模糊数学简介
什么是模糊数学
分类、识别、评判、预测、控制、排序、选择;
人工智能、控制、决策、专家系统、医学、土木、 农业、气象、信息、经济、文学、音乐
• 模糊产品 洗衣机、摄象机、照相机、电饭锅、空调、电梯
• 研究项目 European Network of Excellence 120个子项目与模糊有关 LIFE (Laboratory for International Fuzzy Engineering Research)
Int. J. Uncertainty, Fuzziness, knowledge-based Systems
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种
• 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU
绪论
一、什么是模糊数学 二、模糊数学的产生与基本思想 三、模糊数学的发展 四、为什么研究模糊数学
一、什么是模糊数学
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
•基本思想 用属于程度代替属于或不属于。 某个人属于秃子的程度为0.8, 另一个人属于 秃子的程度为0.3等.
三、模糊数学的发展
75年之前,发展缓慢;80以后发展迅速; 90-92 Fuzzy Boom
模糊数学原理及应用
模糊数学原理及应用
模糊数学,也被称为模糊逻辑或模糊理论,是一种基于模糊概念和模糊集合的数学分析方法,用于处理不精确或不确定性的问题。
模糊数学允许将不明确的概念和信息进行量化和处理,以便更好地处理现实生活中存在的模糊性问题。
模糊数学的基本原理是引入模糊集合的概念,其中的元素可以具有模糊或不确定的隶属度。
模糊数学中的隶属函数可以用于刻画元素对于一个模糊集合的隶属程度。
模糊集合的运算可以通过模糊逻辑实现,模糊逻辑是概率逻辑和布尔逻辑的扩展,它允许使用连续的度量范围来推导逻辑结论。
模糊逻辑中的运算包括取补、交集和并集等,它们可以用来处理模糊概念之间的关系。
模糊数学在许多领域都有广泛的应用。
在控制系统中,模糊控制可以用于处理难以量化的问题,如温度、湿度和压力等。
在人工智能领域,模糊推理可以用于处理自然语言的不确定性和模糊性。
在决策分析中,模糊数学可以用于处理多个决策因素之间的不确定性和模糊性。
此外,模糊数学还在模式识别、图像处理、数据挖掘和人机交互等领域得到广泛应用。
通过使用模糊数学的方法,可以更好地处理现实世界中存在的不确定性和模糊性,从而提高问题解决的准确性和效率。
模糊数学基本概念
模糊数学是一种处理模糊和不确定性问题的数学方法,它基于模糊集合理论,用于描述和处理无法精确量化的概念和现象。
以下是模糊数学的一些基本概念:
模糊集合:模糊集合是一种将不确定性或模糊性引入集合概念的数学工具。
与传统的集合不同,模糊集合中的元素具有一定的隶属度,表示元素与集合的模糊关系。
隶属函数:隶属函数是模糊集合中元素与集合的隶属度之间的映射关系。
它描述了元素在模糊集合中的程度或概率。
模糊关系:模糊关系是一种描述模糊集合之间的关系的数学工具。
它反映了元素之间的模糊连接或模糊相似性。
模糊逻辑:模糊逻辑是一种处理模糊命题和推理的逻辑系统。
它扩展了传统的二值逻辑,允许命题具有模糊的真值或隶属度。
模糊推理:模糊推理是一种基于模糊规则和模糊推理机制进行推理和决策的方法。
它能够处理模糊的输入和输出,并提供模糊的推理结果。
模糊数学运算:模糊数学中存在一系列的运算,包括模糊集合的并、交、补运算,模糊关系的复合运算等。
这些运算用于处理模糊集合和模糊关系的操作。
模糊控制:模糊控制是一种应用模糊数学方法进行控制的技术。
它通过模糊逻辑和模糊推理实现对复杂系统的控制,具有适应性和容错性的特点。
以上是模糊数学的一些基本概念,它们构成了模糊数学理论的基础,被广泛应用于人工智能、决策分析、模式识别、控制系统等领域。
模糊数学和其应用
04
总结与展望
模糊数学的重要性和意义
模糊数学是处理模糊性现象的一种数学 理论和方法,它突破了经典数学的局限 性,能够更好地描述现实世界中的复杂 问题。
模糊数学的应用领域广泛,包括控制论、信 息论、系统论、人工智能、计算机科学等, 对现代科学技术的发展起到了重要的推动作 用。
模糊数学的出现和发展,不仅丰富 了数学理论体系,也促进了各学科 之间的交叉融合,为解决实际问题 提供了新的思路和方法。
随着计算机技术的发展,模糊 数学的应用越来越广泛,成为 解决复杂问题的重要工具之一 。
模糊数学的基本概念
模糊集合
与传统集合不同,模糊集合的成员关系不再是确 定的,而是存在一定的隶属度。例如,一个人的 身高属于某个身高的模糊集合,其隶属度可以根 据实际情况进行确定。
隶属函数
用于描述模糊集合中元素属于该集合的程度。隶 属函数的确定需要根据实推理规则不再是一 一对应的,而是存在一定的连续性。例如,在医 疗诊断中,病人的症状与疾病之间的关系可能存 在一定的模糊性,通过模糊逻辑可以进行更准确 的推理。
