安徽省安庆四中九年级数学上学期期中试题(含解析) 沪科版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省安庆四中2015-2016学年九年级数学上学期期中试题
一、选择题(本大题共10小题,每小题4分,共计40分)
1.下列各式中,y是x的二次函数的是()
A.y=B.y=x2+x﹣2 C.y=2x+1 D.y2=x2+3x
2.如图,直角三角形ABO的面积为2,反比例函数y=过点A,则k的值是()
A.2 B.﹣2 C.4 D.﹣4
3.如图,在△ABC中,DE∥BC, =,则下列结论中正确的是()
A. =B. =
C. = D. =
4.下列函数中,在x>0时,y随x增大而减小的是()
A.y=2x﹣1 B.y=﹣x2+7x+
C.y=﹣D.y=
5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()
A.B.C.
D.
6.如图,下列条件不能判定△ADB∽△ABC的是()
A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=ADAC D. =
7.下列说法错误的是()
A.抛物线y=2x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为y=2x2﹣8x+7
B.方程﹣x2+bx+c=0无实数根,则二次函数y=﹣x2+bx+c的图象一定在x轴下方
C.将长度为1m的木条黄金分割,较短的一段木条长为m
D.两个等腰直角三角形一定相似
8.一个函数的图象如图,给出以下结论:
①当x=0时,函数值最大;
②当0<x<2时,函数y随x的增大而减小;
③存在0<x0<1,当x=x0时,函数值为0.
其中正确的结论是()
A.①②B.①③C.②③D.①②③
9.如图,已知正方形ABCD边长为6,将其折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是()
A.15 B.12 C.8 D.6
10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()
A.B.C.D.
二、填空题(本大题共4小题,每小题5分,共计20分)
11.已知:x:y:z=2:3:4,则的值为.
12.某厂家1月份的利润是25万元,3月份的利润达到30.25万元,这两个月的利润月增长率相同,则这个增长率为.
13.如图,在△ABC中,5AB=6AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD 于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值
为.
14.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:
①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB 为等腰三角形的a值可以有四个.
其中正确的结论是.(只填序号)
三、(本大题共2小题,每小题8分,共计16分)
15.如图,矩形ABCD中,AB=6,BC=4.
(1)画出以矩形的两条对称轴为坐标轴(x轴平行于AB)的平面直角坐标系,并写出点A,BC的中点E,DC的中点F的坐标;
(2)求过点A,E,F三点的抛物线的解析式,并写出此抛物线的顶点坐标.
16.将抛物线y=x2平移,使其在x=t时取最值t2,并且经过点(1,1),求平移后抛物线对应的函数表达式.
四、(本大题共2小题,每小题8分,共计16分)
17.如图,已知△ABC中CE⊥AB于E,BF⊥AC于F,
(1)求证:△AFE∽△ABC;
(2)若∠A=60°时,求△AFE与△ABC面积之比.
18.如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD 的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB上的一个强相似点E.
五、(本大题共2小题,每小题10分,共计20分)
19.某商场新进一批商品,进价为20元/件,现在的售价为30元/件,每周可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于35元),那么每周少卖10件.设每件涨价x元(x为自然数),每周的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每周的利润最大且每周的销量较大?每周的最大利润是多少?
20.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,求线段BE的长.
六、(本大题共2小题,每小题12分,共计24分)
21.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.
(1)求一次函数和反比例函数的解析式;
(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?
22.课本中有一道作业题:
有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?
小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.
(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
七、(本题14分)
23.如图,抛物线经过三点A(1,0),B(4,0),C(0,﹣2).
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以B,P,M 为顶点的三角形与△OBC相似(相似比不为1)?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
2015-2016学年安徽省安庆四中九年级(上)期中数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题4分,共计40分)
1.下列各式中,y是x的二次函数的是()
A.y=B.y=x2+x﹣2 C.y=2x+1 D.y2=x2+3x
【分析】二次函数的一般形式为:y=ax2+bx+c(a≠0).
2.如图,直角三角形ABO的面积为2,反比例函数y=过点A,则k的值是()
A.2 B.﹣2 C.4 D.﹣4
【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
3.如图,在△ABC中,DE∥BC, =,则下列结论中正确的是()
A. =B. =
C. = D. =
【分析】根据△ABC中DE∥BC可以得到△ADE∽△ABC,再根据AD:DB=1:2可以得到AD:AB=1:3,从而得到两相似三角形的相似比为1:3,利用周长的比等于相似比,即可得到答案.
4.下列函数中,在x>0时,y随x增大而减小的是()
A.y=2x﹣1 B.y=﹣x2+7x+
C.y=﹣D.y=
【分析】利用一次函数、二次函数反比例函数的性质分别判断后即可确定正确的选项.5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.
D.
【分析】本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y=ax+b 的图象相比较看是否一致.
6.如图,下列条件不能判定△ADB∽△ABC的是()
A.∠ABD=∠AC B B.∠ADB=∠ABC C.AB2=ADAC D. =
【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.
7.下列说法错误的是()
A.抛物线y=2x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为y=2x2﹣8x+7
B.方程﹣x2+bx+c=0无实数根,则二次函数y=﹣x2+bx+c的图象一定在x轴下方
C.将长度为1m的木条黄金分割,较短的一段木条长为m
D.两个等腰直角三角形一定相似
【分析】根据平移的原则,抛物线和x轴的交点和二次函数的性质,黄金比的概念,三角形相似的判定判断即可.
