【整理】高中物理选修3-5原子物理高频考点必记清单

合集下载

人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构

人教版高中物理选修3-5知识点整理及重点题型梳理]  原子结构

人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。

高中物理选修3-5原子物理部分知识总结

高中物理选修3-5原子物理部分知识总结
第三节
探测射线的方法
威尔逊云室
有粒子在室内气体中飞过,使沿途的气体分子电离,过饱和酒精蒸汽就会以这些离子为核心凝结成雾滴,显示出射线的径迹。
该云室是英国物理学家威尔逊在1912年发明的。
α粒子:质量大、电离本领大,因而径迹直而清晰。
β粒子:高速的,径迹又细又直;低速的,又短又粗且弯曲。
α粒子散射实验
(核式结构模型)
绝大多数粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数粒子发生了大角度偏转,偏转的角度甚至大于90°。
该实验于1909年,由英籍物理学家卢瑟福指导他的学生盖革和马斯顿进行的。
基于此实验,1911年,英籍物理学家卢瑟福提出来了自己的原子结构模型,被称为核式结构模型。
原子核的电荷与尺度
章节
名称
定义(内容)
补充
第十九章原子核
第一节
原子核的组成
天然放射现象
物质发射射线的性质称为放射性,具有放射性的元素称为放射性元素,放射性元素自发地发出射线的现象叫天然放射现象。
原子序数大于或等于83的元素都能自发地发出射线,原子序数小于83的元素,有的也能放出射线。
1895年末,德国物理学家伦琴发现了一种的新射线——X射线,即伦琴射线。
巴耳末公式
R叫做里德伯常量1.10×107m-1
经典理论的困难
无法解释原子的稳定性和原子光谱的分立特征。
第四节
玻尔的原子模型
玻尔原子理论的基本假设
轨道量子化与定态:1、电子的轨道是量子化的2、原子的能量是量子化的,这些量子化的能量值叫做能级,原子中具有确定能量的稳定状态称为定态。能量最低的状态叫基态,其他状态叫做激发态。
由于不同的原子具有不同的结构,能级各不相同,因此辐射(吸收)的光子频率也不同。

高中物理选修3-5必备知识点大全

高中物理选修3-5必备知识点大全

高中物理选修3-5必备知识点(一)氢原子光谱氢原子是最简单的原子,其光谱也最简单。

1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发现这些谱线的波长可以用一个公式表示:式中R叫做里德伯常量,这个公式成为巴尔末公式。

除了巴耳末系,后来发现的氢光谱在红外和紫个光区的其它谱线也都满足与巴耳末公式类似的关系式。

氢原子光谱是线状谱,具有分立特征,用经典的电磁理论无法解释。

原子核的衰变;半衰期⑴衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒⑵半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件没有关系。

放射性的应用与防护;放射性同位素放射性同位素:有些同位素具有放射性,叫做放射性同位素。

同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用粒子轰击铝时,发生核反应。

1934年,约里奥—居里夫妇发现经过α粒子轰击的铝片中含有放射性磷。

高中物理选修3-5必备知识点(二)1、天然放射现象⑴天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。

这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性。

放射性元素:具有放射性的元素称放射性元素。

天然放射现象:某种元素自发地放射射线的现象,叫天然放射现象。

这表明原子核存在精细结构,是可以再分的。

⑵放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹2、原子核的组成原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子。

在原子核中有:质子数等于电荷数、核子数等于质量数、中子数等于质量数减电荷数。

高中物理选修3-5必备知识点(三)1.原子核式结构模型与经典电磁理论的矛盾(两方面)a.电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

