可以组成A ,由④与⑥可以组成B ,由⑤与⑥可以组成C ,故D 不符合题意.故答案为:D.【分析】利用加减消元法消去z ,把三元一次方程组转化成二元一次方程组.4.如图所示,两个天平都平衡,则三个苹果的重量等于多少个香蕉的重量?答( )个.A. 2B. 3C. 4D. 5【答案】 D【考点】三元一次方程组解法及应用【解析】【解答】解:设一个苹果的重量为x ,一只香蕉的重量为y ,一个三角形的重量为z ,∴2x=5z ,2y=3z ,∴ 2x 5=z =2y 3 ,∴3x=5y ,故答案为:D.【分析】设一个苹果的重量为x ,一只香蕉的重量为y ,一个三角形的重量为z ,利用两个天平建立关于x ,y ,z 的方程组,分别用含x,y 的式子表示出z ,从而可得到x 与y 之间的数量关系.5.三角形的周长为18cm ,第一边与第二边的长度和等于第三边长度的2倍,而它们长度的差等于第三条边长的 13 ,这个三角形的各边长为( ) A. 7、5、8 B. 7、5、6 C. 7、1、9 D. 7、8、4【答案】 B【考点】三元一次方程组解法及应用【解析】【解答】解:设三角形的三边长分别是a 、b 、c 。
七年级下册数学二元一次方程组习题及答案
七年级下册数学二元一次方程组习题及答案8.1 二元一次方程组一、填空题1.当 $x=0,1,2,3$ 时,$y=-3,1,5,9$。
2.在 $x+3y=3$ 中,$y=\dfrac{3-x}{3}$,$x=3-3y$。
3.当 $k=2$ 时,方程为一元一次方程;当 $k=-1$ 时,方程为二元一次方程。
4.当 $x=0$ 时,$y=8$;当 $y=0$ 时,$x=7$。
5.方程 $2x+y=5$ 的正整数解是 $(2,1)$。
6.若 $(4x-3)^2+|2y+1|=0$,则 $x=-\dfrac{5}{4}$。
7.方程组 $\begin{cases}x+y=a\\x=2\end{cases}$ 的一个解为 $(2,a-2)$,那么这个方程组的另一个解是 $(a-2,2)$。
8.若 $\begin{cases}ax-2y=1\\\dfrac{1}{x}-by=2\end{cases}$ 的解互为倒数,则 $a-2b=0$。
二、选择题1.二元一次方程的有 1 个。
答案:A。
2.方程 $2x+y=9$ 在正整数范围内的解有 3 个。
答案:C。
3.与已知二元一次方程 $5x-y=2$ 组成的方程组有无数多个解的方程是 $4x-y=7$。
答案:B。
4.若是 $5x^2y^m$ 与 $4x^{n+m+1}y^{2n-2}$ 同类项,则$m-2n$ 的值为 $-1$。
答案:B。
5.在方程 $(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0$ 中,若此方程为二元一次方程,则 $k$ 值为 $2$。
答案:A。
6.若 $\begin{cases}x=2\\y=-1\end{cases}$ 是二元一次方程组的解,则这个方程组是 $\begin{cases}x-3y=5\\y=x-3\end{cases}$。
答案:B。
7.在方程 $2(x+y)-3(y-x)=3$ 中,用含 $x$ 的代数式表示$y$,则 $y=-\dfrac{5}{2}x+\dfrac{3}{2}$。
七年级数学下册第2章二元一次方程2.5三元一次方程组及其解法练习新版浙教版
2.5 三元一次方程组及其解法(选学)知识点 解三元一次方程组基本思路:用代入法或加减法消去一个未知数,化成二元一次方程组,再解这个二元一次方程组.[点拨] 一般步骤:三元(方程组)――→消元二元(方程组)――→消元一元(方程). 解方程组:⎩⎪⎨⎪⎧x -2y =9,x +y -z =7,2x -3y +z =12.一 方程组中每个方程都是三元一次方程的三元一次方程组的解法教材例1变式题解方程组: ⎩⎪⎨⎪⎧2x +4y -3z =9,3x -2y -4z =8,5x -6y -5z =7.[归纳总结] 当三元一次方程组中的每一个方程都是三元一次方程(即每个方程含三个未知数)时,有两种解法.解法一(代入法):首先选择未知数的系数的绝对值较小的方程,在这个方程中,用其他两个未知数表示这个系数绝对值较小的未知数,然后分别代入另外两个方程,得到一个二元一次方程组,并解之;解法二(加减法):当方程组中相同未知数的系数的绝对值之间存在相等或成整数倍数关系或最小公倍数较小时,就可消去这个未知数,转化为二元一次方程组.二 用特殊的方法解三元一次方程组教材补充题解方程组:(1)⎩⎪⎨⎪⎧x +y =7,y +z =8,z +x =9;(2)⎩⎪⎨⎪⎧x∶y=3∶2,y ∶z =5∶4,x +y +z =66.[反思] 本节学习的数学知识是三元一次方程组的概念及其解法,数学思想是消元思想和转化思想.若x 3=y 4=z 5≠0,则 x +2y +3z 2x=________.一、选择题1.下列方程组中,是三元一次方程组的是( ) A .⎩⎪⎨⎪⎧a =1,b =2,b -c =3 B .⎩⎪⎨⎪⎧x +y =2,y +z =1,z +c =3 C .⎩⎪⎨⎪⎧4x -3y =7,5x -2y =14,2x -y =4 D .⎩⎪⎨⎪⎧xy +z =3,x +yz =5,xz +y =7 2.解为⎩⎪⎨⎪⎧x =1,y =1,z =2的方程组是( )A .⎩⎪⎨⎪⎧x +y +z =4,2x +y -z =1,3x +2y -4z =-3B .⎩⎪⎨⎪⎧x -y -z =0,z +y -x =1,2x +y -2z =5 C .⎩⎪⎨⎪⎧x +y =4,y +z =5,x +z =6 D .⎩⎪⎨⎪⎧2x +3y -z =5,x +y +z =4,x -y +2z =2 3.三元一次方程组⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6的解是( )A .⎩⎪⎨⎪⎧x =1,y =0,z =5B .⎩⎪⎨⎪⎧x =1,y =2,z =4 C .⎩⎪⎨⎪⎧x =1,y =0,z =4 D .⎩⎪⎨⎪⎧x =4,y =1,z =04.