江苏省七校联盟高考数学压轴专题《数列的概念》难题汇编 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.数列{}n a 的前n 项和记为n S ,()*
11N ,2n n n a a a n n ++=-∈≥,12018a =,
22017a =,则100S =( )
A .2016
B .2017
C .2018
D .2019
2.数列{}n a 的通项公式是2
76n a n n =-+,4a =( )
A .2
B .6-
C .2-
D .1
3.已知数列{}n a ,若(
)12*
N
n n n a a a n ++=+∈,则称数列{}n
a 为“凸数列”.已知数列{}
n
b 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5
B .5-
C .0
D .1-
4.已知数列{}n a 的通项公式为23n
n a n ⎛⎫= ⎪⎝⎭
,则数列{}n a 中的最大项为( ) A .
89
B .
23
C .
6481
D .
125
243
5.数列23451,,,,,3579
的一个通项公式n a 是( ) A .
21n
n + B .
23
n
n + C .
23
n
n - D .
21
n
n - 6.数列1,3,6,10,…的一个通项公式是( )
A .()2
1n a n n =-- B .2
1n a n =-
C .()
12
n n n a +=
D .()
12
n n n a -=
7.若数列的前4项分别是
1111,,,2345
--,则此数列的一个通项公式为( ) A .1(1)n n
--
B .(1)n n -
C .1
(1)1
n n +-+
D .(1)1
n n -+
8.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的
是
A .21n n n a a a ++=+
B .13599100a a a a a ++++=
C .2499a a a a ++
+=
D .12398100100S S S S S +++
+=-
9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )
A .存在正整数0N ,当0n N >时,都有n a n ≤.
B .存在正整数0N ,当0n N >时,都有n a n ≥.
C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.
D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥. 10.已知数列{}n a 满足()()*
6
22,6,6
n n p n n a n p
n -⎧--≤=∈⎨
>⎩N ,且对任意的*
n ∈N 都有
1n n a a +>,则实数p 的取值范围是( )
A .71,4⎛⎫ ⎪⎝⎭
B .101,
7⎛⎫
⎪⎝⎭
C .()1,2
D .10,27⎛⎫
⎪⎝⎭
11.已知数列{}n a 的前5项为:12a =,232a =,343
a =,454a =,56
5a =,可归纳得
数列{}n a 的通项公式可能为( ) A .1
+=
n n a n
B .2
1
n n a n +=
+ C .3132
n n a n -=-
D .221
n n
a n =
- 12.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,
1
1
12()n
n
n
S S S S 恒成立,则15S 等于( )
A .210
B .211
C .224
D .225
13.已知数列{a n }满足112,0,2
121, 1.
2n n n n n a a a a a +⎧
≤<⎪⎪=⎨⎪-≤<⎪⎩
若a 1=35,则a 2019 = ( )
A .
1
5
B .
25
C .
35
D .
45
14.数列{}n a 满足12a =,111
1
n n n a a a ++-=+,则2019a =( ) A .3-
B .12-
C .
13
D .2
15.已知在数列{}n a 中,112,1
n n n
a a a n +==+,则2020a 的值为( ) A .
1
2020
B .
1
2019
C .
11010
D .
11009
16.已知数列{}n b 满足1
2122n n b n λ-⎛⎫=-- ⎪⎝⎭
,若数列{}n b 是单调递减数列,则实数λ的
取值范围是( ) A .