人教版高二物理选修3-5 原子物理 知识归纳

人教版高二物理选修3-5 原子物理 知识归纳
(3)能量量子化:在微观世界中,能量不是连续的,只能是取分离值,这种现象称为能量量子化。(能量不连续,一份份间断)
光的粒子性
(一).光电效应
1.定义:在光的照射下,物体发出电子的现象叫做光电效应,发出的的电子称为光电子。“光子找电子,一起生了个光电子” (1)光电效应实验规律:
a .光电效应实验规律探究装置(如上右图)
3.查德威克验证了其老师(卢瑟福)12 年前的猜想,发现这种不带电的粒子是电中性,质量几乎核质子相同。命名为中子 01n
基本关系:
核电荷数=质子数( Z )=元素的原子序数=核外电子数 质量数( A )=核子数=质子数+中子数
核子数:质子核中子质量差别非常微小,二者统称为核子,质子数核中子数之和称为核子数。
波尔的原子模型
一.波尔原子模型三条假设:(特别重要)
1.能级定态假设。氢原子处于基态和激发态两种状态(其中基态为最低能级) 2.轨道量子化假设。轨道介于两个不同数值之间的某个值(轨道是一个范围,不能完全确定)
3.跃迁假设。在能级之间跃迁满足: h Em En 这一辐射公式。
二.能级和能级图:
1.能级:原子的可能状态是不不连续的,相对应的能量也是不连续的,这些能量称为能级。
二.光谱分析
1.每一种原子都有一定特征的线状谱。 2.在各种原子的吸收谱中,每一条明线都与原子发出的某种吸收光的频率相对应。——一条明线谱对一种频率的光。 3.由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质或确定它的化学组成,这种方法称为光谱分析。
三.氢原子光谱 1.在充满稀薄氢气的放电管两级间加上 2 ~ 3kV 的高压,使氢气放电,让其在电场中发光。通过分光镜观察氢原子光谱。
1.
粒子守库仑力作用:

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P = mv。

单位是skg .动量是矢量,其方向就是瞬时速度的方向。

因为速度是相对的,所以m动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。

有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

⑥动量守恒定律有广泛的应用范围。

只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:①动量是矢量, 动能是标量。

高二物理选修3-5知识点清单

高二物理选修3-5知识点清单

高二物理选修3-5知识点(一)1.黑体能全部吸收各种波长的电磁波而不发生反射的物体称为绝对黑体,简称黑体.不透明的材料制成带小孔空腔,可近似地看作黑体,研究黑体辐射的规律是了解一般物体热辐射性质的基础。

2.黑体辐射的实验规律黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。

黑体辐射规律如图所示。

3.普朗克的能量量子化假说辐射黑体分子、原子的振动可看做谐振子,这些谐振子可以发射和吸收辐射能,但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不像经典物理学所允许的可具有任意值,相应的能量是某一最小能量ε(称为能量子)的整数倍,即ε、1ε、2ε、3ε、……nε,n为正整数,称为量子数。

对于频率为v的谐振子的最小能量为ε=hν。

这个最小能量值叫做能量子。

4.光电效应a.光电效应⑴光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。

所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。

⑵光电效应的实验规律:装置:如图。

①当一定频率的光照射到金属表面时,真空管内几乎立刻出现光电子,很快形成光电流。

即光电效应是瞬时的,驰豫时间不超过10-9秒。

②当光源频率和外加电压固定时,饱和光电流与入射光强度成正比。

“饱和光电流”指的是光电流的最大值(亦称饱和值),因为光电流未达到最大值之前,其值大小不仅与入射光的强度有关,还有光电管两极间的电压有关,只有在光电流达到最大以后,才和入射光的强度成正比。

③当入射光频率v一定时,光电子定向运动形成的光电流随着正向电压的减小而减小,当正向电压为零时,仍有光电流,只有当电压为某个反向电压值时,其电流才为零,这个反向电压称为遏制电压。

这说明光电子动能有一限度,,v光电子最大初速度,实验表明,最大初动能与入射光强无关,随入射光频率的增大而增大。

④任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。

人教版高中物理选修3-5章总结复习素材:第十九章原子核知识点[知识点总结]2

人教版高中物理选修3-5章总结复习素材:第十九章原子核知识点[知识点总结]2

选修3-5知识点 第十九章原子核19.1原子核的组成 一、天然放射现象1、 物质发射射线的性质称为放射性,它可以穿透黑纸使照相底片感光2、 具有放射性的元素称为放射性元素。

