【半导体物理与器件】【尼曼】【课后小结与重要术语解释】汇总

合集下载

(完整版)半导体物理知识点及重点习题总结(可编辑修改word版)

(完整版)半导体物理知识点及重点习题总结(可编辑修改word版)

基本概念题:第一章半导体电子状态1.1半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。

通过该方程和周期性边界条件最终给出 E-k 关系,从而系统地建立起该理论。

单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和 E-k 关系而提出的一维晶体的势场分布模型,如下图所示X克龙尼克—潘纳模型的势场分布利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出 E-k 关系。

由此得到的能量分布在 k 空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。

从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。

1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的 E-k 关B c n 系决定。

1.4 本征半导体既无杂质有无缺陷的理想半导体材料。

1.4 空穴空穴是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。

它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。

2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。

3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。

自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。

空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。

4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。

掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。

1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。

晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。

晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。

2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。

3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。

晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。

2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。

3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。

1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。

它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。

晶体生长是将半导体材料从溶液或气相中生长出来的过程。

常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。

掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。

常用的掺杂方法包括扩散法、离子注入和分子束外延法等。

半导体物理学名词解释

半导体物理学名词解释

半导体物理学名词解释嘿,朋友们!今天咱来聊聊半导体物理学那些有意思的名词。

啥是半导体呀?你就把它想象成一个有点小脾气、但又很能干的小家伙。

它不像导体那样大大咧咧,电流随便过,也不像绝缘体那样死脑筋,一点电流都不让过。

半导体呢,它会根据情况来决定让多少电流通过,是不是很神奇?比如说空穴,这就像是半导体世界里的一个小坑。

电子在里面跳进跳出的,可热闹啦!它可不是什么没用的东西哦,在半导体的各种活动中,空穴可是有着重要的地位呢,就像舞台上不可或缺的角色一样。

还有能带,你可以把它想象成是半导体世界里的不同楼层。

有些电子喜欢在低楼层活动,有些呢就想去高楼层看看。

这不同的楼层就代表着不同的能量状态,电子们在这些能带里玩耍、工作,决定着半导体的各种性能。

再说说禁带,这就像是一道鸿沟,把不同的能带隔开了。

电子要想从一个能带跳到另一个能带,就得费点力气跨过这道沟。

如果这道沟太宽了,电子就很难跳过去,半导体的性质也就不一样啦。

pn 结呢,就像是半导体世界里的一道特殊的关卡。

一边是 p 型半导体,一边是 n 型半导体,它们凑在一起就形成了这个特别的地方。

在这个关卡上,会发生很多有趣的事情,比如电流的流动会变得很有规律。

杂质半导体又是什么呢?就好像是给半导体这个小家伙请了一些特别的帮手。

通过引入不同的杂质,可以让半导体的性能发生很大的变化,变得更适合我们的需要。

半导体物理学里的这些名词,不就像是一个充满奇妙和惊喜的小世界吗?它们看似复杂,其实只要我们用心去理解,就会发现它们真的很有趣呀!我们的生活中到处都有半导体的身影,从手机到电脑,从电视到各种电子产品。

这些小小的半导体器件,都是建立在半导体物理学的基础上的。

所以说,了解半导体物理学名词可不是仅仅为了好玩,它对我们的生活有着实实在在的影响呢!我们应该好好去探索这个神奇的世界,不是吗?总之,半导体物理学名词解释就是这么有趣又重要,大家可别小瞧了它们哟!。