10
1,
3
B .110,23⎛⎫- ⎪⎝⎭
C .(-1,1)
D .1,12⎛⎫- ⎪⎝⎭
17.设数列{}n a 的通项公式为2
n n a n
+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6
B .7
C .8
D .9
18.已知数列{}n a 满足1N a *
∈,1,2+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
,若{}n a 为周期数列,则1a 的
可能取到的数值有( ) A .4个
B .5个
C .6个
D .无数个
19.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20
1
k
k a
=∑的值不可能是( ) A .2
B .4
C .10
D .14
20.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =
C .1024是三角形数
D .123111121
n n
a a a a n +++⋯+=+ 二、多选题
21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:
1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列
数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数
C .202020182022
3a a a =+
D .123a a a +++…20202022a a +=
22.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨
⎩为奇数
为偶数
B .1(1)1n n a -=-+
C .2sin
2
n n a π= D .cos(1)1n a n π=-+
23.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114
a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1
4(1)
n a n n =
+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫
⎨⎬⎩⎭
为递增数列
24.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
25.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有
m n m n a a a +=+,则下列结论正确的是( )
A .11285a a a a +=+
B .56110a a a a <
C .若该数列的前三项依次为x ,1x -,3x ,则10103
a = D .数列n S n ⎧⎫
⎨
⎬⎩⎭
为递减的等差数列 26.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4
B .5
C .7
D .8
27.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )
A .1d =-
B .413a a =
C .n S 的最大值为8S
D .使得0n S >的最大整数15n =
28.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =
C .95S S >
D .6S 与7S 均为n S 的最大值
29.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
30.在数列{}n a 中,若22*
1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数
列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列
C .若{}n a 是等方差数列,则{}(
)*
,kn a k N
k ∈为常数)也是等方差数列
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 31.已知等差数列{}n a 的前n 项和为n S ()*
n N ∈,公差0d ≠,6
90S
=,7a 是3a 与9
a 的等比中项,则下列选项正确的是( ) A .2d =-
B .1
20a =-
C .当且仅当10n =时,n S 取最大值
D .当0n
S <时,n 的最小值为22
32.已知数列{}n a 满足:13a =,当2n ≥
时,)
2
11n a =
-,则关于数列
{}n a 说法正确的是( )
A .28a =
B .数列{}n a 为递增数列
C .数列{}n a 为周期数列
D .2
2n a n n =+
33.无穷数列{}n a 的前n 项和2
n S an bn c =++,其中a ,b ,c 为实数,则( )
A .{}n a 可能为等差数列
B .{}n a 可能为等比数列
C .{}n a 中一定存在连续三项构成等差数列
D .{}n a 中一定存在连续三项构成等比数列
34.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .24
37
d -
<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫
⎨
⎬⎩⎭
中最小项为第7项 35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <
D .613S S =
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.A
解析:A 【分析】
根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】
解:因为12018a =,22017a =,()
*
11N ,2n n n a a a n n +-=-∈≥,
则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-, 543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==,
8762201812017a a a a =-=-==,
…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以
()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++
12342016a a a a =+++=.
故选:A . 【点睛】
本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.
2.B
解析:B 【分析】 令4n = 代入即解 【详解】
令4n =,2
447466a =-⨯+=-
故选:B. 【点睛】
数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.
3.B
解析:B 【分析】
根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】
()*
21N n n n b b b n ++=-∈,且11b =,22b =-,
∴345673,1,2,3,1,b b b b b =-=-===
∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,
故选:B. 【点睛】
本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.
4.A
解析:A 【分析】
由12233n
n n n a a +-⎛⎫
-=⋅ ⎪⎝⎭
,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得
到n =2时,a n 最大. 【详解】
解:112222(1)3333n n n
n n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭, 当n <2时,a n +1-a n >0,即a n +1>a n ;
当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,
所以数列{}n a 中的最大项为a 2或a 3,且2328
239
a a ⎛⎫==⨯= ⎪⎝⎭.
故选:A . 【点睛】
此题考查数列的函数性质:最值问题,属于基础题.
5.D
解析:D 【分析】
根据数列分子分母的规律求得通项公式. 【详解】
由于数列的分母是奇数列,分子是自然数列,故通项公式为21
n n
a n =-. 故选:D 【点睛】
本小题主要考查根据数列的规律求通项公式,属于基础题.
6.C
解析:C
【分析】
首先根据已知条件得到410a =,再依次判断选项即可得到答案. 【详解】
由题知:410a =,
对选项A ,()2
444113a =--=,故A 错误;
对选项B ,2
44115a =-=,故B 错误;
对选项C ,()
4441102a ⨯+==,C 正确; 对选项D ,()
444162
a ⨯-==,故D 错误. 故选:C 【点睛】
本题主要考查数列的通项公式,属于简单题.
7.C
解析:C 【分析】
根据数列的前几项的规律,可推出一个通项公式. 【详解】
设所求数列为{}n a ,可得出()11
1
111
a
+-=
+,()21
2
121
a
+-=
+,()31
3
131
a
+-=
+,()41
4
141
a
+-=
+,
因此,该数列的一个通项公式为()1
11
n n
a n +-=
+.
故选:C. 【点睛】
本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.
8.C
解析:C 【分析】
21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到
13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B
正确;同理可得到C 错误;由21n n S a +=-得到
12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进
而D 正确. 【详解】
已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到
13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正
确;
24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=
1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=
,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -
故D 正确. 故答案为C. 【点睛】
这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.
9.A
解析:A 【分析】
运用数列的单调性和不等式的知识可解决此问题. 【详解】
数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,
121n n n n a a a a +++∴≥--,
设1n n n d a a +=-,则1n n d d +≥,
∴数列{}n d 是递减数列.