模糊运算
与传统运算不同,模糊运算的结果不再是确定的 数值,而是存在一定的隶属度。例如,两个模糊 数的加法运算结果也是一个模糊数,其隶属度取 决于两个输入的隶属度。
模糊数学在图像处理中的应用
总结词
模糊数学在图像处理中主要用于图像增强和图像恢复。
详细描述
通过模糊数学的方法,可以对图像进行平滑、锐化、边缘检测等操作,提高图像的视觉效果和识别能 力。例如,在医学影像处理中,可以利用模糊数学的方法对CT、MRI等医学影像进行降噪、增强和三 维重建等处理,提高医学诊断的准确性和可靠性。
02
模糊数学的应用领域
模糊控制
模糊数学
模糊性与随机性的区别
事物 事物分确定性现象与非确定性现象
- 确定性现象:指在一定条件下一定会发生的现象
- 非确定性现象分随机现象与模糊现象
* 随机性是对事件的发生而言,其事件本身有着明确的含义, 只是由于发生的条件不充分,事件的发生与否有多种可能性 * 模糊性是研究处理模糊现象的,它所要处理的事件本身是模 糊的
A : U {0,1} u A ( u),
其中
1, u A A ( u) 0, u A
函数 A 称为集合A的特征函数。
Ⅱ、模糊集合及其运算
美国控制论专家Zadeh教授正视了经典集合描述的 “非此即彼”的清晰现象,提示了现实生活中的绝大多数 概念并非都是“非此即彼”那么简单,而概念的差异常以 中介过渡的形式出现,表现为“亦此亦彼”的模糊现象。
ab ab a b ,a b 1 ab 1 (1 a )(1 b)
模糊集的并、交、余运算性质 幂等律:A∪A = A, A∩A = A; 交换律:A∪B = B∪A,A∩B = B∩A; 结合律:(A∪B)∪C = A∪(B∪C), (A∩B)∩C = A∩(B∩C) ; 吸收律:A∪(A∩B) = A,A∩( A∪B)= A; 分配律:(A∪B)∩C = (A∩C)∪(B∩C); (A∩B)∪C = (A∪C)∩(B∪C); 0-1律: A∪U = U,A∩U = A; A∪ = A,A∩ = ; 还原律: (Ac)c = A ;
模糊集合及其运算
u0 是固定的,而 A* 在随机变动。 特点:在各次试验中,
模糊统计试验过程:
(1)做n次试验,计算出
x 140 A( x) 190 140
也可用Zadeh表示法:
模糊数学法的原理及应用
模糊数学法的原理及应用1. 引言模糊数学是一种基于模糊逻辑的数学方法,其目的是处理那些现实世界中存在不确定性和模糊性的问题。
相对于传统的二值逻辑,模糊数学可以更好地刻画事物的模糊性和不确定性,因此被广泛应用于各个领域。
2. 模糊数学的基本概念模糊数学的基本概念包括模糊集合、隶属函数和模糊关系等。
2.1 模糊集合模糊集合是指元素隶属于集合的程度可以是连续的,而不仅仅是二值的。
模糊集合可以用隶属函数来描述,隶属函数将元素和隶属度之间建立了映射关系。
2.2 隶属函数隶属函数描述了元素对模糊集合的隶属程度。
隶属函数通常是一个在区间[0, 1]上取值的函数,表示元素隶属于模糊集合的程度。
2.3 模糊关系模糊关系是指模糊集合之间的关系。
模糊关系可以用矩阵来表示,其中每个元素表示了模糊集合之间的隶属度。
3. 模糊数学的应用模糊数学在各个领域都有广泛的应用,下面将介绍几个常见的应用实例。
3.1 模糊控制模糊控制是一种通过模糊逻辑和模糊推理来进行控制的方法。
模糊控制可以应用于各种物理系统,例如温度控制、汽车驾驶等,通过模糊控制可以更好地应对系统不确定性和模糊性的问题。
3.2 模糊分类模糊分类是一种模糊集合的分类方法。
与传统的二值分类不同,模糊分类可以更好地处理具有模糊边界的样本。
模糊分类可以应用于各种模式识别和数据挖掘任务中。
3.3 模糊优化模糊优化是一种利用模糊数学方法进行优化的技术。
传统的优化方法通常需要准确的数学模型和目标函数,而模糊优化可以在模糊和不确定的情况下进行优化。
3.4 模糊决策模糊决策是一种基于模糊逻辑和模糊推理的决策方法。
模糊决策可以用于各种决策问题,例如投资决策、风险评估等,通过模糊决策可以更好地处理决策中的不确定性和模糊性。
4. 总结模糊数学是一种处理不确定性和模糊性的有效方法,它可以更好地刻画现实世界中存在的模糊信息。
模糊数学在控制、分类、优化和决策等领域都有广泛的应用。
随着人工智能和大数据技术的不断发展,模糊数学的应用将会更加重要和广泛。
模糊数学简介
§1.4 模糊等价关系与经典等价关系
模糊等价关系
若模糊关系R是 上各元素之间的模糊关系 模糊关系, 若模糊关系 是X上各元素之间的模糊关系, 且满足: 且满足: (1)自反性 自反性: (1)自反性:R(x, x) =1; I ≤R (⇔ rii =1 ) ; ⇔ (2)对称性 对称性: (2)对称性:R(x, y) =R(y, x); T=R(⇔ rij= rji) ; R ⇔ (3)传递性 传递性: (3)传递性:R2⊆R, R2≤R. 则称模糊关系 模糊关系R是 上的一个模糊等价关系 模糊等价关系. 则称模糊关系 是X上的一个模糊等价关系.