半导体物理知识点及重点习题总结删减

半导体物理知识点及重点习题总结删减

第一章 半导体电子状态1.半导体:通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

2能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

导带与价带3.能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。

通过该方程和周期性边界条件最终给出E-k 关系,从而系统地建立起该理论。

单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

4.有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的E-k 关系决定。

5.本征半导体:既无杂质有无缺陷的理想半导体材料。

6.空穴 :是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

它引起的假想电流正好等于价带中的电子电流。

7.空穴是如何引入的,其导电的实质是什么?答:空穴是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

这样引入的空穴,其产生的电流正好等于能带中其它电子的电流。

所以空穴导电的实质是能带中其它电子的导电作用,而事实上这种粒子是不存在的。

8.半导体的回旋共振现象是怎样发生的(以n 型半导体为例)答案:首先将半导体置于匀强磁场中。

半导体重要术语解释

半导体重要术语解释

半导体重要术语解释双极扩散系数:过剩载流子的有效扩散系数。

双极迁移率:过剩载流子的有效迁移率。

双极输运:具有相同扩散系数、迁移率和寿命的过剩电子和空穴的扩散、迁移和复合过程。

双极输运方程:时间和空间变量描述过剩载流子状态函数的方程。

载流子的产生:电子从价带跃入导电,形成电子-空穴对的过程。

载流子的复合:电子落入价带中的空能态(空穴)导致电子-空穴对消灭的过程。

过剩载流子:过剩电子和空穴的总称。

过剩电子:导带中超出热平衡状态浓度的电子浓度。

过剩少子寿命:过剩少子在复合前存在的平均时间。

产生率:电子-空穴对产生的速(#/cm3-s)。

小注入:过剩载流子浓度远小于热平衡多子浓度的情况。

少子扩散长度:少子在复合前的平均扩散距离:数学表示为,其中D和τ分别为少子寿命。

准费米能级:电子和空穴的准费米能级分别将电子和空穴的非平衡浓度状态浓度与本征载流费米能级联系起来。

复合率:电子-空穴对复合的速率#/cm3-s)。

表面态:半导体表面禁带中存在的电子能态。

电导率:关于载流子漂移的材料参数;可量化为漂移电流密度和电场强度之比。

扩散:粒子从高浓度区向底浓度区运动的过程。

扩散系数:关于粒子流动与粒子浓度剃度之间的参数。

扩散电流:载流子扩散形成的电流。

漂移:在电场作用下,载流子的运动过程。

漂移电流:载流子漂移形成的电流。

漂移速度:电场中载流子的平均漂移速度。

爱因斯坦关系:扩散系数和迁移率的关系。

霍尔电压:在霍尔效应测量中,半导体上产生的横向压降。

电离杂质散射:载流子忽然电离杂质原子之间的相互作用。

迁移率:关于载流子漂移和电场强度的参数。

电阻率:电导率的倒数;计算电阻的材料参数。

饱和速度:电场强度增加时,载流子漂移速度的饱和度。

受主原子:为了形成P型材料而加入半导体的杂质原子。

载流子电荷:在半导体内运动并形成电流的电子和(或)空穴。

杂质补偿半导体:同一半导体区域内既含有施主杂质又含有受主杂质的半导体。

完全电离:所有施主杂质原子因失去电子而带正电,所有受主杂质原子因获得电子而带负电的情况。

尼曼半导体物理与器件

尼曼半导体物理与器件

尼曼半导体物理与器件
尼曼半导体物理与器件是固态电子学领域中的重要分支之一,主要研究半导体材料的物理性质和器件的设计及工艺制备。

在现代电子技术的发展中,尼曼半导体物理与器件发挥着重要的作用。

尼曼半导体物理与器件的研究对象主要包括半导体材料的物理特性和器件的性能。

半导体材料具有半导体和导体的特性,且在一定范围内具有可控制的电子特性,其导电性能可以通过控制材料的禁带宽度和掺杂浓度等参数来实现。

而尼曼半导体器件则是指基于半导体材料的电子器件,包括晶体管、二极管、太阳能电池等。

尼曼半导体物理与器件研究的一大应用领域是半导体器件的制造。

通过对半导体材料的物理特性进行研究和开发,可以设计出性能更加优异的半导体器件。

例如,随着人们对太阳能利用技术的不断探索和开发,尼曼半导体物理与器件的研究和应用也得到了大力推广。

太阳能电池能够将太阳能转化为电能,而半导体材料的导电性能可以让太阳能电池更加高效地转化太阳能为电能。

总的来说,尼曼半导体物理与器件在现代电子技术的发展中发挥着越来越重要的作用,有助于推动现代电子技术的发展和改进。

随着人们对电子技术需求的不断提升,尼曼半导体物理与器件的研究和应用将会成为未来电子技术领域的重要研究方向。

尼曼半导体物理与器件第一章课件

尼曼半导体物理与器件第一章课件

广义原胞
尼曼半导体物理与器件第一章
12
1.3.2 基本的晶体结构
立方晶系基本的晶体结构:
常见的三个基本的立方结构 (1)简单立方结构(sc) (2)体心立方结构(bcc) (3)面心立方结构(fcc)
尼曼半导体物理与器件第一章
13
➢简立方结构 Simple Cubic
每个顶角有一个原子
z
➢ 体心立方结构 Body Centered Cubic
• 原胞:可以复制得到整个晶格的最小单元。
单晶晶格二维表示
•晶格、原胞的选取都不是唯一的。
尼曼半导体物理与器件第一章
11
•晶胞和晶格的关系用矢量 a 、b 、c 表示,三个矢 量可不必互相垂直,长度可以不相等,基矢长度称 为晶格常数 。
•每个等效格点可用下述矢量表示
rpaqbsc
•其中,p、q、s为整数。
1. 离子晶体:离子键,例如NaCl晶体等; 2. 共价晶体:共价键,例如Si、Ge以及GaAs晶体等; 3. 金属晶体:金属键,例如Li、Na、K、Be、Mg以及Fe、 Cu、Au、Ag等; 4. 分子晶体:范德华键,例如惰性元素氖、氩、氪、氙等 在低温下则形成分子晶体,HF分子之间在低温下也通过范 德华键形成分子晶体。
• 第六章 半导体中的非平衡过剩载流子
半 • 第七章 pn结
导 • 第八章 pn结二极管
体 器
• 第九章 金属半导体和半导体异质结
件 • 第十章 金属-氧化物-半导体场效应晶体管基础
基 • 第十一章 金属-氧化物-半导体场效应晶体管:概念深入
础 • 第十二章 双极晶体管
• 第十三章 结型场效应晶体管 • 第十四章 光器件
1.11(a)-(c) 1.16 1.24(Si晶格常数5.43Å)