3、 放射性的元素自发地发出射线的现象叫做天然放射现象。

、射线到底是什么1、三种射线分别叫做带正电荷a 射线、带负电荷B 射线和不带电丫射线。

a 射线的穿透能力最弱,丫射线的穿透能力最强。

a 射线是咼速粒子流,粒子带正电,电荷量是电子的2倍,质量是氢原子的4倍,电子质量的7300倍,实际上就是氦原子核中子n :不带电,质量与质子相等。

核子:质子和中子组成的原子核。

① 核电荷数Z= 质子数=原子序数二荷外电子数② 质量数A=核子数=质子数+中子数 例如:23592U ――铀原子核:有92个质子,143个中子。

质量数为235。

5、同位素:具有相同质子数而中子数不同的原子核、在元素周期表中处于同一位置。

2、 3、 4、B 射线是高速电子流。

丫射线是能量很高的电磁波。

5、 a 射线,B 射线都是咼速运动的粒子, 能量很高,丫射线是波长很短的光子,能 6、 量也很高。

三、原子核的组成1、 质子p :它是氢原子核,带正电,电量与电子相等。

1^=1.6726231x10^^3、4、 原子核中的两个等式:2、6、几种常用的原子核的表示19.2放射性元素的衰变一、原子核的衰变原子核放出a或B粒子,由于核电荷数变了,它在周期表中的位置就变了,变成另一种原子核。

我们把这种变化称为原子核的衰变。

-1、a衰变:原子核放出a粒子的衰变,以a射线形式释放a粒子。

①原子核衰变• 一一时电荷数和质量数都守恒即方程两边:上标相加左右相等,下标相加左右也相等。

②a衰变:原子核内少两个质子和两个中子2、B衰变:原子核放出B粒子的衰变,以B射线形式释放B粒子。

A Y+丁-产0①电子的质量数为0、电荷数为-1,可以把电子表示为0-i e②B衰变:原子核内的一个中子变成质子,同时放出一个电子。

精品】高中物理原子与原子核知识点总结(选修3-5)

精品】高中物理原子与原子核知识点总结(选修3-5)

精品】高中物理原子与原子核知识点总结(选修3-5)高中物理原子与原子核知识点总结虽然原子、原子核这一章不是重点,但是高考选择题也会涉及到。

只要记住模型和方程式,就不会在做题上出错。

下面总结的内容希望对同学们有所帮助。

一、波粒二象性1.光电效应的研究思路1)两条线索:h为普朗克常数h=6.63×10J·S,ν为光子频率。

2)三个关系:①爱因斯坦光电效应方程Ek=hν-W。

②光电子的最大初动能Ek可以利用光电管实验的方法测得,即Ek=eUc,其中Uc是遏止电压。

③光电效应方程中的W为逸出功,它与极限频率νc的关系是W=hνc。

2.波粒二象性波动性和粒子性的对立与统一。

1)大量光子易显示出波动性,而少量光子易显示出粒子性。

2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。

3)光子说并未否定波动说,E=hν=C/λ。

4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。

3.物质波1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也叫德布罗意波。

2)物质波的波长:λ=h/p,h是普朗克常量。

二、原子核结构1.电子的发现1897年,英国物理学家XXX通过对阴极射线的研究发现了电子。

电子的发现证明了原子是可再分的。

2.XXX的核式结构模型XXX根据α粒子散射实验提出了原子的核式结构学说,XXX把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论。

认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点。

裂变和聚变是获取核能的两个重要途径。

裂变和聚变过程中释放的能量符合爱因斯坦质能方程。

整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、粒子、光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。

4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。

高中物理选修3-5知识点归纳

高中物理选修3-5知识点归纳

高中物理选修3-5知识点归纳第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。

2.动量物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg ·m/s;1kg ·m/s=1 N·s。

3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。

4.动量守恒定律成立的条件系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。

5.动量定理系统所受合外力的冲量等于动量的变化;I=mv末-mv初。

6.反冲在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。

7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。

8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。

9.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。

第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。

2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。

3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。

4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。

5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量ε的整数倍,这个不可再分的最小能量值ε叫做能量子;并且ε=hν,ν是电磁波的频率,h为普朗克常量,h=6.63⨯1034-J·s;光子的能量为hν。