解三元一次方程组:⎩⎪⎨⎪⎧a +b -c =1,①a +2b -c =3,②2a -3b +2c =5.③具体过程如下:(1)②-①,得b =2,(2)①×2+③,得4a -2b =7.(3)所以⎩⎪⎨⎪⎧b =2,4a -2b =7.(4)把b =2代入4a -2b =7,得4a -2×2=7(以下求解过程略).其中错误的一步是( )A .(1)B .(2)C .(3)D .(4)5.若x ,y 同时满足下列三个等式:①5x+2y =a ,②3x -2y =7a ,③4x +y =a +1,则a 的值为( )A .-2B .-1C .1D .2 二、填空题6.已知三元一次方程2x -3y +4z =8,用含x ,y 的代数式表示z 是______________.7.若⎩⎪⎨⎪⎧x =-1,y =2,z =1是关于x ,y ,z 的方程3x +2y +mz =0的解,则m =________.8.已知⎩⎪⎨⎪⎧x +y =5,y +z =-2,z +x =3,则x +y +z =________.9.解三元一次方程组⎩⎪⎨⎪⎧x +2y -z =3,2x +y +z =5,3x +4y +z =10时,先消去z ,得二元一次方程组__________,再消去y ,得一元一次方程________,解得 ________,从而得y =________,z =________.三、解答题10.解下列方程组:(1)⎩⎪⎨⎪⎧2x +y -3z =3,3x -y +2z =-1,x -y -z =5;(2)x +3y =y -2z =x +z =5;(3)⎩⎪⎨⎪⎧2x +3y +z =6,x -y +2z =-1,x +2y -z =5.11.若|x -2|+|3x -6y|+(3y +z)2=0,求x +y +z 的值.12.某单位职工在植树节当天去植树,甲、乙、丙三个小组共植树50棵,乙组植树的棵数是甲、丙两组和的14,甲组植树的棵数恰好是乙组和丙组的和,问每组各植树多少棵?13.为确保信息安全,信息需加密传输,发送方由明文―→密文(加密),接收方由密文―→明文(解密).已知加密规则为明文x ,y ,z 对应密文2x +3y ,3x +4y ,3z.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,请你求解密得到的明文.14.若规定⎪⎪⎪⎪⎪⎪ac bd =ad -bc ,如⎪⎪⎪⎪⎪⎪2 -13 0=2×0-3×(-1)=3.解方程组:⎪⎪⎪⎪⎪⎪3y 2x =1,⎪⎪⎪⎪⎪⎪x z -3 5=8, ⎪⎪⎪⎪⎪⎪3 z 6y =-3.[技巧性题目] 已知方程组⎩⎪⎨⎪⎧x +y =3a ,y +z =5a ,z +x =4a 的解使代数式x -2y +3z 的值等于-10,求a 的值.详解详析【预习效果检测】[解析] ⎩⎪⎨⎪⎧x -2y =9,①x +y -z =7,②2x -3y +z =12,③①中缺少未知数z ,解法一:由①得x =2y +9,把x =2y+9分别代入②③,得到一个关于y ,z 的二元一次方程组;解法二:既然①中不含z ,那么在②和③中消去z 后,得到一个关于x ,y 的方程3x -2y =19与①联立,得到一个关于x ,y 的二元一次方程组.解:⎩⎪⎨⎪⎧x -2y =9,①x +y -z =7,②2x -3y +z =12,③解法一:由①,得x =2y +9.④把④分别代入②③,得⎩⎪⎨⎪⎧3y -z =-2,y +z =-6.解这个方程组,得⎩⎪⎨⎪⎧y =-2,z =-4.把y =-2代入④,得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =-2,z =-4.解法二:②+③,得3x -2y =19.④联立①与④,得⎩⎪⎨⎪⎧x -2y =9,3x -2y =19.解这个方程组,得⎩⎪⎨⎪⎧x =5,y =-2.把x =5,y =-2代入②,得5-2-z =7, 所以z =-4.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =-2,z =-4.【重难互动探究】例1 [解析] ⎩⎪⎨⎪⎧2x +4y -3z =9,①3x -2y -4z =8,②5x -6y -5z =7,③解法一(用代入法):方程组中,未知数的系数绝对值较小的方程有①和②.若选用①,则用含y ,z 的式子表示x ,并分别代入②③消去x ,得关于y ,z 的二元一次方程组;若选用②,则用含x ,z 的式子表示y ,并分别代入①③,消去y ,得到关于x ,z 的二元一次方程组,其中选用先消去y 的解法较简单;解法二(用加减法):方程组中,相同未知数的系数绝对值之间存在相等或成整数倍的关系时,可用加减法.如本题可消去y.解:⎩⎪⎨⎪⎧2x +4y -3z =9,①3x -2y -4z =8,②5x -6y -5z =7,③解法一(用代入法):由②, 得-2y =8-3x +4z , y =-4+32x -2z.④把④代入①,得2x +4⎝ ⎛⎭⎪⎫-4+32x -2z -3z =9, 即8x -11z =25.⑤把④代入③,得5x -6⎝ ⎛⎭⎪⎫-4+32x -2z -5z =7, 即-4x +7z =-17.⑥⑤与⑥组成方程组为⎩⎪⎨⎪⎧8x -11z =25,-4x +7z =-17,解这个方程组,得⎩⎪⎨⎪⎧x =-1,z =-3.把x =-1,z =-3代入④,得y =12,所以原方程组的解是⎩⎪⎨⎪⎧x =-1,y =12,z =-3.解法二(用加减法):②×2,得6x -4y -8z =16.④①+④,得8x -11z =25.⑤ ②×(-3),得-9x +6y +12z =-24.⑥③+⑥,得-4x +7z =-17.⑦ 以下解法同解法一,略.例2 [解析] (1)⎩⎪⎨⎪⎧x +y =7,①y +z =8,②z +x =9,③因为三个方程相同未知数的系数之和相等,所以三个方程相加,除以2后,再分别与①②③相减,依次得到z ,x ,y 的值;(2)⎩⎪⎨⎪⎧x∶y=3∶2,①y ∶z =5∶4,②x +y +z =66,③解法一:由比例的性质,将①②分别变形为2x =3y 和4y =5z ;解法二:因为①②中的y 的份数分别为2份、5份,其最小公倍数为10份,所以将①化为x∶y=15∶10,将②化为y∶z=10∶8,则x∶y∶z=15∶10∶8,故可设x =15k ,y =10k ,z =8k(k≠0),然后代入③中,求出k 的值,即可求出x ,y ,z 的值.