对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,
所以1220182018d d d ++
+=,又1232018d d d d ≥≥≥
≥,
所以1122018201820182018d d d d d ≥++
+≥,
故120181d d ≥≥,2018n ∴≥时,1n d ≤,
02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++
≤++++=
即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;
结合A ,故B 不正确;
对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;
对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A
【点睛】
本题考查了数列的单调性以及不等式,属于基础题.
10.D
解析:D 【分析】
根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】
因为对任意的*n ∈N 都有1n n a a +>, 则数列{}n a 单调递增;
又()()*622,6,6
n n p n n a n p n -⎧--≤=∈⎨>⎩N , 所以只需6
7201p p a a ->⎧⎪>⎨⎪<⎩,即21106p p p p
<⎧⎪
>⎨⎪-<⎩,解得1027p <<. 故选:D. 【点睛】
本题主要考查由数列的单调性求参数,属于基础题型.
11.A
解析:A 【分析】
将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】
因为12a =,232a =
,343
a =,454a =,56
5a =,
故可得1223,12a a ==, 343
a =,454a =,56
5a =,
故可归纳得1
+=n n a n
. 故选:A. 【点睛】
本题考查简单数列通项公式的归纳总结,属基础题.
12.D
解析:D 【分析】
利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】
解:结合1
1
12()n
n
n S S S S 可知,11122n n n S S S a +-+-=,
得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,
所以11515()15(291)15
22522
a a S ++=
==, 故选:D . 【点睛】
本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.
13.B
解析:B 【分析】
根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】
∵112,02
121,1
2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩
,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,
a 3=2a 225
=
, a 4=2a 3=22455
⨯
=, a 5=2a 4﹣1=245⨯
-135
=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=32
5
a =, 故选B . 【点睛】
本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.
14.B
解析:B 【分析】
由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111
n n n a a a ++-=
+,可得111n
n n a a a ++=-,
由12a =,可得23a =-,312
a =-
,41
3a =,52a =,
由15a a =,可知数列{}n a 是周期数列,周期为4, 所以201931
2
a a ==-. 故选:B.
15.C
解析:C 【分析】
由累乘法可求得2
n a n
=,即可求出. 【详解】
11n n n a a n +=
+,即11n n
a n a n +=+, 12
321123
2112321
21232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=
⋅⋅⋅⋅
⋅⋅=⋅⋅⋅⋅⋅⨯--2n
=, 202021
20201010
a ∴=
=. 故选:C.
16.A
解析:A 【分析】
由题1n n b b +>在n *∈N 恒成立,即16212n
n λ⎛⎫-<+ ⎪⎝⎭
,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】
数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,
即()1
22112+1222n
n n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪
⎝⎭⎝⎭
恒成立,
即16212n
n λ⎛⎫-<+ ⎪⎝⎭
, 当n 为奇数时,则()6212n
n
λ>-+⋅恒成立,
()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,
66λ∴>-,解得1λ>-;
当n 为偶数时,则()6212n
n λ<+⋅恒成立,
()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,
620λ∴<,解得103
λ<
, 综上,1013
λ-<<. 故选:A. 【点睛】
关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出
16212n
n λ⎛⎫
-<+ ⎪⎝⎭
恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 17.C
解析:C 【分析】
先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】
记数列{}n a 的前n 项的乘积为n D ,则
()()12
11245
1232312
n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯
⨯
⨯=- 依题意有
()()12362
n n ++>
整理得()()2
3707100n n n n +-=-+> 解得:7n >,
因为*n N ∈,所以min 8n =, 故选:C
18.B
解析:B 【分析】
讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】
已知数列{}n a 满足1N a *
∈,1,2
+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
. ①若11a =,则24a =,32a =,41a =,54a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
②若12a =,则21a =,34a =,42a =,51a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
③若13a =,则26a =,33a =,46a =,
,以此类推,可知对任意的n *∈N ,
2n n a a +=,此时,{}n a 为周期数列;
④若14a =,则22a =,31a =,44a =,52a =,
,以此类推,可知对任意的
n *∈N ,3n n a a +=,此时,{}n a 为周期数列;
⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意
的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,
,以此类推,可知对任意的n *∈N ,
2n n a a +=,
此时,{}n a 为周期数列;
⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2
n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2
n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.
下面说明,当19a ≥且1N a *
∈时,数列{}n a 不是周期数列.
(1)当(
34
12,2a ⎤∈⎦
且1N a *
∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(
()1
12,23,k k a k k N +*⎤∈≥∈⎦
且1N a *∈时,数列{}n a 不是周期数列,那么当(
()1
212
,23,k k a k k N ++*
⎤∈≥∈⎦
时. 若1a 为正偶数,则(11
22,22
k k a a +⎤=
∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则(
(1
213
2132
3,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,
由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.