6.光电效应照射到金属表面的光使金属中的电子从表面逸出的现象;逸出的电子称为光电子;电子脱离某种金属所做功的最小值叫逸出功;光电子的最大初动能E k =h ν-W ;每种金属都有发生光电效应的极限频率和相应的红线波长;光电子的最大初动能随入射光频率的增大而增大。

物理选修3-5-知识点总结

物理选修3-5-知识点总结

高中物理选修3—5知识点梳理一、动量动量守恒定律1、动量:P = mv。

单位是。

动量是矢量,其向就是瞬时速度的向。

因为速度是相对的,所以动量也是相对的.冲量:冲量是矢量,在作用时间力的向不变时,冲量的向与力的向相同;如果力的向是变化的,则冲量的向与相应时间物体动量变化量的向相同。

若力为同一向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。

同一向上动量的变化量=这一向上各力的冲量和.动量定理:动量与力的关系:物体动量的变化率等于它所受的力.2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

(适用于目前物理学研究的一切领域。

)动量守恒定律成立的条件:①系统不受外力作用。

②系统虽受到了外力的作用,但所受合外力为零。

③系统所受的外力远远小于系统各物体间的力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲).④系统所受的合外力不为零,但在某一向上合外力为零,则系统在该向上动量守恒。

⑤系统受外力,但在某一向上力远大于外力,也可认为在这一向上系统的动量守恒。

常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等.②在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于物体间弹力的作用,斜面在水平向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平向具有共同的速度,物体到达斜面顶端时,在竖直向上的分速度等于零。

③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位移为木块位移与木块厚度之和。

二、验证动量守恒定律(实验、探究)Ⅰ【注意事项】1.“水平"和“正碰"是操作中应尽量予以满足的前提条件.2.入射球的质量应大于被碰球的质量.3.入射球每次都必须从斜槽上同一位置由静止开始滚下.法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球.4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。

高中物理选修3-5原子物理高频考点必记清单

高中物理选修3-5原子物理高频考点必记清单

高中物理选修3-5原子物理高频考点必记清单(郎元高)考点一:波粒二象性一、物理学史:1.普朗克能量子论观点:1900年德国物理学家普朗克提出,电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量νεh =。

2.爱因斯坦光子论:1905爱因斯坦提出,空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频 成正比。

即:νεh =.3.赫兹最早发现了光电效应现象。

4. 德布罗意指出,实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。

满足下列关系:P h h ==λεν,(P 为粒子动量) 二、物理现象1.热辐射现象(了解):任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。

2.光电效应现象:在光(包括不可见光)的照射下,从金属中发射出电子的现象。

发射出的电子称为光电子。

3.康普顿效应(了解):1923年,美国物理学家康普顿在研究x 射线通过实物物质发生散射的实验时,发现了一个新的现象,即散射光中除了有原波长λ0的x 光外,还产生了波长λ>λ0 的x 光,其波长的增量随散射角的不同而变化。

这种现象称为康普顿效应(Compton Effect)。

三、物理规律1.黑体辐射规律(了解):黑体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领(在任何温度下,全部吸收任何波长的辐射)。

实验规律:(1)随着温度的升高,黑体的辐射强度都有增加;(2)随着温度的升高,辐射强度的极大值向波长较短方向移动。

(右图)2光电效应规律(重点):①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。

②光电子的最大初动能与入射光的强度无关,光电子的最大初动能随入射光频率的增大而增大。

③饱和光电流强度(反映单位时间发射出的光电子数的多少)与入射光强度成正比。

人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构

人教版高中物理选修3-5知识点整理及重点题型梳理]  原子结构

人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。

高中物理 选修3-5知识点

高中物理 选修3-5知识点

原子物理(3—5)(一)动量物体的动量 P=mv ,矢量① 动量守恒'+'=+22112211v m v m v m v m ,使用时需选择正方向② 条件:(Ⅰ)系统F 合=0;(Ⅱ)F 内>> F 外;(Ⅲ)系统某方向上F 合=0 ③ 实例:碰撞、爆炸、反冲等 ④ 动量与动能 mpE k 22=,k mE p 2=练习1:静止的Li 63核俘获一个速度s m v /107.741⨯=的中子而发生核反应,生成一个新核和速度大小为s m v /100.242⨯=、方向与反应前中子速度方向相同的氦核He 42,上述核反应方程为 ,另一个新核的速度大小为 m/s 。