解: (1)⎩⎪⎨⎪⎧x +y =7,①y +z =8,②z +x =9,③①+②+③,得2x +2y +2z =24,x +y +z =12.④ ④-①,得z =5.④-②,得x =4.④-③,得y =3.所以原方程组的解是⎩⎪⎨⎪⎧x =4,y =3,z =5.(2)⎩⎪⎨⎪⎧x∶y=3∶2,①y ∶z =5∶4,②x +y +z =66,③由①,得x∶y=15∶10, 由②,得y∶z=10∶8, 所以x∶y∶z=15∶10∶8.设x =15k ,y =10k ,z =8k ,并代入③,得 15k +10k +8k =66,所以k =2, 所以x =30,y =20,z =16. 所以原方程组的解是⎩⎪⎨⎪⎧x =30,y =20,z =16.【课堂总结反思】 [反思] 133[解析] 解法一:设x =3k ,y =4k ,z =5k(k≠0),代入 x +2y +3z 2x ,得3k +8k +15k6k =133. 解法二:特值法(仅针对填空、选择题):假设x =3,y =4,z =5,代入求得x +2y +3x2x =133. 【作业高效训练】 [课堂达标] 1.A2.[解析] A 把⎩⎪⎨⎪⎧x =1,y =1,z =2代入四个选项逐一检验.3.[解析] A 把三个方程的两边分别相加,再除以2,得x +y +z =6或将选项逐一代入方程组验证.前一种解法称之为直接法;后一种解法称之为逆推验证法.4.[解析] B ①×2+③,得4a -b =7.⑤ 故(2)错,选择B . 5.C6.[答案] z =2-12x +34y[解析] 4z =8-2x +3y ,z =2-12x +34y.7.[答案] -1[解析] 把⎩⎪⎨⎪⎧x =-1,y =2,z =1代入方程,得3×(-1)+2×2+m·1=0,得m =-1.8.[答案] 3[解析] 三个方程相加得2x +2y +2z =6,所以x +y +z =3.9.[答案] (答案不唯一)⎩⎪⎨⎪⎧3x +3y =8,x +3y =5 2x =3x =32 76 5610.[解析] 利用加减法消掉一个未知数,将三元一次方程组转化为二元一次方程组,再进行解答.解:(1)⎩⎪⎨⎪⎧2x +y -3z =3,①3x -y +2z =-1,②x -y -z =5,③由①+③,得3x -4x =8.④由②-③,得2x +3z =-6.⑤联立④⑤,得⎩⎪⎨⎪⎧3x -4z =8,④2x +3z =-6,⑤解得⎩⎪⎨⎪⎧x =0,z =-2.把x =0,z =-2代入③,得y =-3. 所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =-3,z =-2.(2)依题意,得⎩⎪⎨⎪⎧x +3y =5,y -2z =5,x +z =5,①②③②+③×2,得2x +y =15.④由①④组成方程组,得⎩⎪⎨⎪⎧x +3y =5,2x +y =15,解得⎩⎪⎨⎪⎧x =8,y =-1.把x =8代入③,得z =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =8,y =-1,z =-3.(3)⎩⎪⎨⎪⎧2x +3y +z =6,①x -y +2z =-1,②x +2y -z =5,③③+①,得3x +5y =11.④③×2+②,得3x +3y =9.⑤④-⑤,得2y =2,y =1.将y =1代入⑤,得3x =6,x =2.将x =2,y =1代入①,得z =-1.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =1,z =-1.11.解:由题意,得⎩⎪⎨⎪⎧x -2=0,3x -6y =0,3y +z =0,解得⎩⎪⎨⎪⎧x =2,y =1,z =-3,所以x +y +z =2+1+(-3)=0.12.解:设甲、乙、丙三个小组分别植树x 棵、y 棵和z 棵.根据题意,得⎩⎪⎨⎪⎧x +y +z =50,14()x +z =y ,x =y +z ,解得⎩⎪⎨⎪⎧x =25,y =10,z =15.答:甲、乙、丙三个小组各植树25棵、10棵和15棵.13.解:依题意,得⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17,3z =27, 解得⎩⎪⎨⎪⎧x =3,y =2,z =9.答:解密得到的明文是3,2,9.14.解:根据规定得⎪⎪⎪⎪⎪⎪3 y 2 x =3x -2y =1,⎪⎪⎪⎪⎪⎪x z -3 5=5x +3z =8,⎪⎪⎪⎪⎪⎪3 z 6y =3y -6z =-3.所以⎩⎪⎨⎪⎧3x -2y =1,①5x +3z =8,②3y -6z =-3,③②×2+③,得10x +3y =13.④①与④组成二元一次方程组为⎩⎪⎨⎪⎧3x -2y =1,10x +3y =13, 解得⎩⎪⎨⎪⎧x =1,y =1.把y =1代入③,得z =1, 所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =1,z =1.[数学活动]解:⎩⎪⎨⎪⎧x +y =3a ,①y +z =5a ,②z +x =4a ,③解法1:②-①,得z -x =2a.④③+④,得2z =6a ,z =3a.把z =3a 分别代入②和③,得y =2a ,x =a.∴⎩⎪⎨⎪⎧x =a ,y =2a ,z =3a.将其代入x -2y +3z =-10,得a -2×2a+3×3a=-10,解得a =-53. 解法2(技巧解法):①+②+③,得2(x +y +z)=12a ,即x +y +z =6a.⑤⑤-①,得z =3a ;⑤-②,得x =a ;⑤-③,得y =2a.∴⎩⎪⎨⎪⎧x =a ,y =2a ,z =3a.以下同解法1.。
人教版七年级数学下册:三元一次方程组的解法【精品课件】
设x=15a,则y=10a,z=8a,
x 30
代入③得a=2,
y
20,
z 16.