8.一个函数的图象如图,给出以下结论:
①当x=0时,函数值最大;
②当0<x<2时,函数y随x的增大而减小;
③存在0<x0<1,当x=x0时,函数值为0.
其中正确的结论是()
A.①②B.①③C.②③D.①②③
【分析】看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.
9.如图,已知正方形ABCD边长为6,将其折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是()
A.15 B.12 C.8 D.6
【分析】根据翻折的性质可得DF=EF,设EF=x,表示出AF,然后利用勾股定理列方程求出x,从而得到AF、EF的长,再求出△AEF和△BGE相似,根据相似三角形对应边成比例列式求出BG、EG,然后根据三角形周长的定义列式计算即可得解.
10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()
A.B.C.D.
【分析】本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD上运动,依次得出S与t的关系式即可得出函数图象.
二、填空题(本大题共4小题,每小题5分,共计20分)
11.已知:x:y:z=2:3:4,则的值为.
【分析】由已知的比例式,设每一份为k,表示出x,y及z,将表示出的x,y及z代入所求的式子中,化简后即可得到值.
12.某厂家1月份的利润是25万元,3月份的利润达到30.25万元,这两个月的利润月增长率相同,则这个增长率为10% .
【分析】如果设平均每月增长的百分率是x,那么2月份的利润是25(1+x)元,3月份的利润是25(1+x)2元,而此时利润是30.25元,列出方程.
13.如图,在△ABC中,5AB=6AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD 于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.
【分析】利用角平分线的性质,得到BD=CD,延长AC,构造一对全等三角形△ABD≌△AMD;过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;由MN∥AD,列出比例式,求出的值.
14.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:
①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB 为等腰三角形的a值可以有四个.
其中正确的结论是③④.(只填序号)
【分析】先根据图象与x轴的交点A,B的横坐标分别为﹣1,3确定出AB的长及对称轴,再由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
三、(本大题共2小题,每小题8分,共计16分)
15.如图,矩形ABCD中,AB=6,BC=4.
(1)画出以矩形的两条对称轴为坐标轴(x轴平行于AB)的平面直角坐标系,并写出点A,BC的中点E,DC的中点F的坐标;
(2)求过点A,E,F三点的抛物线的解析式,并写出此抛物线的顶点坐标.
【分析】(1)根据矩形的对称性可知:E、F分别在x轴和y轴上,因此E(3,0),F(0,2);由于DF=CD=3,BE=BC=2,因此A(﹣3,﹣2).
(2)可根据(1)题得出的A、E、F三点坐标,用待定系数法可求出抛物线的解析式.进而可用配方法或公式法求出抛物线顶点坐标.
16.将抛物线y=x2平移,使其在x=t时取最值t2,并且经过点(1,1),求平移后抛物线对应的函数表达式.
【分析】根据题意得出平移后的解析式为y=(x﹣t)2+t2,然后利用待定系数法即可求得t的值,从而求得平移后的解析式.
四、(本大题共2小题,每小题8分,共计16分)
17.如图,已知△ABC中CE⊥AB于E,BF⊥AC于F,
(1)求证:△AFE∽△ABC;
(2)若∠A=60°时,求△AFE与△ABC面积之比.
【分析】先利用已知条件求出△AFB∽△AEC,得到两组边对应成比例,夹角又相等,所以可得到,△AFB∽△AEC.
18.如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD 的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB上的一个强相似点E.
【分析】(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.
(2)根据两个直角三角形相似得到强相似点的两种情况即可(以CD为直径画弧,取该弧与AB的一个交点即为所求).
五、(本大题共2小题,每小题10分,共计20分)
19.某商场新进一批商品,进价为20元/件,现在的售价为30元/件,每周可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于35元),那么每周少卖10件.设每件涨价x元(x为自然数),每周的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每周的利润最大且每周的销量较大?每周的最大利润是多少?
【分析】(1)涨价为x元,可用x表示出每星期的销量,并得到x的取值范围;
(2)根据总利润=销量×每件利润可得出利润的表达式,两个式子结合起来,可得到定价.
20.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,求线段BE的长.
【分析】根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE的长.
六、(本大题共2小题,每小题12分,共计24分)
21.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.
(1)求一次函数和反比例函数的解析式;
(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?
【分析】(1)根据待定系数法,可得函数解析式;
(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.
22.课本中有一道作业题:
有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?
小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.
(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
【分析】(1)设PN=2y(mm),则PQ=y(mm),然后根据相似三角形对应高的比等于相似比列出比例式求出即可;
(2)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答.
七、(本题14分)
23.如图,抛物线经过三点A(1,0),B(4,0),C(0,﹣2).
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以B,P,M 为顶点的三角形与△OBC相似(相似比不为1)?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
【分析】(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx﹣2,再根据过A,B两点,即可得出结果.
(2)本题首先判断出存在,首先设出横坐标和纵坐标,从而得出PA的解析式,再分三种情况进行讨论,当=时和时,当P,C重合时,△APM≌△ACO,分别求出点P的坐标即可.。