练习2:(教科书P 51)两个氘核聚变时产生一个中子和一个氦核(氦的同位素),已知氘核的质量m H =2.0141u ,氦核的质量为m He =3.0160u ,中子的质量为m n =1.0087u ,(以上质量均指静质量)(1)写出核反应方程(2)计算反应释放出的核能(3)如果反应前两个氘核的动能均为0.35Mev ,它们正面对碰发生聚变,且反应释放的核能全部转化为动能,计算反应生成的氦核和中子的动能。

(二)原子结构1.原子模型2.氢原子光谱(1)光谱种类① 发射光谱:物质发光直接产生的光谱。

(例如炽热的固体、液体及高温高压气体发光产生连续光谱....;稀薄气体发光产生线状谱...,不同元素的线状谱线不同,又称特征谱线) ② 吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。

(2)氢原子的光谱是线状的(这些亮线称为原子的特征谱线),即辐射波长是分立的。

3.玻尔的原子能级结构① 卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾(“核式结构模型”无法解释a 、原子的稳定性;b 、原子光谱的分立特征)1913年玻尔(丹麦)在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。

选修3-5原子物理-知识点总结

选修3-5原子物理-知识点总结

选修3-5知识纲要【一】、原子核式结构模型1、1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

2、α粒子散射实验和原子核结构模型 (1)α粒子散射实验:1909年,卢瑟福 ①装置: ② 现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

3、几个考点① 卢瑟福的α粒子散射,说明了原子具有核式结构。

② 汤姆孙发现电子,说明了原子可再分或原子有复杂结构 4、玻尔理论 (1)经典电磁理论不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:① 定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的 ②跃迁假设:电子跃迁辐射成吸收一定频率的光子,光子的能量由E m -E n =hv 严格决定 ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。

(2)玻尔的氢子模型: ①氢原子的能级公式和轨道半径公式: 氢原子中电子在第几条可能轨道上运动时,氢原子的能量E n ,和电子轨道半径r n 分别为:……、、3211221=⎪⎭⎪⎬⎫==n r n r n E E n n ② 氢原子的能级图:n=3、4、5、6跃迁到n=2为可见光,频率由大到小γ射线>X 光>紫外线>可见光(紫蓝青绿黄橙红)其中γ射线来源于原子核,X 光来源于核外内层电子跃迁,紫外线、可见光及红外线来源于最外层电子跃迁其中n =1的定态称为基态。

n =2第一激发态以上的定态,称为激发态。

③光子λνchh ==E ,n=3跃迁到n=1发出三种光子(2N C ),321λλλ>>则321chchchλλλ=+(3).谱线条数的确定方法:①一个氢原子跃迁发出可能的光谱线条数最多为(n-1) ②一群氢原子跃迁发出可能的光谱线条数的两种求解方法。

3-5原子物理知识点总结

3-5原子物理知识点总结

3-5原子物理知识点总结第17章光电效应与波粒二象性一、黑体辐射与能量子1.黑体辐射实验规律黑体辐射电磁波的强度与波长的分布只与温度有关,而与材料的种类及表面状况无关。