模糊等价关系与经典等价关系的联系
若R是X 上的模糊等价关系,当且仅当, ∀λ ∈ [0,1], R λ 是X 上的经典等价关系。
第二部分 模糊数学的基本应用
2. 1 模糊聚类分析基础 2.2 模糊模式识别基础 2.3 模糊综合评判基础 2.4 模糊线性规划
y
§2.1 模糊聚类分析
数据标准化
设论域X 为被分类对象, 设论域 = {x1, x2, …, xn}为被分类对象,每个 为被分类对象 对象又由m个指标表示其形状 个指标表示其形状: 对象又由 个指标表示其形状: xi = { xi1, xi2, …, xim}, i = 1, 2, …, n 于是,得到原始数据矩阵为 于是,
, sj = 1 n
1 其中 x j = n
∑x
ij
∑ (x
i =1
n
ij
− xj)
2
平移 • 极差变换 xij − min{ xij | 1 ≤ i ≤ n} ′ xij = max{ xij | 1 ≤ i ≤ n} − min{ xij | 1 ≤ i ≤ n}
模糊数学理论
2) 模糊矩阵
2.2模糊等价关系与模糊相似关系 模糊等价关系与模糊相似关系 1)模糊等价关系 )
2)模糊等价矩阵 )
3)模糊相似关系与模糊相似矩阵 )
2.3 截矩阵与传递矩阵 1)截矩阵 )
Байду номын сангаас
2)模糊传递矩阵 )
3 模糊聚类分析
所谓聚类分析,就是用数学的方法把事物按一定要求 和规律进行分类,它有广泛的实际应用。在模糊数学产生 之前,聚类分析已是是数理统计中研究“物以类聚”的一 种多元分析方法,它通过数学工具定量地确定、划分样品 的亲疏关系,从而客观地、合理地分型划类。由于客观事 物之间在很多情况下并没有一个截然区别的界限,又由于 分类时所依据的数据指标的变化也大都是连续的,同时许 多客观事物之间的界限往往不一定很清晰,使传统的基于 数理统计原理的聚类分析方法遇到了困难。因此用模糊数 学观点解决聚类分析问题,必然会更符合于实际情况。这 种基于建立模糊相似关系对客观事物进行分类的方法,称 为模糊聚类分析。
注明: 统计量确定满意分类 注明:用F统计量确定满意分类
• 3.1 模糊聚类分析理论:
1)
2)
3)
4)
3.2 基于模糊等价关系的动态聚类分析
例题
此例题可以用截矩阵的方法来实现
3.3 基于模糊相似关系的聚类分析 1)建立模糊相似矩阵 )
2)传递闭包法 )
此外,还有直接聚类法、最大树法、编网法等。 此外,还有直接聚类法、最大树法、编网法等。
3)模糊集的表示
4)模糊集的运算 ) 模糊集与普通集一样, 模糊集与普通集一样,有相同的运算和相应的运 算规律。 算规律。
A与B的并集、交集及 的补集定义如下: 与 的并集 交集及A的补集定义如下 的并集、 的补集定义如下:
什么是模糊数学
•人工智能的要求
• 取得精确数据不可能或很困难
•没有必要获取精确数据
结语: 模糊数学的产生不仅形成了一门崭新的数学 学科,而且也形成了一种崭新的思维方法, 它告诉我们存在亦真亦假的命题,从而打破 了以二值逻辑为基础的传统思维,使得模糊 推理成为严格的数学方法。随着模糊数学的 发展,模糊理论和模糊技术将对于人类社会 的进步发挥更大的作用。
参考书目 1. 模糊数学基础,张文修,西交大出版社 3. 模糊理论及其应用,刘普寅等,国防科大出版社
• 涉及学科 模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支
分类、识别、评判、预测、控制、排序、选择;
人工智能、控制、决策、专家系统、医学、土木、 农业、气象、信息、经济、文学、音乐
• 模糊产品 洗衣机、摄象机、照相机、电饭锅、空调、电梯
• 研究项目 European Network of Excellence 120个子项目与模糊有关 LIFE (Laboratory for International Fuzzy Engineering Research)
Int. J. Uncertainty, Fuzziness, knowledge-based Systems
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种
• 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU
NSF 应用数学:大规模数据处理、不确定性建模
•国内状况
1976年,潘学海,弗齐集合论,计算机应用 及应用数学; 1980年,汪培庄,模糊数学简介,数学的 实践与认识.
1981年,模糊数学创刊
模糊数学的原理及应用
模糊数学的原理及应用1. 简介模糊数学,又称为模糊逻辑学或模糊数理,是一种能够处理不确定性和模糊性的数学方法和理论。
它的核心思想是允许数学量的取值在一个范围内模糊变化,而不是固定在一个确定的值上。
模糊数学在各个领域中具有广泛的应用,包括人工智能、控制理论、模式识别、决策分析等。
2. 模糊数学的基本概念在模糊数学中,有几个基本概念需要了解:2.1 模糊集合模糊集合是指具有模糊隶属度的元素集合。
与传统集合不同,模糊集合中的元素可以被归为多个不同的类别,每个类别都有一个隶属度来表示元素与该类别的关联程度。
2.2 模糊关系模糊关系是指一个模糊集合的元素之间的关系。