拓广探索
5. 在等式y=ax2+bx+c中,当x=1时,y=-2;当x=-1时,
y=20;当 x 3 与 x 1 时,y的值相等,求a、b、
c的值.
2
3
解:根据题意,得三元一次方程组
a b c 2,
a 6,
z 10.
∴甲数是10,乙数是15,丙数是10.
误区 两次消去的未知数不同,导致解方程无法进行
x y 2z 15,
①
解方程组
x
2
y
z
3,
②
2x 3 y z 0.
③
错 解 ②-①,得 y-3z=-12.
④
③+②,得 3x-y=3.
⑤
④和⑤组成的还是三元一次方程组,不能往下解了.
正 解 ②-①,得 y-3z=-12.
问 你能类比二元一次方程组的解法来求解吗?
解答
x y z 12,
①
x 2 y 5z 22,
②
x 4 y.
③
将③代入①②,得
4 y y z 12, 4 y 2 y 5z 22.
即
5y 6y
z 12, 5z 22.
问 为什么要用③代入,而不用①②代入?
思考 解三元一次方程组的基本思路是什么? 通过“代入”或“加减”进行消元,把
把 x=2, y=3代入③得 z=1.
x 2,
∴原方程的解是
y
3,
z 1.
2. 甲、乙、丙三个数的和是 35,甲数的 2 倍比
乙数大
5,乙数的
七年级数学下册第2章二元一次方程组2
12 某服装厂专门安排210名工人进行手工衬衣的缝制,每 件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人 每天能够缝制衣袖10个,或衣身15个,或衣领12个, 那么应该安排多少名工人缝制衣袖,多少名工人缝制 衣身,多少名工人缝制衣领,才能使每天缝制出的衣 袖、衣身、衣领正好配套?
所以三元一次方程组的解为yx==3530,, z=-12.
所以三个“○”里的数之和为 71,三个“○”里应填入的
数按先上后下,先左后右的顺序依次为 50,33,-12.
14 阅读理解:已知实数 x,y 满足32xx-+y3=y=5①7②,,求 x-4y 和 7x+5y 的值.仔细观察两个方程未知数的系数之间的 关系,本题可以通过适当变形整体求得代数式的值,如 由①-②可得 x-4y=-2,由①+②×2 可得 7x+5y=19. 这样的解题思想就是通常所说的“整体思想”.利用“整体 思想”,解决下列问题:
x=-152, 所以原方程组的解为y=-2,
z=153.
【点拨】 解三元一次方程组时,通常需在某些方程两边
同乘某常数,以便于消去同一未知数;在变形过 程中,易漏乘常数项而出现方程①变形为4x+2y+ 6z=1的错误.
9 已知x-2y+z=2x-y+z=3,且x,y,z的值中仅有一
个为0,解这个方程组. 解:原式化为x2-x-2yy++zz==33,,①② ②-①,得 x+y=0. ∵x,y,z 的值中仅有一个为 0,∴z=0. 由xx+-y2=y=0,3,解得xy==-1,1.∴原方程组的解为xyz===0-1.,1,
2x+y+3z=1,① 8 解方程组3x-2y+2z=2,②
新版北师大初中数学教材目录
新版北师大初中数学教材目录七年级上册第一章丰富的图形世界1.生活中的立体图形 2.展开与折叠3.截一个几何体 4.从三个不同方向看物体的形状第二章有理数及其运算1.有理数 2.数轴 3.绝对值4.有理数的加法 5.有理数的减法6.有理数的加减混合运算 7.有理数的乘法8.有理数的除法 9.有理数的乘方 10.科学计数法11.有理数的混合运算 12.用计算器进行运算第三章整式及其加减1.字母表示数 2.代数式 3.整式4.整式的加减 5.探索与表达规律第四章基本平面图形1.线段、射线、直线 2.比较线段的长短3.角 4.角的比较 5.多边形和圆的初步认识第五章一元一次方程1.认识一元一次方程 2.求解一元一次方程3.应用一元一次方程——水箱变高了4.应用一元一次方程——打折销售5.应用一元一次方程——“希望工程”义演6.应用一元一次方程——追赶小明第六章数据的收集与整理1.数据的收集 2.普查和抽样调查3.数据的表示 4.统计图的选择七年级下册第一章整式的乘除1.同底数幂的乘法 2.幂的乘方与积的乘方3.同底数幂的除法 4.整式的乘法5.平方差公式 6.完全平方公式 7.整式的除法第二章相交线与平行线1.两条直线的位置关系 2.探索直线平行的条件3.平行线的性质 4.用尺规作角第三章三角形1.认识三角形 2.图形的全等 3.探索三角形全等的条件4.用尺规作三角形 5.利用三角形全等测距离第四章变量之间的关系1.用表格表示的变量间关系 2.用关系式表示的变量间关系3.用图像表示的变量间关系第五章生活中的轴对称1.轴对称现象 2.探索轴对称的性质3.简单轴对称图形 4.利用轴对称进行设计第六章频率与概率1.感受可能性 2.频率的稳定性 3.等可能事件的概率八年级上册第一章勾股定理1.探索勾股定理 2.一定是直角三角形吗 3.勾股定理的应用第二章实数1.认识无理数 2.平方根 3.立方根 4.估算5.用计算器开方 6.实数 7.二次根式第三章位置与坐标1.确定位置 2.平面直角坐标系 3.轴对称与坐标变化第四章一次函数1.函数 2.一次函数与正比例函数 3.一次函数的图象4.一次函数的应用第五章二元一次方程组1.认识二元一次方程组 2.求解二元一次方程组3.应用二元一次方程组——鸡兔同笼4.应用二元一次方程组——增收节支5.应用二元一次方程组——里程碑上的数6.二元一次方程与一次函数7.用二元一次方程组确定一次函数表达式8.三元一次方程组第六章数据的分析1.平均数 2.中位数与众数3.从统计图分析数据的集中趋势 4.数据的离散程度第七章平行线的证明1.为什么要证明 2.定义与命题 3.平行线的判定4.平行线的性质 5.三角形内角和定理八年级下册第一章证明(二)1.等腰三角形 2.直角三角形 3.线段的垂直平分线 4.角平分线第二章一元一次不等式和一元一次不等式组1.不等关系 2.不等式的基本性质3.不等式的解集 4.