随着温度的升高,各种波长的辐射强度都增加,而辐射强度的极大值向波长较短的方向移动。

2.能量子能量的辐射或吸收只能是一份一份的,即能量的辐射或吸收只能是某个最小能量值的整数倍。

这个不可再分的最小能量值ε叫做能量子,其大小为ε=hν,其中ν是电磁波的频率,h 称为普朗克常量,其值为6.63×10^-34 XXX。

二、光电效应1.光电效应现象在光的照射下金属中的电子从金属表面逸出的现象叫做光电效应,发射出来的电子叫做光电子。

2.光电效应实验规律每种金属都有一个极限频率。

光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大。

光照射到金属表面时,光电子的发射几乎是瞬时的。

光电流的强度与入射光的强度成正比。

3.XXX光电效应方程空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子。

光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10^-34 J·s。

光电效应方程为Ek=hν-W,其中hν为入射光的能量,Ek为光电子的最大初动能,W是金属的逸出功。

4.遏止电压与截止频率遏止电压是使光电流减小到零的反向电压Uc。

截止频率是能使某种金属发生光电效应的最小频率,又叫极限频率。

不同的金属对应着不同的极限频率。

逸出功是电子从金属中逸出所需做功的最小值。

5.EK-ν图象的信息通过EK-ν图象,可以得到极限频率,逸出功和普朗克常量。

三、光的波粒二象性与物质波1.光的波粒二象性光的干涉、衍射、偏振现象证明光具有波动性。

而光电效应和康普顿效应说明光具有粒子性。

2.物质波根据德布罗意的物质波假设,任何物质都具有波动性,其波长为λ=h/p,其中h为普朗克常量,p为物质的动量。

玻尔原子假设和能级跃迁规律的发现,也是在物质波的基础上得出的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理选修3-5原子物理高频考点必记清单
考点一:波粒二象性
一、物理学史:
1.普朗克能量子论观点:1900年德国物理学家普朗克提出,电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量νεh =。

2.爱因斯坦光子论:1905爱因斯坦提出,空间传播的光也是不连续的,而是一
份一份的,每一份称为一个光子,光子具有的能量与光的频
成正比。

即:νεh =.
3.赫兹最早发现了光电效应现象。

4. 德布罗意指出,实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。

满足下列关系:P
h h ==λεν,(P 为粒子动量) 二、物理现象
1.热辐射现象(了解):任何物体在任何温度下都要发射各种波长的电
磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热
辐射。

2.光电效应现象:在光(包括不可见光)的照射下,从金属中发射出电子的现象。

发射出的电子称为光电子。

3.康普顿效应(了解):1923年,美国物理学家康普顿在研究x 射线通过实物物质发生散射的实验时,发现了一个新的 现象,即散射光中除了有原波长λ0的x 光外,还产生了波长λ>λ0 的x 光,其波长的增量随散射角的不同而变化。

这种现象称为康普顿效应(Compton Effect)。

三、物理规律
1.黑体辐射规律(了解):黑体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领(在任何温度下,全部吸收任何波长的辐射)。

实验规律:(1)随着温度的升高,黑体的辐射强度都有增加;
(2)随着温度的升高,辐射强度的极大值向波长较短方向移动。

(右图)
2光电效应规律(重点):①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生 光电效应,低于极限频率的光不能发生光电效应。

②光电子的最大初动能与入射光的强度无关,光电子的最大初动能随入射光频率的增大而增大。

③饱和光电流强度(反映单位时间发射出的光电子数的多少)与入射光强度成正比。

④光电子的发射一般不超过10-9秒(光电效应的瞬时性)。

3.爱因斯坦光电效应方程(重点):0W h E k -=ν。

E k 是光电子的最大初动能,当E k =0 时,νc 为极限频率,νc =h
W 0. 四、光的波粒二象性 物质波
康普顿效应和光电效应说明光具有粒子性,光的干涉和衍射等现象说明光具有波动性。

因此光具有波粒二象性。

大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强。

实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。

满则下列关系:P
h h ==λεν,。

从光子的概念上看,光波是一种概率波。

考点二:原子结构
一、物理学史:
1.汤姆孙发现了电子并提出原子的“枣糕模型”,密立根通过“油滴实验”测出了电子的电荷量(元电荷)。

2. 卢瑟福通过对 粒子散射实验的分析计算提出原子核式结构模型:在原子
中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

3.玻尔把普朗克量子化的观点引入到原子系统中,提出了波尔原子模型(波尔理论)。

二、波尔原子模型(波尔理论)经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:
①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是
稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫定态。

原子能量最低的状态叫基态,其他能量较高状态叫激发态。

②跃迁假设:原子从一个定态(设能量为E m)跃迁到另一定态(设能量为E n)
时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E m-E n
③轨道量子化假设:原子的不同能量状态,跟电子不同的运行轨道相对应。