模糊关系可以表示为一个矩阵,其中每个元素表示两个元素之间的隶属度。
2.3 模糊逻辑模糊逻辑是一种模糊推理的方法。
与传统逻辑不同,模糊逻辑中的命题可以有一个隶属度来表示命题的真实程度。
模糊逻辑通过对隶属度的运算,对不确定性的问题进行推理和决策。
3. 模糊数学的应用领域模糊数学在各个领域中都有广泛的应用,以下是一些常见的应用领域:3.1 人工智能模糊数学在人工智能中起着重要的作用。
通过模糊集合和模糊逻辑的方法,可以处理人工智能系统中的不确定性和模糊性,提高系统的智能性和决策能力。
3.2 控制理论模糊控制是一种控制理论,它基于模糊集合和模糊逻辑的方法,可以处理控制系统中的不确定性和模糊性。
模糊控制可以应用于各种控制系统,如温度控制、车辆控制等。
3.3 模式识别模糊数学在模式识别中具有重要的应用。
通过模糊集合和模糊关系的方法,可以处理模式识别中的不确定性和模糊性问题,提高模式识别的准确性和鲁棒性。
3.4 决策分析模糊数学在决策分析中也具有广泛的应用。
通过模糊集合和模糊逻辑的方法,可以处理决策问题中的不确定性和模糊性,帮助决策者做出更合理的决策。
4. 模糊数学的发展和未来模糊数学作为一种新兴的数学方法,正在不断发展和完善。
未来,随着科技的进步,模糊数学在各个领域中的应用将会更加广泛和深入。
模糊数学原理及应用
模糊数学原理及应用
模糊数学,又称模糊逻辑或模糊理论,是一种用于处理模糊和不确定性问题的数学方法。
它与传统的二值逻辑不同,二值逻辑中的命题只能有“是”和“否”两种取值,而模糊数学允许命题
取任意模糊程度的值,介于完全是和完全否之间。
模糊数学的基本原理是模糊集合论。
在模糊集合中,每个元素都有一个属于该集合的隶属度,代表了该元素与集合之间的模糊关系。
隶属度的取值范围通常是0到1之间,其中0表示不
属于该集合,1表示完全属于。
模糊集合的隶属函数则用来描
述每个元素的隶属度大小。
模糊数学的应用广泛。
在工程领域中,它常用于模糊控制系统的设计与分析。
传统的控制系统中,输入和输出之间的关系是通过确定性的数学模型来描述的,而模糊控制则允许系统中存在不确定性和模糊性,并通过模糊推理来实现系统的控制。
在人工智能领域中,模糊数学也有着重要的应用。
模糊逻辑可以用来处理自然语言的模糊性和歧义性,对于机器翻译、信息检索和智能对话系统等任务具有重要意义。
此外,模糊数学还可以应用于风险评估、决策分析、模式识别、数据挖掘等领域。
通过将模糊数学方法应用于这些问题,可以更好地处理不确定性和模糊性信息,并得到更准确的结果。
总而言之,模糊数学是一种处理模糊和不确定性问题的数学方法,通过模糊集合论和模糊推理来建模和分析。
它在各个领域
都有广泛的应用,可以帮助人们更好地处理现实世界中的复杂问题。
模糊数学法
模糊数学法模糊数学法是一门处理模糊数量、模糊概念、模棱两可性和模糊逻辑的研究,它是研究现实世界模糊问题的理论和方法,是一种实用日常生活中模糊事物和问题表述、解释和推理的方法,也可以称之为模糊算法学。
它由三位日本科学家在1949年提出,经历了几十年的发展,成为一门前沿的学科,广泛应用于地质学、经济学及生物学等多个领域。
模糊数学法的基本思想是模糊集和模糊函数,即把复杂的问题分割成若干简单的子问题,找出每个子问题的解,并将这些解组合成全局的解,这样就能够更容易理解和解决模糊问题。
模糊集是模糊数学法的基础,它是一种描述一定对象属于或不属于某一集合的抽象概念,是一个可表示概率的数学模型。
模糊集由模糊点组成,每个模糊点可以表示一个属于此集合的对象及其属性,用来表示集合元素在某个属性上的成度。
模糊函数是模糊数学法的核心,可以用于表示模糊集的内涵以及模糊性的函数,它通过对象的属性测量值与已知函数值之间的映射关系,将不同属性的对象分组,可以用来描述不同类别的对象及其相互之间的关系。
模糊逻辑也是模糊数学法的重要组成部分,也称为模糊推理。
它是根据人们思维习惯从有限的信息中推导出实际的概率、概念等的一种方法。
它能够很好地对模糊的概念和模糊的逻辑进行处理。
总之,模糊数学法是一门处理模糊数量、模糊概念、模棱两可性和模糊逻辑的研究,由三位日本科学家在1949年提出,经历了几十年的发展,广泛应用于地质学、经济学及生物学等多个领域。
它主要有模糊集、模糊函数和模糊逻辑三个部分组成,通过对象的属性测量值与已知函数值之间的映射关系,实现模糊的概念和模糊的逻辑的处理,使得我们能够更容易理解和解决模糊问题。
模糊数学法的应用越来越广泛,不仅在科学研究中有重要的作用,而且在工程应用中也有广泛的应用。
它可以用于知识表达和推理,被用于模糊控制,计算机视觉,智能决策,航空自动驾驶等很多领域。
模糊数学法能够很好地反映实际工程中的不确定性,使得设计出来的系统和控制算法更加稳定,使得人们能够准确、简单、高效地处理模糊的实际问题。
模糊数学第一章
A B B A
(3) 结合律(associativity)
A B பைடு நூலகம்B A
A (B C) (A B) C (A B) C A (B C)
(4) 吸收律(absorption laws)
A (A B) A
A (A B) A
例2:
在例 1中,f1 ({1, 2, 3}) {a,b,c},f2 ({1, 2, 3}) {a}.