一元一次不等式5.一元一次不等式与一次函数 6.一元一次不等式组第三章图形的平移与旋转1.图形的平移 2.图形的旋转 3.中心对称 4.简单的图案设计第四章因式分解1.因式分解 2.提公因式法 3.运用公式法第五章分式1.认识分式 2.分式的乘除法 3.分式的加减法 4.分式方程第六章平行四边形1.平行四边形的性质 2.平行四边形的判别3.三角形的中位线 4.多边形的内角和与外角和九年级上册第一章特殊的平行四边形1.菱形的性质与判定 2.矩形的性质与判定 3.正方形的的性质与判定第二章一元二次方程1.认识一元二次方程 2.配方法 3.公式法4.因式分解法 5.一元二次方程的应用第三章相似图形1.成比例线段 2.平行线分线段成比例 3.相似多边形4.相似三角形的判定 5.黄金分割 6.测量旗杆的高度7.相似三角形的性质 8.图形的放大与缩小第四章视图与投影1.投影 2.视图第五章反比例函数1.反比例函数 2.反比例函数的图象与性质 3.反比例函数的应用第六章对概率的进一步研究1.游戏公平吗 2.投针试验 3.生日相同的概率九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起 2.特殊角的三角函数值3.三角函数的有关计算 4.船有触礁的危险吗 5.测量物体的高度第二章二次函数1.二次函数所描述的关系 2.二次函数的图像与性质 3.确定二次函数的表达式4.最大面积是多少 5.何时获得最大利润 6.二次函数与一元二次方程第三章圆1.圆 2.圆的对称性 3.垂径定理 4.圆周角与圆心角的关系5.确定圆的条件 6.直线和圆的位置关系 7.切线长定理8.圆内接正多边形 9.弧长及扇形的面积第四章统计与概率1.视力的变化 2.生活中的概率 3.统计与概率的应用。
新七年级数学下册第二学期 二元一次方程组试题及答案
y
2
,则
a,b
的值分别为(
)
a 2 A. b 5
a 5 B. b 2
a 3 C. b 5
a 5 D. b 3
x 1,
ax by 1,
9.如果{ 是二元一次方程组{
的解,那么关于
m 的方程
a2m+2
016
b =2
y2
bx ay 2
017 的解为( )
A.-1 B.1 C.0 D.-2
,则方程组
33aa12xx
2b1y 7c1 2b2 y 7c2
的解是(
)
x 21
A.
y
28
x 9
B.
y
8
x 7
C.
y
14
D.
x y
9 7 8
7
8.甲、乙两人同求方程
ax-by=7
的整数解,甲正确地求出一个解为
x
y
1 1
,乙把
ax-
x 1
by=7
看成
ax-by=1,求得一个解为
代入方程
2x
ky
7
,通过计算即可得到答案.
【详解】
x 4
∵
y
5
是方程
2x
ky
7
的解
∴把
x
y
4 5
代入方程
2x
ky
7
,得:
24 k 5 7
∴ k 3
故选:C. 【点睛】 本题考查了二元一次方程和一元一次方程的知识;求解的关键是熟练掌握二元一次方程和 一元一次方程的性质,从而完成求解.
5.D
18.已知 a1 、 a2 、 a3 、…、 an 是从 1 或 0 中取值的一列数(1 和 0 都至少有一个),若
浙教版七年级数学下册第二章《二元一次方程组》常考题(解析版)
浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。
浙教版2022-2023学年数学七年级下册第2章二元一次方程组2
浙教版2022-2023学年数学七年级下册第2章 二元一次方程组(解析版)2.5三元一次方程组及其解法(选学)【知识重点】 1.三元一次方程含有三个未知数,且含有未知数的项的次数都是一次的方程叫做三元一次方程. 2.三元一次方程组概念由三个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 3.三元一次方程组的解同时满足三元一次方程组中各个方程的解,叫做这个三元一次方程组的解. 4.解三元一次方程组基本步骤为解三元一次方程组的消元方法也是“代入法”或“加减法”,通过消元使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程. 【经典例题】【例1】解方程组{2x −3y +4z =12x −y +3z =44x +y −3z =−2【答案】解:{2x −3y +4z =12(1)x −y +3z =4(2)4x +y −3z =−2(3)(2)+(3)得: 5x=2,∴x=25,由(2)得: y=x+3z-4 (4),将(4)代入(1)得: 2x-3(x+3z-4 )+4z=12,解得:z=-225,将x=25,z=-225代入(4)得:y=-9625, ∴原方程组的解为:{x =25y =−9625z =−225.【解析】观察方程组中同一个未知数的系数特点:方程②③中y ,z 的系数都互为相反数,因此由(2)+(3)消去y ,z 可求出x 的值;然后求出y ,z 的值,即可得到方程组的解.【例2】解方程组 {2x +y +z =−7①x +2y +z =−8②x +y +2z =−9③【答案】解:{2x +y +z =−7①x +2y +z =−8②x +y +2z =−9③由①+②+③得:4x+4y+4z=-24; x+y+z=-6④由①-④得:x=-1; 由②-④得:y=-2由③-④得:z=-3∴原方程组的解为:{x =−1y =−2z =−3.【解析】观察方程组中同一个未知数的系数和特点:①②③相加之后,x 、y 、z 的系数和相等,从而可以得出x+y+z 的值。
七年级数学 第2章 二元一次方程 2.5 三元一次方程组及其解法 数学
⑤与⑥组成方程组为8-x4-x1+17zz==25-,17,解这个方程组,得xz==--13,.
x=-1,
把 x=-1,z=-3 代入④,得 y=12,所以原方程组的解是y=12,
12/6/2021
z=-3.