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结Document number:NOCG-YUNOO-BUYTT-UU986-1986UT基本概念题:第一章半导体电子状态半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。

通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。

单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。

由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。

从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。

导带与价带有效质量有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的E-k 关系决定。

本征半导体既无杂质有无缺陷的理想半导体材料。

空穴空穴是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

半导体物理知识要点及总结

半导体物理知识要点及总结

第四章
• 电导率的表达式 • 迁移率的定义及其与平均自由时间的关系 • 散射的概念,以及两种重要的散射机制及 其它们与温度和杂质浓度的关系 • 本征半导体和杂质半导体的电阻率随温度 的变化关系
第五章
• 非平衡载流子的产生及复合过程 • 非平衡载流子的寿命及复合率 • 准费米能级的提出及在非平衡载流子浓度公式 中的应用,相应的计算 • 直接复合与间接复合的异同 • 扩散流密度及电流密度 • 扩散方程及其解的形式(厚样品与薄样品) • 爱因斯坦关系的应用 • 连续性方程的一般形式,特定条件下解的形式
2 1015 3 116 1 1 3 1 ln ( ) ln T 3 ln T ln 14 T 0.5 2*0.5 2 2 10 2
解得:T=16.2 b. ND=1017cm-3,
2 1015 3 116 1 1 3 1 ln ln T ln ( ) ln T 3.9 17 T 0.5 2*0.5 2 2 10 2
第三章01 12
思考题
• 分析下图载流子浓度曲线随温度的变化过 程
第三章01
13
例题4
• 若锗的电离能为0.01eV,Nc=1.05*1019cm-3, 如果室温下电离要超过90%(强电离), 则掺杂浓度不能超过多少? n n N ED EF k0T • 解:强电离时,
0 D D
f B (E) e
EF E k0T
f B ( Ec ) e
EF Ec k0T
e
0.25 0.026
6.67 105
n0 NC exp(
EF EC 0.25 ) 2.8 1019 exp( ) 1.87 1015 cm3 k0T 0.026

半导体物理名词解释总结

半导体物理名词解释总结

半导体物理名词解释总结半导体物理名词解释1.有效质量:a 它概括了半导体内部势场的作用,使得在解决导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用b 可以由实验测定,因而可以很方便的解决电子的运动规律2.空穴:定义价带中空着的状态看成是带正电荷的粒子,称为空穴1.意义a 把价带中大量电子对电流的贡献仅用少量的空穴表达出来b金属中仅有电子一种载流子,而半导体中有电子和空穴两种载流子,正是这两种载流子的相互作用,使得半导体表现出许多奇异的特性,可用来制造形形色色的器件3.理想半导体(理想与非理想的区别):a 原子并不是静止在具有严格周期性的晶格的格点位置上,而是在其平衡位置附近振动b 半导体材料并不是纯净的,而是含有各种杂质即在晶格格点位置上存在着与组成半导体材料的元素不同其他化学元素的原子c 实际的半导体晶格结构并不是完整无缺的,而存在着各种形式的缺陷4.杂质补偿:在半导体中,施主和受主杂质之间有相互抵消的作用通常称为杂质的补偿作用5.深能级杂质:非Ⅲ、Ⅴ族杂质在硅、锗的禁带中产生的施主能级距离导带较远,他们产生的受主能级距离价带也较远,通常称这种能级为深能级,相应的杂质为深能级杂质6.简并半导体:当E-E F》k o T不满足时,即f(E)《1,[1-f (E)]《1的条件不成立时,就必须考虑泡利不相容原理的作用,这时不能再应用玻耳兹曼分布函数,而必须用费米分布函数来分析导带中的电子及价带中的空穴的统计分布问题。

这种情况称为载流子的简并化,发生载流子简并化的半导体被称为简并半导体(当杂质浓度超过一定数量后,载流子开始简并化的现象称为重掺杂,这种半导体即称为简并半导体7.热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子与晶格系统不再处于热平衡状态。

温度是平均动能的量度,既然载流子的能量大于晶格系统的能量,人们便引入载流子的有效温度T e来描写这种与晶格系统不处于热平衡状态时的载流子,并称这种状态载流子为热载流子8.砷化镓负阻效应:当电场达到一定値时,能谷1中的电子可从电场中获得足够的能量而开始转移到能谷2,发生能谷间的散射,电子的动量有较大的改变,伴随吸收或发射一个声子。

半导体物理知识点总结汇总

半导体物理知识点总结汇总

一、半导体物理知识大纲核心知识单元A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)→半导体中的电子状态(第1章)→半导体中的杂质和缺陷能级(第2章)核心知识单元B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)→半导体中载流子的统计分布(第3章)→半导体的导电性(第4章)→非平衡载流子(第5章)核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)→半导体光学性质(第10章)→半导体热电性质(第11章)→半导体磁和压阻效应(第12章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。