二、映射与扩张
(2) 特殊映射
单射(injection):
x1 x2 f ( x1 ) f ( x2 )
或f ( x1 ) f ( x2 ) x1 x2
满射(surjection): f 为从X到Y的满射当且仅当f(X)=Y. 双射(bijection):
2
二、课程认识
在客观世界中,诸如上述的模糊概念要比清
晰概念多得多。
对于这类模糊现象,过去已有的数学模 型难以适用,需要形成新的理论和方法,即 在数学和模糊现象之间架起一座桥梁——模 糊数学。
2
二、课程认识
教学目的
通过本课程的学习,掌握模糊数学的
基本思想,基础理 论;从而进一步了解 模糊理论的基本应用,能够应用模糊理 论解决信息领域与工程技术中的实际问 题。
空集: 不含任何元素的集合, 记为 子集: 若x A x B, 则称A是B的子集,或A包含
于B, 或B包含A.记为A B或B A
相等: A B 且 B A,则称 A与B 相等,且A=B 真子集: A B且A与B不相等且A ,称A是B的真子集, 或A真包含于B, 记A B
交(int ersection) A B {x | x A且x B}
模糊数学法
模糊数学法引言模糊数学法是一种用于处理模糊不确定性问题的数学方法。
它是由美国数学家洛特菲尔德于1965年提出的,被认为是一种在现实世界中处理不明确、含糊和不确定性信息的有效工具。
在传统的数学中,我们通常使用精确的数值来进行计算和推导。
然而,在现实生活中,很多问题都是模糊不清的,无法用精确的数值来描述。
例如,判断一个人的身高是否高大,这个问题就存在模糊性,因为高大的标准因人而异。
在这种情况下,传统的数学方法就失去了效力,需要使用模糊数学法来处理。
模糊集合模糊集合是模糊数学的核心概念之一。
传统的集合理论中,元素要么属于集合,要么不属于集合,不存在属于程度的概念。
而在模糊集合中,元素的归属程度可以是模糊的。
一个元素可以部分属于集合,部分不属于集合。
这种归属程度的模糊性可以用[0,1]之间的数值来表示,称为隶属度。
模糊集合可以用一个隶属函数来描述。
隶属函数是一个将元素映射到隶属度的函数。
例如,对于一个描述“高大”人的模糊集合,可以用一个隶属函数将每个人映射到0到1之间的一个隶属度,表示这个人属于“高大”这个集合的程度。
模糊逻辑模糊逻辑是模糊数学的另一个重要概念。
传统的逻辑推理是基于真假的二值逻辑,而模糊逻辑则允许命题的真实性程度是模糊的。
模糊逻辑中的命题可以是“完全真”、“完全假”或者处于两者之间的模糊状态。
模糊逻辑使用模糊推理来推导出模糊命题的真实性程度。
它可以用于解决模糊不确定性问题,例如模糊控制系统中的决策问题、模糊信息检索等。
模糊数学应用模糊数学方法在很多领域都有广泛的应用。
以下是一些常见的应用领域:模糊控制模糊控制是模糊数学的一个重要应用领域。
在传统的控制系统中,输入和输出之间的关系通常是精确的,可以用精确的数学模型来描述。
然而,在现实生活中,很多控制系统的输入和输出之间的关系是模糊的,无法用精确的数学模型来描述。
在这种情况下,可以使用模糊控制方法来设计控制系统,通过模糊推理来处理模糊的输入和输出。
模糊数学简介
晰”, 有许多概念没有明确的界限, 特别是在
人类的思维与语言中,例如: 高矮、胖瘦、美 丑等. 模糊数学的出现与计算机智能模拟密切
1965年, 美国加利福尼亚大学自动控制专
家L. A. Zadeh第一次提出了模糊性问题, 从不
同于经典数学的角度, 研究数学的基础集合论,
给出了模糊概念的定量表示方法, 发表了著名
模糊数学简介
模糊数学(Fuzzy mathematics, 弗晰数学 )
是解决模糊性问题的数学分支. 这里所谓的
“模糊”是相对于“明晰”而言的, 而所谓的
“明晰”即非此即彼.明晰数学数学的基础是
经典集合论: 一个元素a, 要么属于集合A, 要么
要么属于A的余集, 二者必居其一. 但是并非
所有的现象和概念都象经典集合论这样“明
R1 R2={(x, z) | x + z = 5}={(2,3), (3,2), (4,1)}.
○
0 0 R1 0 1
0 0 0 1 1 0 0 0
1 0 0 R2 0 1 0 0 0 1
等价关系:设R为 X 上的关系, 如果满足
(1) 自反性: X 中的任何元素都与自己有
关系,即R(x, x) =1;
(2) 对称性:对X中的两个元素x, y, 若x
与y有关系,则y与x有关系,即若R(x, y) =1,则
R(y, x) = 1;
(3) 传递性:对于X中的三个元素x, y, z,
若x与y有关系,y与z有关系,则x与z有关系, 即若R(x, y) = 1,R (y, z) =1,则R(x, z) = 1. 则称R为X上的等价关系.
设 R为 X 上的等价关系. 如果(x, y) R, 即x与y有关系R, 则记为 x y. 集合上的等价类 设 R是X 上的等价关系, xX. 定义x的等价类: [x]R = { y | yX , y x }. 集合的分类 设 X 是非空集合,{Xi }是 X 的 非空子集族,若
模糊数学概述
26
非典型三角形T= IcRc Ec,因而
T ( A, B, C ) 1 I ( A, B, C ) (1 R( A, B, C )) (1 E ( A, B, C ))
1 180 min[ 3( A B),3( B C ), ( A C ),2 | A 90 |].
则称如下的“序偶”组成的集合 A={(x | A(x))}, xX 为
X 上的模糊子集合,简称模糊集合。
10
称 A(x) 为 x 对 A 的隶属函数,对某个具体的 x 而言, A(x) 称为 x 对 A 的隶属度。 定义 2 设 X 是论域,映射
A(· ):X → [0, 1]
x︱→ A(x) 称为 X 的模糊子集(合) A ( Fuzzy Set ),简称 F 集(合) 。 对 x ∈X, A (x) 称为 x 对 A 的隶属度, A 称为F 集 的隶属函数。
tT tT
B At
tT
x X , B( x) At ( x), (3.1.18).
