行星齿轮变速机构

合集下载

辛普森式行星齿轮变速机构

辛普森式行星齿轮变速机构

辛普森式行星齿轮变速机构
辛普森式行星齿轮变速机构是一种常见的变速机构,它由辛普森副和行星齿轮副两部分组成。

辛普森副由一个太阳轮、两个行星轮及其支架组成,行星齿轮副由中心齿轮、行星轮及其支架组成。

该变速机构能够实现两级速比变换,具有结构紧凑、传动效率高等特点。

辛普森副是一种简单的行星轮副,它通过太阳轮的旋转引导两个行星轮的自转,从而完成传递行星轮的动量。

太阳轮与中心齿轮相连,行星轮则分别与辛普森副中的两个行星轮相连。

由于行星轮支架采用三角形布局,太阳轮旋转时会引导两个行星轮自转,使得两个行星轮以相同的角速度自转,进而实现速度的转换。

行星齿轮副是一种常见的行星轮副,它可实现同/异向传动和大范围变速。

中心齿轮作为行星轮副的固定齿轮,行星轮则分别与行星轮支架相连。

当中心齿轮将动力输入到其中一个行星轮时,另一个行星轮就会随之旋转,实现传动。

行星齿轮副具有较大的变速比范围,但是由于行星轮支架需要增加支撑件,其结构相对较为复杂。

当辛普森副和行星齿轮副组成一起时,辛普森副中的太阳轮与中心齿轮相连,行星轮与行星齿轮副中的行星轮相连。

如果将中心齿轮视作输入齿轮,则太阳轮视作输出齿轮;如果将太阳轮视作输入齿轮,则中心齿轮视作输出齿轮。

辛普森副和行星齿轮副的组合可以完成两级变速,可实现同向/异向传动,且结构紧凑,传动效率高。

总之,辛普森式行星齿轮变速机构具有结构简单、传动效率高、变速范围大等优点,被广泛应用于各种机械传动装置中。

行星齿轮变速器

行星齿轮变速器
行星齿轮变速器
3、组成
行星齿轮机构和换挡执行元件
4、行星齿轮机构特点
这种行星齿轮总是处于常啮合状态,可 使换档迅速、平稳、准确而不会产生齿轮 碰撞或不完全啮合的现象。
行星齿轮变速器
二、行星齿轮机构
1、结构
单排行星齿轮机构由 一个太阳轮(中心轮)、 一个行星架、一个齿圈 和几个行星齿轮组成。
1-太阳轮;2-齿圈;3-行星架;4-行星齿轮
在现代汽车行星齿轮变速器中,广泛地 采用了辛普森式(Simpson)双排行星齿轮 机构和拉威娜(Ravigneaux)式复合行星 齿轮机构。
行星齿轮变速器
新课小结 1、行星轮机构的组成
2、行星轮机构的工作情况
行星齿轮变速器
作业
行星齿轮机构的工作情况表
状态 档位 固定部件 输入部件 输出部件 旋转方向
n2—齿圈转速; n3—行星架转速; α—齿圈与太阳轮的齿数比。
行星齿轮变速器
3、单排行星齿轮机构的传动原理
行星齿轮机构工作时将太阳轮、齿圈 和行星架这三者中的任一元件作为主动 件,使它与输入轴联结,将另一元件作 为被动件与输出轴联结,再将第三个元 件加以约束制动。这样整个行星齿轮机 构即以一定的传动比传递动力。
行星齿轮变速器
1)齿圈固定,太阳轮主动,行星架被动
太阳轮带动行 星齿轮沿静止的齿 圈旋转,从而带动 行星架以较慢的速 度与太阳轮同向旋 转,传动比为:
i13=1 +α
为前进降速挡, 减速相对较大。
行星齿轮变速器
2)齿圈固定,行星架主动,太阳轮被动
传动比为 :
i31=1/(1 +α)
为前进超速挡, 增速相对较大。
行星齿轮变速器
3 )太阳轮固定,齿圈主动,行星架被动