主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。

阐述本征半导体的导电机构,引入了空穴散射的概念。

最后,介绍了Si、Ge和GaAs的能带结构。

在1.1节,半导体的几种常见晶体结构及结合性质。

(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。

介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。

(重点掌握)在1.3节,引入有效质量的概念。

讨论半导体中电子的平均速度和加速度。

(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。

(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。

(理解即可)在1.6节,介绍Si、Ge的能带结构。

(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。

(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。

半导体导论重要术语解释

半导体导论重要术语解释

第一章(1)晶态:固体材料中的原子有规律的周期性排列,或称为长程有序。

(2)非晶态:固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序(3)准晶态:介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

(4)单晶:原子呈周期性排列的晶体(5)多晶:由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。

(6)理想晶体(完整晶体):内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。

(7)空间点阵(布拉菲点阵):晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。

(8)晶格常数:晶胞的棱边的长度。

(9)晶胞:能复制整个晶体的一小部分晶体。

晶胞不是唯一的。

最小的晶胞称为原胞(10)晶面指数(密勒指数):描写布拉菲点阵中晶面方位的一组互质整数。

(11)原子的电负性:原子得失价电子能力的度量。

电负性一常数(电离能+亲和能)。

(12)倒格子及其与正格子的关系:由正格子的基矢(a1,a2,a3)定义的三个矢量(b1,b2,b3)。

(13)布里渊区:在倒格子中,以某一点为坐标原点,作所有倒格矢的垂直平分面,倒格子空间被这些平面分成许多区域,这些区域就称为布里渊区(14)价电子:最外层的电子因构成化学价键而被叫做价电子。

(15)原子价键:主要的原子价键有共价键、离子键、π键和金属键。

(16)共价键与非极性共价键:共价键是相邻原子间通过共用自旋方向相反的电子对(电子云重叠)与原子核间的静电作用形成的,成键的条件是成键原子得失电子的能力相当或是差别较小,或者是成键原子一方有孤对电子(配位体),另一方有空轨道(中心离子)。

如果相邻原子吸引电子的能力是一样的,则共用电子对不会发生偏移,这样的共价键就是非极性共价键。

共价键的数目遵从8-N原则。

(17)共价键的特点:具有方向性和饱和性。

(18)空穴:光激发或热激发等激发因素会使原子键断裂而释放出电子,在断键处少掉了一个电子,等效于留下一个带(+q)电量的正电荷在键电子原来所在的位置,这就是空穴。

【半导体物理与器件】【尼曼】【课后小结与重要术语解释】汇总

【半导体物理与器件】【尼曼】【课后小结与重要术语解释】汇总

第一章、固体晶体结构1. 小结1. 硅是最普遍的半导体材料2. 半导体和其他材料的属性很大程度上由其单晶的晶格结构决定。

晶胞是晶体中的一小块体积,用它可以重构出整个晶体。

三种基本的晶胞是简立方、体心立方和面心立方。

3. 硅具有金刚石晶体结构。

原子都被由4 个紧邻原子构成的四面体包在中间。

二元半导体具有闪锌矿结构,它与金刚石晶格基本相同。

4. 引用米勒系数来描述晶面。

这些晶面可以用于描述半导体材料的表面。

密勒系数也可以用来描述晶向。

5. 半导体材料中存在缺陷,如空位、替位杂质和填隙杂质。

少量可控的替位杂质有益于改变半导体的特性。

6. 给出了一些半导体生长技术的简单描述。

体生长生成了基础半导体材料,即衬底。

外延生长可以用来控制半导体的表面特性。

大多数半导体器件是在外延层上制作的。

2. 重要术语解释1. 二元半导体:两元素化合物半导体,如GaAs 。

2. 共价键:共享价电子的原子间键合。

3. 金刚石晶格:硅的原子晶体结构,亦即每个原子有四个紧邻原子,形成一个四面体组态。

4. 掺杂:为了有效地改变电学特性,往半导体中加入特定类型的原子的工艺。

5. 元素半导体:单一元素构成的半导体,比如硅、锗。

6. 外延层:在衬底表面形成的一薄层单晶材料。

7. 离子注入:一种半导体掺杂工艺。

8. 晶格:晶体中原子的周期性排列9. 密勒系数:用以描述晶面的一组整数。

10. 原胞:可复制以得到整个晶格的最小单元。

11. 衬底:用于更多半导体工艺比如外延或扩散的基础材料,半导体硅片或其他原材料。

12. 三元半导体:三元素化合物半导体,如AlGaAs 。

13. 晶胞:可以重构出整个晶体的一小部分晶体。

14. 铅锌矿晶格:与金刚石晶格相同的一种晶格,但它有两种类型的原子而非一种第二章、量子力学初步3. 小结1. 我们讨论了一些量子力学的概念,这些概念可以用于描述不同势场中的电子状态。