2.5 三元一次方程组及其解法(选学)
解法二(用加减法):②×2, 得 6x-4y-8z=16.④ ①+④,得 8x-11z=25.⑤ ②×(-3),得 -9x+6y+12z=-24.⑥ ③+⑥,得-4x+7z=-17.⑦ 以下解法同解法一,略.
消元思想和转化思想.若x3=y4=5z≠0,则 x+22xy+3z=___1_33____.
x+2y+3z
[解析] 解法一:设 x=3k,y=4k,z=5k(k≠0),代入
2x
,
得3k+86kk+15k=133.
解法二:特值法(仅针对填空、选择题):假设 x=3,y=4,z=5,代
入求得x+22yx+3x=133.
类型二 三元一次方程组的简单应用
例 2 教材补充例题 一个三位数各个数位上的数字之和是 17,百 位数字与十位数字的和比个位数字大 3,如果把个位数字与百位数字 的位置对调,那么所得的三位数比原数大 495,求原来的三位数.
12/6/2021
2.5 三元一次方程组及其解法(选学)
解:设原来的三位数的百位数字为 x,十位数字为 y,个位数字为 z.根据题意,得 x+y+z=17, x+y-z=3, (100z+10y+x)-(100x+10y+z)=495, 解得xy= =28, ,
12/6/2021
2.5 三元一次方程组及其解法(选学)
【归纳总结】解三元一次方程组的基本思路和一般步骤 基本思路:用代入法或加减法消去一个未知数,化成二元一次方程 组,再解这个二元一次方程组. 一般步骤:三元(方程组)―消―元→二元(方程组)―消―元→一元(方程).
2.5 三元一次方程组及其解法(分层练习)(原卷版)
第2章 二元一次方程组2.5 三元一次方程组及其解法精选练习1.(2022秋·陕西西安·八年级校考阶段练习)有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件,共需64元;若购甲4件、乙10件、丙1件,共需79元;现购甲、乙、丙各一件,共需( )元A .33B .34C .35D .362.(2023秋·安徽池州·七年级统考期末)一个三位数,各个数位上数字之和为10,百位数字比十位数字大1.如果百位数字与个位数字对调,则所得新数比原数的3倍还大61,那么原来的三位数是( )A .325B .217C .433D .5413.(2022秋·河北邢台·七年级校考期末)设“■▲●”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,则“?”处应该放“●”( )A .1个B .2个C .3个D .4个4.(2022秋·全国·八年级专题练习)某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称( )A .7次B .6次C .5次D .4次5.(2022春·重庆黔江·七年级统考期末)有铅笔、作业本、签字笔三种学习用品.若购铅笔3支,作业本7本,签字笔1支共需20.5元;若购铅笔4支,作业本8本,签字笔2支共需25元,那么,购铅笔、作业本、签字笔各1件共需( )A .2.5元B .3元C .3.5元D .4.5元6.(2023春·七年级课时练习)解三元一次方程组0321020x y z x y z x y z ++=ìï++=íï-+=î①②③,如果消掉未知数z ,则应对方程组变形为( )A .① +③ ,① ×2﹣②B .① +③ ,③ ×2+②C .②﹣① ,②﹣③D .①﹣② ,① ×2﹣③7.(2023春·浙江·七年级专题练习)根据舟山市政府疫情防控要求,所有进入舟山车辆要在金塘服务区下高速,接受防疫检查.已知金塘收费站出口有编号为①,②,③,④,⑤的五个收费出口,假定各收费出口每小时通过的车流量是不变的,同时开放其中两个收费出口,统计这两个出口1小时一共通过的汽车的数量记录如下收费出口编号①,②②,③③,④④,⑤⑤,①通过汽车数量(辆)8010070130120则下列说法错误的是:( )A .①出口1小时通过汽车的数量最少;B .⑤出口1小时通过汽车的数量最多;C .②出口1小时通过汽车的数量是④出口的两倍:D .①和④出口1小时通过汽车的数量之和等于③出口1小时通过的汽车数量.8.(2022春·湖北武汉·七年级统考期末)某商家将蓝牙耳机、多接口优盘、迷你音箱搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中有2蓝牙耳机,4个多接口优盘,2个迷你音箱;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒成本为145元,B 盒成本为200元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为( )A .150元B .155元C .165元D .170元9.(2023秋·山东枣庄·八年级校考期末)若24629x y z x y z ++=ìí+-=î,那么代数式x y z ++=______.10.(2022秋·山东青岛·八年级统考期末)若三元一次方程组512x y x z y z +=ìï+=-íï+=-î的解使20ax y z +-=,则a 的值是__________.11.(2023秋·重庆·七年级校考期末)在春节来临之际,京东商城推出A 、B 、C 三种礼盒,如果购买A 礼盒3盒、B 礼盒2盒和C 礼盒2盒,则需付人民币2200元;如果购买A 礼盒4盒、B 礼盒3盒和C 礼盒5盒,则需付人民币3150元;李老板预计购买A 礼盒5盒、B 礼盒4盒和C 礼盒8盒送亲戚朋友,则共需付人民币_______元.12.(2023春·七年级课时练习)若3x y +=,1x y -=和20x my -=有公共解,则m 的值是___________13.(2022秋·重庆·七年级重庆实验外国语学校校考期中)在2022年的世界环境保护日的知识竞赛中,A 校6人获一等奖,5人获二等奖,7人获三等奖,所获得奖品价值为1130元;B 校获一等奖的人数比A 校获二等奖的人数多60%,9人获二等奖,11人获三等奖,所获得的奖品价值为1730元;C 校7人获一等奖,10人获二等奖,10人获三等奖;D 校5人获一等奖,7人获二等奖,9人获三等奖.则C 校和D 校所获得的奖品价值之和为______元.14.(2022春·重庆·八年级重庆一中校考阶段练习)“清明时节雨纷纷”,今年的4月5日是我国的传统祭祖节日一清明节,某鲜花电商特推出A 、B 、C 三种祭祀花束.三月份最后一周销售A 、B 、C 三种祭祀花束的数量之比为4:3:2,A 、B 、C 三种祭祀花束的单价之比为2:1:3.四月初该鲜花电商加大了宣传力度,并对三种鲜花的价格作了适当的词整,预计四月份第一周三种鲜花的销售总额将比三月份最后一周有所增加.其中A 鲜花增加的销售额占四月份第一周销售总额的110,B 、C 鲜花增加的销售额之比为3:1.四月份第一周A 鲜花单价提高20%,B 鲜花打九折,且四月份第一周A 鲜花的销售额与C 鲜花的销售额之比为8:9,则四月份第一周预计的A 花的销售数量与B 鲜花的销售数量之比为______.15.(2021春·海南海口·七年级校考期中)解方程或方程组:(1)()()5310241x x --=+. (2)321538x y x y +=ìí-=î. (3)12320x y z x y z x y z ++=ìï--=íï-+=î.16.