20
模糊集合的隶属度
模糊集是客观世界数量与质量的统一体,人
们刻画模糊集是通过模糊集的特有的性质,即隶
属度来表现的。隶属度是人们认识客观事物所赋
予的该元素隶属于该集合的程度,带有主观经验
17
由上述定义,易证下面的命题。 命题 1 F ( X ) 上的包含关系 “” 有以下性质: (1) AF ( X ), A X。 (2) 自反性: AF ( X ), A A。 (3) 反对称性: A、BF ( X ),若 A B 且 B A,则 A=B。 (4) 传递性: A、B、CF ( X ),若 A B 且 B C,则 A C 。
模糊数学
第二章预备知识2.1 模糊数学概述模糊数学的产生是客观实际发展的必然,美国学者L.A.Zadeh于1965年首次提出模糊集合的概念,对模糊行为和活动建立模型。
模糊理论一经产生就在数学领域本身以及许多的使用领域里得到了广泛的应用。
到20世纪的90年代,己经形成了具有完整体系和鲜明特点的模糊拓扑学,框架日趋成熟的模糊随机数学,模糊分析学,以及模糊逻辑理论。
模糊数学是对模糊行为和活动建立模型,从二值逻辑的基础上转移到连续逻辑上来,把绝对的“是"与“非”变为更加灵活的东西,在特定的限定域上去相对地划分“是”与“非”,但它并非是让数学放弃它的严格性去迁就模糊性,相反,是以严格的数学方法去处理模糊现象。
在人类社会和各个科学领域中,人们所遇到的各种量大体上可以分成两大类:确定性与不确定性,而不确定性又可分为随机性和模糊性人们正是用三种数学来分别研究客观世界中不同的量,即[23] :确定性———经典数学量随机性———随机数学不确定性模糊性———模糊数学在这种框架内,数学模型也可以分为三大类[23]:1、确定性数学模型,其研究对象具有确定性,对象之间具有必然的关系,如用微分法、微分方程、差分方程所见的数学模型。
2、随机数学模型,其研究对象具有随机性,对象之间具有偶然的关系,如用概率分布方法、Markov 链建立的数学模型。
概率论与数理统计是研究随即不确定性问题的主要数学工具。
3、模糊数学模型,其研究对象与对象之间的关系具有模糊性。
这里,要注意区别这两种不确定性,因为过去人们把不确定性看成是随机性的[24]。
为了区分这两种性质截然不同的不确定性,我们将由概率发生的偶然性所引起的不确定性称为随机不确定性,如“明天有雨”、“抛硬币出现两面”等;而将由概念、语言等模糊性所引起的不确定性成为模糊不确定性,如“好人与坏人”、“青年人”、“高个子”等。
由于模糊数学是由定量的方法去研究和处理模糊现象,与普通的分析设计比较起来,在处理问题时主要具有以下三个方面的特点[25]:一、充分定量地考虑模糊因数,使得设计方案更符合客观实际,优化合理; 二、事物的中介过渡性质,浮动地选取阈值,从而得到一系列不同水平的分析结果与设计方案为人们提供了广泛的选择; 三、具有哲理的方法论特点[25]。
模糊数学讲座之——简介
<
>
经典数学 统计数学 模糊数学 经典数学描述必然的、精确现象(概念) 经典数学描述必然的、精确现象(概念) 描述必然的 统计数学(概率论与数理统计) 统计数学(概率论与数理统计)把数学的应用范围从必 然现象扩大到了偶然现象的领域。 然现象扩大到了偶然现象的领域。 偶然现象的领域 模糊数学则把数学的应用范围从精确现象扩大到了模糊 模糊数学则把数学的应用范围从精确现象扩大到了模糊 则把数学的应用范围从精确现象扩大到了 现象(概念)的领域。 现象(概念)的领域。
<
>
确定性数学模型 研究对象具有确定性,对象间具有必然的关系, 研究对象具有确定性,对象间具有必然的关系,最典型 的就是用微分方程、差分方程建立的数学模型。 的就是用微分方程、差分方程建立的数学模型。 随机性数学模型 研究对象具有随机性,对象间具有偶然的关系, 研究对象具有随机性,对象间具有偶然的关系,如概率 分布方法、马尔可夫链所建立的数学模型。 分布方法、马尔可夫链所建立的数学模型。 模糊性数学模型 研究对象具有模糊性,对象间具有模糊关系, 研究对象具有模糊性,对象间具有模糊关系,如本课程 所考虑的各种模糊模型。 所考虑的各种模糊模型。 < >
<
>
量的确定性与不确定性 在人类社会和各个科学领域中, 在人类社会和各个科学领域中,人们所遇到的各种量可 分为确定性的和不确定性的两大类。 分为确定性的和不确定性的两大类。 确定性---经典数学 确定性---经典数学 --量 不确定性 模糊性---模糊数学 模糊性---模糊数学 --随机性---随机数学 随机性---随机数学 ---
主要问题
一、模糊数学的概念 二、模糊数学的产生与基本思想 三、模糊数学与传统数学的区别 四、模糊数学的发展 五、研究模糊数学的意义 六、多极倒立摆
模糊数学通俗易懂知乎
模糊数学通俗易懂知乎模糊数学是一门研究模糊概念和模糊现象的数学分支,它的应用范围非常广泛。
模糊数学的概念和方法可以帮助我们处理那些不确定、不精确或不完全的信息和问题,使我们能够更好地理解和描述复杂的现实世界。