了解电子的运动状态对于研究半导体物理是非常重要的。

尼曼-半导体物理与器件第九章汇总

尼曼-半导体物理与器件第九章汇总

第九章 金属半导体和半导体异质结
13
高等半导体物理与器件
Jm
s
Js
m
Jm
s
Js m
Jm
s
Js m
EF
Ec
EF
Ec Ev
EF Ec
Ev
(a ) 热平衡
(b) 正向偏压
(c) 反向偏压
Ev
热电子发射过程的电流输运 正偏时,跨越势垒的静电势差降低,因此表面电子浓度增加; 而由金属流向半导体的电子流量维持不变。
(1)理想非整流接触势垒
• m<s,金属与n型半导体结欧姆接触
接 触 前
考虑表面态影响,无法 形成良好的欧姆接触
接热 触平 后衡
• m>s,金属与p型半导体结欧姆接触
接 触 前 接热 触平 后衡
第九章 金属半导体和半导体异质结
20
高等半导体物理与器件
(2)隧道效应
• 金属-半导体接触的空间电荷宽度与半导体掺杂浓度 2 V V 的平方根成反比。 W x
第九章 金属半导体和半导体异质结
eVF
xn
(b)

e (Vbi VR ) eVR
(c)
xn

5 图 6. 4 不同偏压情况下,金属与
高等半导体物理与器件
(2)理想结的特性
处理pn结相同方法来确定异质结静电特性
空间电荷区的电场用泊松方程表示为: dE x dx s 假设半导体均匀掺杂,则: eN d eN d x E dx C1
真空能级作为参考能级。
金属功函数m,半导体功函数s;e为费米能级和真空能级 之差。此处,m>s。
电子亲和能 χ。eχ是半导体导带底与真空能级的差值。 q m qVbi q (m s )

半导体物理与器件第7章到第13章名词解释

半导体物理与器件第7章到第13章名词解释

半导体物理与器件第7章到第13章名词解释1、Abrupt junction approximation (突变结近似)The assumption that there is an abrupt discontinuity in space charge density between the space charge region and neutral semiconductor region.认为从中性半导体区到空间电荷区的空间电荷密度有一个突然的不连续。

2、Depletion layer approximation (耗尽层近似)The number of carriers is almost zero due to the strong built-in electric field in the space charge region, that the charge in the space charge region is almost completely provided ionized impurity, this space charge region is called depletion layer.由于空间电荷区较强的内建电场,载流子的数量几乎为零,因此可以认为空间电荷区中的电荷几乎完全是由电离杂质所提供的,这种空间电荷区就称为耗尽层。

3、Built-in electric field (内建电场)An electric field due to the separation of positive and negative space charge densities in the depletion region.由于耗尽区正负空间电荷相互分离而形成的电场。

4、Built-in potential harrier (内建电势差)The electrostatic potential difference between the p and n regions of a pn junction in thermal equilibrium.热平衡状态下pn结内p区与n区的静电电势差。

半导体导论重要术语解释

半导体导论重要术语解释

第一章(1)晶态:固体材料中的原子有规律的周期性排列,或称为长程有序。

(2)非晶态:固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序(3)准晶态:介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

(4)单晶:原子呈周期性排列的晶体(5)多晶:由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。

(6)理想晶体(完整晶体):内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。

(7)空间点阵(布拉菲点阵):晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。

(8)晶格常数:晶胞的棱边的长度。

(9)晶胞:能复制整个晶体的一小部分晶体。

晶胞不是唯一的。

最小的晶胞称为原胞(10)晶面指数(密勒指数):描写布拉菲点阵中晶面方位的一组互质整数。

(11)原子的电负性:原子得失价电子能力的度量。

电负性一常数(电离能+亲和能)。

(12)倒格子及其与正格子的关系:由正格子的基矢(a1,a2,a3)定义的三个矢量(b1,b2,b3)。

(13)布里渊区:在倒格子中,以某一点为坐标原点,作所有倒格矢的垂直平分面,倒格子空间被这些平面分成许多区域,这些区域就称为布里渊区(14)价电子:最外层的电子因构成化学价键而被叫做价电子。

(15)原子价键:主要的原子价键有共价键、离子键、π键和金属键。

(16)共价键与非极性共价键:共价键是相邻原子间通过共用自旋方向相反的电子对(电子云重叠)与原子核间的静电作用形成的,成键的条件是成键原子得失电子的能力相当或是差别较小,或者是成键原子一方有孤对电子(配位体),另一方有空轨道(中心离子)。

如果相邻原子吸引电子的能力是一样的,则共用电子对不会发生偏移,这样的共价键就是非极性共价键。

共价键的数目遵从8-N原则。

(17)共价键的特点:具有方向性和饱和性。

(18)空穴:光激发或热激发等激发因素会使原子键断裂而释放出电子,在断键处少掉了一个电子,等效于留下一个带(+q)电量的正电荷在键电子原来所在的位置,这就是空穴。