(2022秋·八年级课时练习)探索创新完成下面的探索过程:给定方程组111112115x y y zz xì+=ïïï+=íïï+=ïî,如果令1x =A ,1y =B ,1z =C ,则方程组变成______;解出这个新方程组(要求写出解新方程组的过程),得出A ,B ,C 的值,从而得到:x = ______;y =______;z = ______.17.(2022秋·八年级课时练习)已知y=ax2+bx+c.当x=3时,y=0;当x=-1时,y=0;当x=0,y=3;求a、b、c的值18.(2023春·全国·七年级专题练习)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员小丽小华月销售件数(件)200150月总收入(元)14001250假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)如果在商场购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需多少元?19.(2021秋·全国·八年级专题练习)现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?20.(2021春·浙江杭州·七年级校考期中)阅读理解:已知实数x ,y 可满足35x y -=……①,237x y +=……②,求4x y -和75x y +值,仔细观察未知数系数之间的关系,如由①-②可得42x y -=-,由2+´①②可得7519x y +=.这就是通常说的“整体思想”.尝试利用“整体思想”,解决下列问题:(1)已知二元一次方程组28210x y x y +=ìí+=î,则x y -=___________,x y +=___________;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是实数运算.已知3515*=,4728*=,求11*的值.1.(2022·浙江·九年级自主招生)现有A ,B ,C 三种型号的纸片若干张,大小如图所示.从中取出一些纸片进行无空隙、无重叠拼接,拼成一个长宽分别为11和5的新矩形,在各种拼法中,B 型纸片最多用了( )张.A .5B .6C .7D .前三个答案都不对2.(2022秋·全国·八年级专题练习)三角形幻方是锻炼思维的有趣数学问题,例:把数字1、2、3、…、9分别填入如图所示的9个圆圈内,要求ABC V 和DEF V 的每条边上三个圆圈内数字之和都等于18,则x y z ++的和是( )A .6B .15C .18D .243.(2022秋·全国·八年级专题练习)《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如,对于方程组323923342326x y z x y z x y z ++=ìï++=íï++=î,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )32139321393213923134693102...05112326.. (0839)ab ®®®®®A .24,4B .17,4C .24,0D .17,04.(2022秋·广东梅州·八年级校考阶段练习)若 1m ,2m ,2016m L 是从 0,1,2这三个数中取值的一列数,且 1220161546m m m +++=L ,()()()2221220161111510m m m -+-++-=L ,则在 1m ,2m ,2016m L 中,取值为 2 的个数为 ( )A .505B .510C .520D .5505.(2023秋·江苏苏州·七年级校考阶段练习)将下表从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填整数之和都相等,则第2022个格子中的数字是( )3a b c 1-02…A .3B .2C .0D .1-6.(2023春·浙江·七年级专题练习)已知123x y z =ìï=íï=î是方程组237ax by by cz cx az +=ìï+=íï+=î的解,则a b c ++的值为( )A .3B .2C .1D .07.(2022秋·全国·八年级专题练习)我们探究得方程2x y +=的正整数解只有1组,方程3x y +=的正整数解只有2组,方程4x y +=的正整数解只有3组,……,那么方程9x y z ++=的正整数解的组数是( )A .27B .28C .29D .308.(2022春·四川自贡·七年级四川省荣县中学校校考期中)对于实数x ,y 定义新运算:x y ax by c Ä=++,其中a ,b ,c 均为常数,且已知3515Ä=,4728Ä=,则23Ä的值为( )A .2B .4C .6D .89.(2021·浙江·九年级自主招生)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支、练习本7本、圆珠笔1支共需6.3元;若购铅笔4支、练习本10本、圆珠笔1支共需8.4元,现购铅笔、圆珠笔各1支、练习本1本,共需_________元.10.(2022秋·重庆沙坪坝·八年级重庆八中校考期中)甲乙两个同学参加数学比赛,共有选择题、填空题、解答题三种题型.每种题型都不超过10个题,选择题每题3分,填空题每题5分,解答题每题8分,每题除全对外其他情况都不得分,两个同学选择题做对的道数相同,乙做对的填空题比甲做对的填空题至少多2道,甲、乙两个同学每个题型均有做对的题,甲一共得了70分,乙一共得了83分,则两个同学做对的解答题共为________道.11.(2023春·七年级课时练习)有甲、乙、丙三种商品,买甲3件,乙7件,丙1件,共需32元,买甲4件,乙10件,丙1件,共需43元,则甲、乙、丙各买1件需________元钱?12.(2022秋·八年级课时练习)已知x 、y 、z 满足2303140x y z x y z --=ìí+-=î且xyz ≠0,则x :y :z =_________.13.(2022·重庆永川·统考一模)某中学科技节颁奖仪式隆重举行,其中小科技创新发明奖共有60人获奖,原计划特等奖5人,一等奖15人,二等奖40人.后来经校领导开会研究决定,在该项奖励总奖金不变的情况下,各等级获奖人数实际调整为:特等奖8人,一等奖18人,二等奖34人,调整后特等奖每人奖金降低40元,一等奖每人奖金降低20元,二等奖每人奖金降低10元,调整前一等奖每人奖金比二等奖每人奖金多70元,则调整后特等奖每人奖金比一等奖每人奖金多_______元.14.(2022秋·重庆万州·九年级重庆市万州第二高级中学校考期末)秋季泡脚,睡前养生,9月份某商场从工厂进货了中药包、精油球和足浴液这三种类型的泡脚材料,数量之比为5:4:2,中药包与精油球单价之比为1:3,足浴液的单价是精油球的2倍,由于天气骤冷,足浴液销售火爆,10月份工厂对这三种泡脚材料的价格进行了调整,该商场也相应调整了进货量,相较于9月,商场采购中药包增加的费用占10月所有泡脚材料采购费用的110且10月采购中药包与精油球的总费用之比为3:7,采购精油球、足浴液增加的费用之比为15:29,则精油球9月份与10月份的采购总费用之比为________.15.(2022春·上海闵行·六年级校考期末)解方程组:231x yz xy z-=ìï-=íï+=-î①②③.16.