原子的能量不连续,因而电子可能轨道的分布也是不连续的。

三、氢原子的能级图及跃迁规律(重点):氢原子的各个定态
的能量值,叫氢原子的能级。

其中n=1的定态称为基态。

n=2
以上的定态,称为激发态。

1.一个处于n激发态的氢原子跃迁发出的可能光子数(光谱
线条数)最多为:n-1。

2.一群处于n 激发态的氢原子跃迁发出的可能光子数(光谱线条数)最多为:2(1)2
n n n c -=。

考点三:原子核
一、物理学史:
1.贝可勒尔发现了天然放射现象。

天然放射现象的发现这表明原子核存在精细结构,是可以再分的。

2.查德威克发现了中子, 卢瑟福用α粒子轰击氮核打出质子。

二、衰变及三种射线(重点)
1、三种射线
(1)α射线是氦核组成的α粒子(He 42)粒子流,电离能力很强,穿透能力很弱;
(2)β射线是高速电子(e 01-)流;(3)γ射线是高频光子,电离能力很弱,穿
透能力很强。

2、原子核的衰变(原子核由于放出某种粒子而转变成新核的变化称为衰变,在原子核的衰变过程中,电荷数和质量数守恒)
(1)α 衰 变:原子核放出α粒子(He 42),即He Y X M Z M
Z 4242+→--,衰变实质是原子核内两个质子和两个中子结合成一个整体被抛射出去。

(2)β 衰 变:原子核放出电子(e 01-),即e Y X M Z M Z 011-++→,衰变实质原子核内一个中子变为一个质子和一个电子(e H n 011110-+→)。

(3)γ辐射伴随着α衰变和β衰变产生,这时放射性物质发出的射线中就会同时具有α、β和γ三种射线。

3、半衰期:放射性元素的原子核有一半(半数)发生衰变所需要的时间。

(1)半衰期是对大量原子核衰变的统计规律,对一个或少数原子核,无法确定何时衰变。

(2)半衰期由原子核内部因素决定的,跟原子所处的化学状态或物理状态(外部条件)没有关系。

(3)半衰期的计算:n余 =n原1
2t T
⎛⎫ ⎪⎝⎭;m余=m原1
2
t
T
⎛⎫

⎝⎭。

(说明:T为半衰期,t为
衰变时间)
三、放射性元素的应用(了解):
①利用它的射线:A、由于γ射线贯穿本领强,可以用来γ射线检查金属内部有没有砂眼或裂纹,所用的设备叫γ射线探伤仪;
B、利用射线的穿透本领与物质厚度密度的关系,来检查各种产品的厚度和密封容器中液体的高度等,从而实现自动控制;
C、利用射线使空气电离而把空气变成导电气体,以消除化纤、纺织品上的静电;
D、利用射线照射植物,引起植物变异而培育良种,也可以利用它杀菌、治病等。

②作为示踪原子:用于工业、农业及生物研究等.
四、放射性的防护(了解):⑴在核电站的核反应堆外层用厚厚的水泥来防止放射线的外泄;
⑵用过的核废料要放在很厚很厚的重金属箱内,并埋在深海里;⑶在生活中要有防范意识,尽可能远离放射源。

五、核力与结合能:
1、核力:原子核内部核子间的相互作用力。

核力是强相互作用的一种表现;
核力是短程力(作用范围在1.5×10﹣15m内);每个核子只跟相邻核子有核力作用。

2、结合能(核能):核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量。

3、比结合能(平均结合能):原子核的结合能与核子数之比。

原子核比结合能
越大,原子核中核子结合得越牢固,原子核越稳定。

实际测量结果表明,中等质量的原子核比结合能较大。

4、质能方程和质量亏损:
原子核质量比组成它的核子质量的总和要小,这就是质量亏损Δm,由质量亏损通过爱因斯坦质能方程可求得释放的核能ΔE=Δmc2。

六、核反应类型与核反应方程(电荷数和质量数守恒):
衰变、重核裂变(中子轰击、链式反应、镉吸收中子能力很强,所以用镉棒控制反应速度)、轻核聚变(强高温强高压)、原子核人工转变。

相关文档
最新文档