综上所述,当19a ≥且1N a *
∈时,数列{}n a 不是周期数列.
因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】
本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.
19.B
解析:B 【分析】
先由题中条件,得到2
12
21i i i a a a +-=+,由累加法得到20
2211
221k k a a ==-∑
,根据00a =,
()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.
【详解】
由11i i a a +=+得()2
221121i i i i a a a a +=+=++,
则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,
……,
2202022121a a a -=+,
以上各式相加可得:()21120
2
21
0221
2 (20202)
k
k a a a a a a
=-
=+++++=∑,
所以20
22121
1220
k k a a a ==--∑
,
又00a =,所以2
12
0211a a a =++=,则20
2211
221
k k a a ==-∑
,
因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或
2,
所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或
4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,
以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或
21±,
因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,
所以22112
2a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,
170,210;
则
20
1
k
k a
=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,
即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:
求解本题的关键在于将题中条件平方后,利用累加法,得到20
22121
1220
k k a a a ==--∑
,将问题
转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.
20.C
解析:C 【分析】
对每一个选项逐一分析得解. 【详解】
∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;
将前面的所有项累加可得1(1)(2)(1)
22
n n n n n a a -++=+=,∴20210a =,故B 正确; 令
(1)
10242
n n +=,此方程没有正整数解,故C 错误; 12
1111111
1212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++
=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦
122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】
本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.
二、多选题 21.AC 【分析】
由该数列的性质,逐项判断即可得解. 【详解】
对于A ,,,,故A 正确;
对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加
解析:AC 【分析】
由该数列的性质,逐项判断即可得解. 【详解】
对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;
对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,
32121,a a a a a ⋅⋅⋅=+=,
各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】
关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.
22.BD 【分析】
根据选项求出数列的前项,逐一判断即可. 【详解】
解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设; 选项D : ,符合题设
解析:BD 【分析】
根据选项求出数列的前4项,逐一判断即可. 【详解】
解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;
选项B :0
1(1)12,a =-+=1
2(1)10,a =-+=
23(1)12,a =-+=34(1)10a =-+=,符合题设;
选项C :,12sin
2,2
a π
==22sin 0,a π==
332sin
22
a π
==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=
3cos 212,a π=+=4cos310a π=+=,符合题设.
故选:BD. 【点睛】
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.
23.ABC 【分析】
数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】
数列的前项和为,且满足,, ∴,化为:,
∴数列是等差数列,公差为4, ∴,可得
解析:ABC 【分析】
数列{}n a 的前n 项和为0n n S S ≠()
,且满足1402n n n a S S n -+=≥(),11
4
a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1
n
S ,n S ,2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---,进而求出n a . 【详解】
数列{}n a 的前n 项和为0n n S S ≠()
,且满足1402n n n a S S n -+=≥(),11
4
a =, ∴1140n n n n S S S S ---+=,化为:
1
11
4n n S S --=, ∴数列1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,公差为4,
∴()1
4414n n n S =+-=,可得14n S n
=, ∴2n ≥时,()()
1111
44141n n n a S S n n n n -=-=
-=---, ∴()
1
(1)4
1(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,
对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确.
故选:ABC. 【点睛】
本题考查数列递推式,解题关键是将已知递推式变形为
1
114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题
24.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列
解析:BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键.
25.AC 【分析】
令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】
令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;
解析:AC 【分析】
令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由2
56110200a a a a d -=>,可
判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛
⎫=+- ⎪⎝
⎭,根据02>d ,可判定D 错误. 【详解】
令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;
由(
)()22
2
256110111
19209200a a a a a a d d
a
a d d -=++-+=>,所以56110a a a a >,故B
错误;根据等差数列的性质,可得()213x x x -=+,所以1
3x =,213
x -=, 故101110
9333
a =
+⨯=,故C 正确; 由()111222n
n n na d
S d d n a n
n -+
⎛⎫=
=+- ⎪⎝
⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭
是递增的等差数列,故D 错误. 故选:AC . 【点睛】
解决数列的单调性问题的三种方法;
1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;
2、作商比较法:根据1
(0n n n
a a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.
26.BD 【分析】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解. 【详解】
依据题意,根数从上至下构成等差
解析:BD 【分析】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设
一共放()2n n ≥层,则总得根数为:
()()
111110022n n n d n n S na na --=+
=+= 整理得1200
21a n n
=
+-, 因为1a *
∈N ,所以n 为200的因数,()200
12n n
+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】
关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.