模糊数学最早由美国数学家洛特菲在1965年提出,它的核心思想是将模糊现象用数学的方法进行建模和分析。
模糊数学的研究对象可以是任何不确定或不精确的概念或现象,比如温度、颜色、风速、心情等等。
这些概念或现象往往不具备明确的边界或确定的取值,而是存在一定的模糊性。
模糊数学的基本元素是模糊集合和隶属度函数。
模糊集合是一种特殊的集合,它的元素可以具有不同程度的隶属度,用来描述元素与集合之间的模糊关系。
隶属度函数是一个数学函数,它用来表示元素与模糊集合之间的隶属度大小。
通过对模糊集合和隶属度函数的定义和运算,我们可以进行模糊集合的交、并、补、差等操作,从而进行模糊推理和决策。
模糊数学的应用非常广泛,涉及到多个领域。
在控制理论中,模糊控制可以用来处理那些难以用精确数学模型描述的控制系统。
在人工智能中,模糊逻辑可以用来处理那些模糊或不确定的推理问题。
在经济学和管理学中,模糊决策可以用来处理那些多因素、多目标的决策问题。
在模式识别和图像处理中,模糊集合和模糊分类可以用来处理那些模糊或不完整的数据。
模糊数学的理论和方法在实际应用中具有很大的灵活性和适应性。
它可以通过调整隶属度函数的形状和参数,来适应不同的问题和需求。
同时,模糊数学也可以与其他数学方法和工具结合使用,形成多学科、多方法的综合研究。
尽管模糊数学在理论和方法上有其独特之处,但它并不是一种取代传统数学的新方法,而是一种补充和扩展传统数学的工具。
模糊数学与传统数学有很多共同之处,比如集合论、逻辑推理、代数运算等。
通过将模糊数学与传统数学相结合,我们可以更好地解决那些复杂、模糊的问题,提高决策的准确性和效果。
总的来说,模糊数学是一门具有重要意义和广泛应用的数学分支。
模糊数学算法
模糊数学算法模糊数学算法在实际生活中有着广泛的应用,它能够处理一些模糊的和不确定的问题,为决策提供一种有效的方法。
本文将从模糊数学的基本概念、模糊集合、模糊关系以及模糊推理等方面进行阐述。
一、模糊数学算法的基本概念模糊数学算法是一种用于处理模糊问题的数学工具。
它通过引入模糊集合的概念,将不确定性和模糊性量化为数值,从而进行分析和决策。
模糊数学算法的核心思想是将传统的二元逻辑扩展为多元逻辑,使得问题能够更好地被描述和解决。
二、模糊集合模糊集合是模糊数学的核心概念之一。
与传统的集合不同,模糊集合中的元素具有一定的隶属度,而不仅仅是0或1。
模糊集合的隶属度表示了元素与集合的关系的程度,它可以是一个实数,取值范围在0到1之间。
模糊集合的隶属度函数可以是线性的,也可以是非线性的,根据具体问题的需要进行选择。
三、模糊关系模糊关系是模糊数学的另一个重要概念。
它是对两个模糊集合之间的关系进行描述。
模糊关系可以用矩阵表示,其中的元素表示两个模糊集合之间的隶属度。
模糊关系可以用来描述模糊的空间关系、时间关系、因果关系等,为问题的分析和决策提供依据。
四、模糊推理模糊推理是模糊数学算法的重要应用之一。
它通过将已知的模糊信息进行推理,得出新的模糊结论。
模糊推理可以分为两个步骤:模糊化和去模糊化。
模糊化将传统的精确信息转化为模糊集合,而去模糊化则将模糊集合转化为具体的数值。
模糊推理可以用于模糊控制、模糊优化和模糊决策等方面,为实际问题的解决提供了一种有效的方法。
模糊数学算法是一种用于处理模糊问题的数学工具,它通过引入模糊集合和模糊关系的概念,将不确定性和模糊性量化为数值,从而进行分析和决策。
模糊推理是模糊数学算法的重要应用之一,它通过将已知的模糊信息进行推理,得出新的模糊结论。
模糊数学算法在实际生活中有着广泛的应用,可以用于模糊控制、模糊优化和模糊决策等方面,为实际问题的解决提供了一种有效的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)
84 Yamakawa F-logic I.C (模糊集成电路)
85 IFSA 成立国际模糊系统协会
我国:70 年代 王培庄,开始主要是理论研究,并且与经典数学相对应的各个领域都
有人研究,现在研究、利用模糊技术的领域已经深入到社会、经济等各个方面。
杂志:
*FSS-Fuzzy Set and Systems,
一、模糊数学简介、教学安排、
普通集合
(一)简介
1. 发展历史
美:65 L.A.zadeh 信息与控制(理论研究开始)
英:74 马丹尼
蒸汽机控制,80年丹麦哥本哈根的史密斯水泥公司首次用模
糊系统实现了对水泥窑炉的控制。88年,日立公司使日本仙台市地铁实现了模糊控制。
日:72 Sugeno
F-measure 语音控制模糊汽车(88),无人驾驶直升机(9
(3)特征函数定义
定义:设 X 为论域, A X ,称映射
A : X { 0 , 1}
1, x A
x |
A (x)
0,
x A
( A B )( x ) min{ A ( x ), B ( x )} A ( x ) B ( x )
Ac (x) 1 A(x)
*IEEE Transactions on Fuzzy Systems (1993),
*Fuzzy Mathematics etc.