(2022秋·陕西西安·八年级西安市第二十六中学校考阶段练习)解方程组(1)523849x yx y+=-ìí-=î(2)1232317x yx yì-=ïíï+=î(3)232523x y zx y zx y z+-=ìï-+=íï+-=î17.(2023春·全国·七年级专题练习)在等式2y ax bx c =++中,当1x =时,=2y -;当=1x -时,20y =;当32x =与13x =时,y 的值相等,求23a b c -+的值.18.(2023春·七年级单元测试)在求代数式的值时,可以用整体求值的方法,化难为易.例:已知32475310x y z x y z ++=ìí++=î①②,求x y z ++的值.解:①2´得:6428x y z ++=③②-③得:2x y z ++=∴x y z ++的值为2.(1)已知231056726x y z x y z ++=ìí++=î,求345x y z ++的值;(2)马上期中了,班委准备把本学期卖废品的钱给同学们买期中奖品,根据商店的价格,购买40本笔记本、20支签字笔、4支记号笔需要488元.通过还价,班委购买了80本笔记本、40支签字笔、8支记号笔,只花了732元,请问比原价购买节省了多少钱?19.(2022·河南洛阳·统考二模)已知实数x ,y 满足327x y -=①,39x y +=②,求25x y -和54x y +的值.本题常规的解题思路是将①②两式联立组成方程组,解得x ,y 的值.再代入欲求值的代数式得到答案,常规思路运算量较大.其实,仔细观察两个方程未知数x ,y 的系数与所求代数式中x ,y 的系数之间的关系,本题还可以通过适当的变形整体求得代数式的值.由①-②得:252x y -=-,由①+②2´得5425x y +=,这样的解题思想就是通常所说的“整体思想”.问题解决:(1)已知二元一次方程组2629x y x y +=ìí+=î,则x y +值为 ,x y -的值为 .(2)某班组织活动购买奖品,买20支铅笔、3块橡皮、2本日记本共需32元;买39支铅笔、5块橡皮、3本日记本共需58元.则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:*x y ax by c =++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,则1*1的值为 .20.(2021秋·福建三明·八年级统考期末)有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题∶已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②2´可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题∶(1)已知二元一次方程组327233x y x y +=ìí+=î则x y -=______,x y +=______.(2)某班级组织活动购买小奖品,买13支铅笔、5块橡皮、2本日记本共需31元,买25支铅笔、9块橡皮、3本日记本共需55元,则购买3支铅笔、3块橡皮、3本日记本共需多少元?(3)对于实数x 、y ,定义新运算∶x y ax b c *=++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3516*=,2312*=,那么59*=______.。
三元一次方程组的解法及技巧解析
三元一次方程组的解法及技巧解析初中阶段是我们一生中学习的“黄金时期”。
不光愉快的过新学期,也要面对一件重要的事情那就是学习。
优立方数学为大家提供了三元一次方程组的解法知识点,希望对大家有所帮助。
1.三元一次方程的概念三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+c=0等都是三元一次方程.2.三元一次方程组的概念一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.例如,等都是三元一次方程组.三元一次方程组的一般形式是:3.三元一次方程组的解法(1)解三元一次方程组的基本思想解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.(2)怎样解三元一次方程组?解三元一次方程组例题解方程组法一:代入法分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解.解:由(2),得x=y+1.(4)将(4)分别代入(1)、(3)得解这个方程组,得把y=9代入(4),得x=10.因此,方程组的解是法二:加减法解:(3)-(1),得x-2y=-8(4)由(2),(4)组成方程组解这个方程组,得把x=10,y=9代入(1)中,得z=7.因此,方程组的解是法三:技巧法分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y值后再代回,即可得到关于x、y的二元一次方程组解:由(1)+(2)-(3),得y=9.把y=9代入(2),得x=10.把x=10,y=9代入(1),得z=7.因此,方程组的解是注意:(1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出.(2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确。
七年级初一数学下册第二学期 二元一次方程组试卷及答案
七年级初一数学下册第二学期 二元一次方程组试卷及答案一、选择题1.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =-2.下列判断中,正确的是( ) A .方程x y =不是二元一次方程B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解3.已知关于x ,y 的方程组72x my mx y m +=⎧⎨-=+⎩①②,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m 每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为( )A .54x y =⎧⎨=-⎩B .14x y =⎧⎨=-⎩C .41x y =⎧⎨=-⎩D .-54x y =⎧⎨=⎩4.已知22x y =-⎧⎨=⎩是方程kx +2y =﹣2的解,则k 的值为( )A .﹣3B .3C .5D .﹣55.中国象棋是中华民族的文化瑰宝,也是怡神益智的一种有益身心的活动,源远流长,趣味浓厚,千百年来长盛不衰.甲、乙制定比赛规定:胜一局得4分,平一局得1分,负一局得0分,甲共进行了9局比赛,得了12分,则甲获胜的可能种数有( ) A .2B .3C .4D .56.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A .(4,44)B .(5,44)C . (44,4)D . (44,5)7.12312342345345145125x x x a x x x a x x x a x x x ax x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>8.《九章算术》是我国东汉初年编订的一部数学经典著作。