27.BCD 【分析】
设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解. 【详解】
设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当
解析:BCD 【分析】
设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1
2
15d a =-⎧⎨=⎩,再逐
项判断即可得解. 【详解】
设等差数列{}n a 的公差为d ,
由题意,11154111051122
15
a d a d a ⨯⨯⎧
+
=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2
211168642
n n n a n d n n n S -=+
=-+=--+,
所以当且仅当8n =时,n S 取最大值,故C 正确;
要使()2
8640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.
28.BD 【分析】
设等差数列的公差为,依次分析选项即可求解. 【详解】
根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,
解析:BD 【分析】
设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】
根据题意,设等差数列{}n a 的公差为d ,依次分析选项:
{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;
又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】
本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.
29.ABD 【分析】
由,判断,再依次判断选项. 【详解】 因为,,
,所以数列是递减数列,故,AB 正确; ,所以,故C 不正确;
由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确. 故选:AB
解析:ABD 【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.
30.BCD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若是等差数列,如,
则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数, 是等方差数
解析:BCD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,
则12222
(1)21n n a a n n n --=--=-不是常数,故{}
n a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,
{(1)}n ∴-是等方差数列,故B 正确;
对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,
数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,
,
()(
)()()
2222222212132221k k k k k k k k a
a a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()
22
222
2221
2
1
3
2
221k k
k k k k k k a
a a a a a a a kp +++++--+-+-+
+-=,222k k a a kp ∴-=,
()
221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+
{}n a 是等方差数列,
()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BCD. 【点睛】
本题考查了数列的新定义问题和等差数列的定义,属于中档题.
31.AD 【分析】
运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】
等差数列的前n 项和为,公差,由,可
解析:AD 【分析】
运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .
【详解】
等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即
12530a d +=,①
由7a 是3a 与9a 的等比中项,得2
739a a a =,即()()()2
111628a d a d a d +=++,化为
1100a d +=,②
由①②解得120a =,2d =-,则202(1)222n a n n =--=-,
21
(20222)212
n S n n n n =+-=-,
由2
2144124n S n ⎛⎫=--+ ⎪⎝
⎭,可得10n =或11时,n S 取得最大值110; 由2
102n S n n -<=,解得21n >,则n 的最小值为22.
故选:AD 【点睛】
本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.
32.ABD 【分析】
由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果. 【详解】
得, ∴,
即数列是首项为,公差为1的等差数列, ∴,
∴,得,由二次函数的性质得数列为递增数列,
解析:ABD 【分析】
由已知递推式可得数列2=,公差为1的等差数列,结合选项
可得结果. 【详解】
)
2
11n a =
-得)
2
11n a +=
,
1=,
即数列
2=,公差为1的等差数列,
2(1)11n n =+-⨯=+,
∴2
2n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,
所以易知ABD 正确, 故选:ABD. 【点睛】
本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.
33.ABC 【分析】
由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则
所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.
解析:ABC 【分析】
由2
n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.
【详解】
当1n =时,11a S a b c ==++.
当2n ≥时,()()2
21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .
所以若{}n a 是等差数列,则0.a b a b c c +=++∴=
所以当0c 时,{}n a 是等差数列, 0
0a c b ==⎧⎨≠⎩
时是等比数列;当0c ≠时,{}n a 从第二
项开始是等差数列. 故选:A B C 【点睛】
本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.
34.ABCD 【分析】
S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0
解析:ABCD 【分析】
S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得24
7
-
<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫
⎨⎬⎩⎭
中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断
出D 是否正确. 【详解】
∵S 12>0,a 7<0,∴
()
67122
a a +>0,a 1+6d <0.
∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴24
7
-<d <﹣3.a 1>0. S 13=
()
113132
a a +=13a 7<0.
∴S n <0时,n 的最小值为13.
数列n n S a ⎧⎫
⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.
对于:7≤n ≤12时,n
n
S a <0.S n >0,但是随着n 的增大而减小;a n <0,
但是随着n 的增大而减小,可得:
n
n
S a <0,但是随着n 的增大而增大. ∴n =7时,
n
n
S a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】
本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.
35.AD 【分析】
由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】
解:,,故正确A.
由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,
,故D 正确.
解析:AD 【分析】
由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】
解:1385a a S +=,111110875108,90,02
d
a a d a a d a ⨯++=+
+==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.
9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.
61656+
5415392
d
S a d d d ⨯==-+=-, 131131213+
11778392
d
S a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】
考查等差数列的有关量的计算以及性质,基础题.。