IEEE 从1992年起,每年召开一次国际模糊学术会议。1995年 IEEE 给 Zadeh
授予了学会的荣誉勋章。
2.趋势
(1)研究与应用人数逐年上升
(2)应用领域逐步扩大,遍及社会,经济等等各个领域,如:
*在软科学方面,模糊技术已用到了投资决策、企业效益评估、区域发展规划、经济宏
观调控、中长期市场模糊预测等领域。
*工业过程控制方面,已实现了冶金炉窑模糊控制、化工过程模糊控制、水泥窑炉模糊
控制以及磨煤机模糊控制等。
*在人工智能与计算机领域,已经出现了模糊推理机、模糊控制计算机、模糊专家系统、
模糊数据库、模糊语音识别系统、图形文字模糊识别系统、模糊控制机器人等高新技术产
A c (x) 1 A(x)
5
5.性质:除互补律(补余律)外均成立。
例 4.考虑 X 0,1 , A( x ) x
~
Y (x)
x 25 2 1
1
5
, 25 x 100
例 3 考虑五个人构成的论域:
X x 1 , x 2 , x 3 , x 4 , x 5
x x x x x 1 , 2 , 3 , 4 , 5
~ 体温:39.8, 39.3, 38.5, 37.5, 36.5 “发高烧的人”= A
3.运算 并: A B 交: A B 差: A B 余(补): A c
对称差: A B ( A B ) ( A B
4.性质
①幂等律: A A A , A A A
②交换律: A B B A , A B B A
③结合律:
④分配律:
⑤吸收律: A ( A B) A , A ( A B) A
① a at ,t T ② b at ,t T b a
为集合 A 的特征函数。 A 由 A 唯一确定, A 也由 A 唯一确定。
定义: a 是{at } 的下确界,如果 a 满足
3
① a at ,t T ② b at , t T b a
A B A(x) B(x)
A B A(x) B(x)
A A(x) 0, x X
A X A(x) 1, x X
( A B)(x) max{ A(x), B(x)} A(x) B(x)
( A B)(x) min{A(x), B(x)} A(x) B(x)
(3)与其它学科结合越来越紧,如:
模糊神经网络
模糊遗传算法
……………………
(二)教学安排(课程内容):
(1)基本理论
*普通集合
1
*模糊集合
1
*分解定理
1
*隶书函数确定的若干方法
1
*模糊关系
3
*扩张原理与模糊数
2
(2)应用
*模糊模式识别
2
*模糊聚类分析
2
*模糊综合评判
2
*模糊推理(逻辑)
2
*模糊控制
2
(3)复习总结
1
说明:不要想着学完这门课程就能解决你的问题,应该仔细研究、明确你要解决的问
题,再考虑如何解决。
本课程的目的:一是学习、了解模糊数学的基本理论,为进一步学习打下基础(如果
需要);二是了解一些模糊数学的应用领域和应用方法。
(三)普通集合
1.基本概念:只有描述性定义,是数学里最基本的概念
记号 X,Y,A,B……..
品,同时还出现了 F-Prolog、Fuzzy-C 等语言系统。
*在地震科学方面,模糊技术已涉及到中长期地震预报、地震危险分析和潜在震源识别、
地震灾害预测以及减轻地震灾害对策等等。
3 *在航空航天及军事领域,模糊技术已用到了飞行器对接、C I 指定自动化系统等方面。
*模糊家电产品:模糊洗衣机,空调,烤箱,照相机,摄象机,……
x1 1 ; x 2 0 .9 ; x 3 0 .5
x 4 0.1 ; x 5 0
3.模糊集合的表示法 ① zadeh 表示法
论域 X x 1 , x 2 , , x n 或 X x 1 , x 2 , x n ,
~
~
~ A
A ( x1 )
③ 模糊向量表示法
~~
~
A ( A ( x1 ), A ( x n ))
~ X 中第 k 个元素 xk 的隶属度 A(xk ) ak 作为模糊向量 A 的第 k 个分量。
~ ④ 解析表示法:X 为 R 上某区间,给出 A(x) 表达式。
~ 为书写方便以后用 A 代替 A 。 4.关系与运算(对模糊集合是重新定义)
An {1}
n1
这样就在 P(X ) 和{映射|X 到{0,1}的映射}之间建立了一一对应
关系。以后经常使用特征函数代替集合,并用 A( x) 代替 A (x) 。
(4)用特征函数及其之间关系和运算表示集合之间的关系和运算
A B A(x) B(x) A B A(x) B(x) A A(x) 0, x X A X A ( x ) 1, x X ( A B )( x ) max{ A ( x ), B ( x )} A ( x ) B ( x )
A(xn )
n
~ A(xi )
x1
xn
i 1
xi
或
~
A
~
~
A ( x1 ) A ( xn )
~ A(xi)
x1
xn
i 1
xi
或写成:
~ A
X
~ A (x)
x
(无 dx )
② 序偶表示法
~
~
~
A ( A ( x 1 ), x 1 ), ( A ( x n ), x n ),
1.模糊概念:外延不分明的概念,如:
“伟人”、“聪明人”、“健康人”、“正直的人”“年轻人”,……“阴天”、“质量好”、“不 稳定”,…… 和普通集合的差别是什么?
我们知道:给定论域 X ,子集 A X
x X , x A 或 x A 二者必居其一且仅居其一。
A A
1, x完 全 属 于 A A(x)
Bn N {1, 2,},
n1
Bn
n1
6.映射与特征函数
x (1)映射:设 X ,Y 是两个集合,如果有一个法则 f ,使得对于 X 中任意元素 ,都
Y y 有 中唯一元素 与之对应,则称 f 是 X 到 Y 的映射。
* 以前见过映射吗? 单射:
满射:
一对一映射:
(2)映射的性质:①~⑩条,见6-7页,自看,自证,会用。 举几个映射例子
x X
1
A B
相等 有限集合、无限集合
幂集: P ( X ) X 的 子 集
2. 集合表示方法
① A ={ 模糊数学,计算方法,……} N ={1,2,3,……}
② 条件表示法
X 人 其身高大于 1 .7 米
X x P ( x ) P ( X ) A A X
两个模糊子集,隶属函为:
0,
0 x 50
~
O (x)
x 50 2 1
1
5
, 50 x 100
4
~ O ( 60 ) 0 .8 ~ O (80 ) 0 .97
1,
0 x 25
⑥两极律:
⑦复原律:
⑧补余律:
(A B)c Ac Bc (A B)c Ac Bc
⑨对偶律:
,
,
可以推广到任意有限多个集合。
5.集合族的并与交
A t , t T ,常见指标集: T {1, 2 , , n , } N
T [0, 1]
定义: A t { x t T
0, x完 全 不 属 于 A
例 1 考虑“发高烧”这个(模糊)概念 论域 T=[30,45 ] 36, 37, 38.5,39, 39.5 39.8,…… 38.5 度算不算发高烧? 不好回答,用一个数描述发高烧的程度,如:38.5 对应 0.5,即 38.5 属