尼曼-半导体物理与器件第六章解析

尼曼-半导体物理与器件第六章解析

浓度成比例。
• 外力撤除的情况下,电子浓度变化的比率为
dnt
dt Gn0 R
r ni2 nt p t
复合系数
第六章 半导体中的非平衡过剩载流子
4
热平衡态:
Gn0 Rn0 r n0 p0 r ni2
非热平衡态,电子的复合率:
R rnt p t r n0 nt p0 p t
除去热激发,可借助其它方法产生载流子,使电 子和空穴浓度偏离热平衡载流子浓度n0、p0,此时 的载流子称为非平衡载流子(n、p),偏离平衡 值的那部分载流子称为过剩载流子(δn、δp)。
n n0 n
p p0 p
产生非平衡载流子的方法:电注入(如 pn 结)、光注入(如光探测器)等。
np n0 p0
根据前面的推导,双极扩散系数D'可表示为:
D DnDp
n p
nn0 n, p p0 n
D
Dn Dp
n0 n
p0 n
Dnn Dp p
Dn n0 n Dp p0 n
其中,n0和p0分别是热平衡时电子和空穴浓度,δn是过剩载流子浓度。
以p型半导体为例(p0>>n0),假设小注入条件(δn<<p0),且
x2
p
E
p
x
E
p
x
gp
p
pt
p
t
Dn
2 n
x2
n
E
n
x
n
E x
g
n
n
nt
n
t
简化为:
Dp
2 n
x2
p
E
n
x
p
E x

半导体物理学名词解释

半导体物理学名词解释

半导体物理学名词解释1、直接复合:电子在导带与价带间直接跃迁而引起非平衡载流子的复合。

2、间接复合:指的是非平衡载流子通过复合中心的复合。

3、俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。

4、施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。

5、受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。

6、多数载流子:半导体材料中有电子和空穴两种载流子。

在N 型半导体中,电子是多数载流子, 空穴是少数载流子。

在P型半导体中,空穴是多数载流子,电子是少数载流子。

7、能谷间散射:8、本征半导体:本征半导体就是没有杂质和缺陷的半导体。

9、准费米能级:半导体中的非平衡载流子,可以认为它们都处于准平衡状态(即导带所有的电子和价带所有的空穴分别处于准平衡状态)。

对于处于准平衡状态的非平衡载流子,可以近似地引入与Fermi能级相类似的物理量——准Fermi能级来分析其统计分布;当然,采用准Fermi能级这个概念,是一种近似,但确是一种较好的近似。

基于这种近似,对于导带中的非平衡电子,即可引入电子的准Fermi能级;对于价带中的非平衡空穴,即可引入空穴的准Fermi能级。

10、禁带:能带结构中能态密度为零的能量区间。

11、价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

12、导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

13、束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子。

14、浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章固体晶体结构小结1.硅是最普遍的半导体材料2.半导体和其他材料的属性很大程度上由其单晶的晶格结构决定。

晶胞是晶体中的一小块体积,用它可以重构出整个晶体。

三种基本的晶胞是简立方、体心立方和面心立方。

3.硅具有金刚石晶体结构。

原子都被由4个紧邻原子构成的四面体包在中间。

二元半导体具有闪锌矿结构,它与金刚石晶格基本相同。

4.引用米勒系数来描述晶面。

这些晶面可以用于描述半导体材料的表面。

密勒系数也可以用来描述晶向。

5.半导体材料中存在缺陷,如空位、替位杂质和填隙杂质。

少量可控的替位杂质有益于改变半导体的特性。

6.给出了一些半导体生长技术的简单描述。

体生长生成了基础半导体材料,即衬底。

外延生长可以用来控制半导体的表面特性。

大多数半导体器件是在外延层上制作的。

重要术语解释1.二元半导体:两元素化合物半导体,如GaAs。

2.共价键:共享价电子的原子间键合。

3.金刚石晶格:硅的院子晶体结构,亦即每个原子有四个紧邻原子,形成一个四面体组态。

4.掺杂:为了有效地改变电学特性,往半导体中加入特定类型的原子的工艺。

5.元素半导体:单一元素构成的半导体,比如硅、锗。

6.外延层:在衬底表面形成的一薄层单晶材料。

7.离子注入:一种半导体掺杂工艺。

8.晶格:晶体中原子的周期性排列9.密勒系数:用以描述晶面的一组整数。

10.原胞:可复制以得到整个晶格的最小单元。

11.衬底:用于更多半导体工艺比如外延或扩散的基础材料,半导体硅片或其他原材料。

12.三元半导体:三元素化合物半导体,如AlGaAs。

13.晶胞:可以重构出整个晶体的一小部分晶体。

14.铅锌矿晶格:与金刚石晶格相同的一种晶格,但它有两种类型的原子而非一种。

第二章量子力学初步小结1.我们讨论了一些量子力学的概念,这些概念可以用于描述不同势场中的电子状态。

了解电子的运动状态对于研究半导体物理是非常重要的。

2.波粒二象性原理是量子力学的重要部分。

粒子可以有波动态,波也可以具有粒子态。

3.薛定谔波动方程式描述和判断电子状态的基础。

4.马克思·玻恩提出了概率密度函数|fai(x)|2.5.对束缚态粒子应用薛定谔方程得出的结论是,束缚态粒子的能量也是量子化的。

6.利用单电子原子的薛定谔方程推导出周期表的基本结构。

重要术语解释1.德布罗意波长:普朗克常数与粒子动量的比值所得的波长。

2.海森堡不确定原理:该原理指出我们无法精确确定成组的共轭变量值,从而描述粒子的状态,如动量和坐标。

3.泡利不相容原理:该原理指出任意两个电子都不会处在同一量子态。

4.光子:电磁能量的粒子状态。

5.量子:热辐射的粒子形态。

6.量子化能量:束缚态粒子所处的分立能量级。

7.量子数:描述粒子状态的一组数,例如原子中的电子。

8.量子态:可以通过量子数描述的粒子状态。

9.隧道效应:粒子穿过薄层势垒的量子力学现象。

10.波粒二象性:电磁波有时表现为粒子状态,而粒子有时表现为波动状态的特性。

第三章固体量子理论初步小结1.当原子聚集在一起形成晶体时,电子的分立能量也就随之分裂为能带。

2.对表征单晶材料势函数的克龙克尼-潘纳模型进行严格的量子力学分析和薛定谔波动方程推导,从而得出了允带和禁带的概念。

3.有效质量的概念将粒子在晶体中的运动与外加作用力联系起来,而且涉及到晶格对粒子运动的作用。

4.半导体中存在两种带点粒子。

其中电子是具有正有效质量的正电荷粒子,一般存在于允带的顶部。

5.给出了硅和砷化镓的E-k关系曲线,并讨论了直接带隙半导体和间接带隙半导体的概念。

6.允带中的能量实际上是由许多的分立能级组成的,而每个能级都包含有限数量的量子态。

单位能量的量子态密度可以根据三维无限深势阱模型确定。

7.在涉及大量的电子和空穴时,就需要研究这些粒子的统计特征。

本章讨论了费米-狄拉克概率函数,它代表的是能量为E的量子态被电子占据的几章。

重要术语解释1.允带:在量子力学理论中,晶体中可以容纳电子的一系列能级。

2.状态密度函数:有效量子态的密度。

它是能量的函数,表示为单位体积单位能量中的量子态数量。

3.电子的有效质量:该参数将晶体导带中电子的加速度与外加的作用力联系起来,该参数包含了晶体中的内力。

4.费米-狄拉克概率函数:该函数描述了电子在有效能级中的分布,代表了一个允许能量状态被电子占据的概率。

5.费米能级:用最简单的话说,该能量在T=0K时高于所有被电子填充的状态的能量,而低于所有空状态能量。

6.禁带:在量子力学理论中,晶体中不可以容纳电子的一系列能级。

7.空穴:与价带顶部的空状态相关的带正电“粒子”。

8.空穴的有效质量:该参数同样将晶体价带中空穴的加速度与外加作用力联系起来,而且包含了晶体中的内力。

9.k空间能带图:以k为坐标的晶体能连曲线,其中k为与运动常量有关的动量,该运动常量结合了晶体内部的相互作用。

10.克龙尼克-潘纳模型:由一系列周期性阶跃函数组成,是代表一维单晶晶格周期性势函数的数学模型。

11.麦克斯韦-波尔兹曼近似:为了用简单的指数函数近似费米-狄拉克函数,从而规定满足费米能级上下若干kT的约束条件。

12.泡利不相容原理:该原理指出任意两个电子都不会处在同一量子态。

第四章平衡半导体小结1.导带电子浓度是在整个导带能量范围上,对导带状态密度与费米-狄拉克概率分布函数的乘积进行积分得到的2.价带空穴浓度是在整个价带能量范围上,对价带状态密度与某状态为空的概率【1-fF(E)】的乘积进行积分得到的。

3.本章讨论了对半导体渗入施主杂质(V族元素)和受主杂质(111族元素)形成n型和p型非本征半导体的概念。

4.推导出了基本关系式ni2=n0p0。

5.引入了杂质完全电离与电中性的概念,推导出了电子与空穴浓度关于掺杂浓度的函数表达式。

6.推导出了费米能级位置关于掺杂浓度的表达式。

7.讨论了费米能级的应用。

在热平衡态下,半导体内的费米能级处处相等。

重要术语解释1.受主原子:为了形成p型材料而加入半导体内的杂质原子。

2.载流子电荷:在半导体内运动并形成电流的电子和(或)空穴。

3.杂质补偿半导体:同一半导体区域内既含有施主杂质又含有受主杂质的半导体。

4.完全电离:所有施主杂质原子因失去电子而带正电,所有受主杂质原子因获得电子而带负电的情况。

5.简并半导体:电子或空穴的浓度大于有效状态密度,费米能级位于导带中(n型)或价带中(p型)的半导体。

6.施主原子:为了形成n型材料而加入半导体内的杂质原子。

7.有效状态密度:即在导带能量范围内对量子态密度函数gc(E)与费米函数fF(E)的乘积进行积分得到的参数Nc;在价带能量范围内对量子态密度函数gv(E)与【1-fF(E)】的乘积进行积分得到的参数N。

8.非本征半导体:进行了定量施主或受主掺杂,从而使电子浓度或空穴浓度偏离本征载流子浓度产生多数载流子电子(n型)或多数载流子空穴(p型)的半导体。

9.束缚态:低温下半导体内的施主与受主呈现中性的状态。

此时,半导体内的电子浓度与空穴浓度非常小。

10.本征载流子浓度ni:本征半导体内导带电子的浓度和价带空穴的浓度(数值相等)。

11.本征费米能级Efi:本征半导体内的费米能级位置。

12.本征半导体:没有杂质原子且晶体中无晶格缺陷的纯净半导体材料。

13.非简并半导体:参入相对少量的施主和(或)受主杂质,使得施主和(或)受主能级分立、无相互作用的半导体。

14.载流子输运现象第五章载流子运输现象小结1半导体中的两种基本疏运机构:电场作用下的漂移运动和浓度梯度作用下的扩散运动。

2 存在外加电场时,在散射作用下载流子达到平均漂移速度。

半导体存在两种散射过程,即晶格散射和电离杂质散射3 在若电场下,平均漂移速度是电场强度的线性函数;而在强力场下,漂移速度达到饱和,其数量级为107cm/s。

4 载流子迁移率为平均漂移速度与外加电场之比。

电子和空穴迁移率是温度以及电离杂质浓度的函数。

5漂移电流密度为电导率和电场强度的乘积(欧姆定律的一种表示)。

电导率是载流子浓度和迁移率的函数。

电阻率等于电导率的倒数。

6扩散电流密度与载流子扩散系数和载流子浓度梯度成正比。

7 扩散系数和迁移率的关系成为爱因斯坦关系8 霍尔效应是载流子电荷在相互垂直的电场和磁场中运动产生的。

载流子风生偏转,干生出霍尔效应。

霍尔电压的正负反映了半导体的导电类型。

还可以由霍尔电压确定多数载流子浓度和迁移率。

重要术语解释电导率:关于载流子漂移的材料参数;可量化为漂移电流密度和电场强度之比。

扩散:粒子从高浓度区向低浓度区运动的过程。

扩散系数:关于粒子流动与粒子浓度梯度之间的参数。

扩散电流:载流子扩散形成的电流。

漂移:在电场作用下,载流子的运动过程。

漂移电流:载流子漂移形成的电流漂移速度:电场中载流子的平均漂移速度爱因斯坦关系:扩散系数和迁移率的关系霍尔电压:在霍尔效应测量中,半导体上产生的横向压降电离杂质散射:载流子和电离杂质原子之间的相互作用晶格散射:载流子和热震动晶格原子之间的相互作用迁移率:关于载流子漂移和电场强度的参数电阻率:电导率的倒数;计算电阻的材料参数饱和速度:电场强度增加时,载流子漂移速度的饱和值。

15.半导体中的非平衡过剩载流子第六章半导体中的非平衡过剩载流子小结1 讨论了过剩电子和空穴产生与复合的过程,定义了过剩载流子的产生率和复合率2 过剩电子和空穴是一起运动的,而不是互相独立的。

这种现象称为双极疏运3 推导了双极疏运方程,并讨论了其中系数的小注入和非本征掺杂约束条件。

在这些条件下,过剩电子和空穴的共同漂移和扩散运动取决于少子的特性,这个结果就是半导体器件状态的基本原理4 讨论了过剩载流子寿命的概念5 分别分析了过剩载流子状态作为时间的函数作为空间的函数和同事作为实践与空间的函数的情况6 定义了电子和空穴的准费米能级。

这些参数用于描述非平衡状态下,电子和空穴的总浓度8 半导体表面效应对过剩电子和空穴的状态产生影响。

定义了表面复合速度重要术语解释1 双极扩散系数:过剩载流子的有效扩散系数2 双极迁移率:过剩载流子的有效迁移率3 双极疏运:具有相同扩散系数,迁移率和寿命的过剩电子和空穴的扩散,迁移和复合过程4 双极输运方程:用时间和空间变量描述过剩载流子状态函数的方程5 载流子的产生:电子从价带跃入导带,形成电子-空穴对的过程6 载流子的复合:电子落入价带中的空能态(空穴)导致电子-空穴对消灭的过程7 过剩载流子:过剩电子和空穴的过程8 过剩电子:导带中超出热平衡状态浓度的电子浓度9 过剩空穴:价带中超出热平衡状态浓度的空穴浓度10 过剩少子寿命:过剩少子在复合前存在的平均时间11 产生率:电子-空穴对产生的速率(#/cm3-ms)12 小注入:过剩载流子浓度远小于热平衡多子浓度的情况13 少子扩散长度:少子在复合前的平均扩散距离:数学表示为τD,其中D和τ分别为少子的扩散系数和寿命14 准费米能级:电子和空穴的准费米能级分别将电子和空穴的非平衡状态浓度与本征载流子浓度以及本征费米能级联系起来15 复合率:电子-空穴对复合的速率(#/cm3-s)16 表面态:半导体表面禁带中存在的电子能态。

相关文档
最新文档