第三章 齿轮变速机构与第四章

第三章  齿轮变速机构与第四章
(1)带式 制动器的组 成: 主要有制动 带、制动活 塞、制动鼓 等组成。
制动带
(2)带式制动器的工作过程
制动状态
当来自控制阀的液压油液压缸时活塞向内移动,推杆随 之向内移动,将制动带压紧在制动鼓上,于是制动鼓被固定住 而不能旋转。此时,制动器处于制动状态。
不制动状态
当液压控制系统将作用在液压缸内的液压油的压力解除 后活塞在回位弹簧作用力的作用下向外移动,推杆回缩,制 动带被放松,制动鼓可以转动,从而使制动器由制动状态变 成释放状态。
(1)内圈固定、外圈顺时针方向通过 (2)内圈固定、外圈逆时针方向锁止 (3)外圈固定、内圈顺时针方向锁止 (4)外圈固定、内圈逆时针方向通过 (5)内圈固定、外圈顺时针方向锁止 (6)内圈固定、外圈逆时针方向通过 (7)外圈固定、内圈顺时针方向通过 (8)外圈固定、内圈逆时针方向锁止
直接离合器毂不在该组件中,却在前进 离合器组件中,它和前进离合器鼓为一 体,在前进离合器鼓的左侧。
1离合器鼓;2活塞;3O型圈;4回位弹簧;5卡环;6推力垫; 7钢片;8摩擦片;9法兰;10卡环 记:C2又称倒档及高档离 合器,C2钢片和前后太阳轮相连,摩擦片连接输入轴,C2动 作时连接输入轴及前后太阳轮。
要注意的是,在超速制动器组件内并没有超速 制动器鼓和超速制动毂。超速制动器鼓是自动 变速器壳体而超速制动毂是超速离合器鼓的外 表面。
B0钢片和自动箱外壳相连,摩擦片和太阳轮相连,太 阳轮上还有O/D轴转速的信号齿,B0动作时固定O/D太 阳轮
2、倒档及高档离合器分解图 下图为直接离合器的分解图。在直接离 合器内主要安装了直接离合器活塞、摩 擦片等。
19-输入轴;20-超速单向离合器;21-超速输入轴
超速行星排组件图为超速行星排组件的另部 件分解图。它和A43D既相似又有不同之处。 相似之处是:超速行星架(轮)、超速离合 器毂、超速输入轴为一体,超速单向离合器 仍安装于超速离合器毂内,超速离合器鼓和 超速太阳轮也为一体。不同之处是:A340E 超速离合器鼓的外花键表面就是超速制动器 的制动毂,所以A340E的离合器鼓是三件 (离合器鼓、制动毂、太阳轮)一体。

自动变速器构造与维修4-2行星齿轮机构

自动变速器构造与维修4-2行星齿轮机构

45
二、机械变速机构
汽车教研室
⒊换档执行机构 ⑶单向超越离合器 单向超越离合器又称单向啮合器或自由轮离合器。 它在行星齿轮变速系统中的作用和离合器、制动器相同,也是用于 固定或连接行星排中的太阳轮、行星架或齿圈等基本元件,让行星齿轮 变速系统组成不同传动比的档位。 单向超越离合器是依靠其单向锁止原理来实现固定或连接作用的, 其连接和固定也只是单向的,当与之相连接的元件受力方向与锁止方向 相同时,该元件即被固定或连接,当受力方向与锁止方向相反时,该元 件即被释放或脱离连接。 单向超越离合器有多种型式,常见的是滚柱斜槽式和楔块式两种。
22
二、机械变速机构
汽车教研室
⒊换档执行机构 ⑴湿式多片离合器 ①结构:
23
离合器的作用: 1.当离合器接合时,可将二个元件连接成一个整体,同时可以转动。 2.当离合器分离时,二个元件可自由转动。
汽车教研室
24
二、机械变速机构
汽车教研室
⒊换档执行机构 ⑴湿式多片离合器 ②工作原理: 1.离合器处于接合状态: 来自控制阀的液压油进入离合器 液压缸时,作用在离合器活塞上 的液压油的压力推动活塞,使之 克服回位弹簧的张力而移动,将 所有的主动片和从动片相互压紧 在一起;主动片和从动片之间的 摩擦力使离合器鼓和离合器毂连 接为一整体,分别与离合器鼓与 离合器毂连接的输入轴和行星排 的基本元件也因此被连接在一起。
38
在辛普森行星齿轮机构中: 当超速离合器接合时,将超速行星架和超速太阳轮连 成一个整体。 整体转动—不改变传动比
汽车教研室
39
二、机械变速机构
汽车教研室
⒊换档执行机构 ⑵制动器 制动器的功用:将行星排 中的太阳轮、齿圈、行星架三 个基本元件中的1个加以固定, 使之不能旋转。 最常见的制动器是带式制动 器和片式制动器。 ①带式制动器:由制动鼓, 制动带、液压缸及活塞组成。

汽车自动变速器原理与维修辛普森式行星齿轮变速机构

汽车自动变速器原理与维修辛普森式行星齿轮变速机构

D位2档的传动原理
辛普森式三档行星齿轮变速机构
同理,可推出2档的传动比为与前进1档时一样,单 向离合器F1只能锁住前后太阳轮组件不作逆时针方向转 动。当松开发动机油门时,汽车即作滑行行驶,如正处 于下坡,则无法利用发动机的低转速进行减速制动。
④手动2档(2位2档) 为了利用发动机制动,可将变速器操纵手柄从
“D”位移至“2”位。自动变速器在手动2位的2档时处 于能产生发动机制动作用的状态(如图)。
2位2档的传动原理
辛普森式三档行星齿轮变速机构
发动机的制动作用是由2档强制制动器B2来实现的。 当操纵手柄位于“2”位,而行星齿轮变速器处于2档时 ,前进离合器C1和制动器B2同时工作。动力从发动机传 往驱动轮时,行星齿轮机构各元件的工作状态及传动比 与前进1档时相同。而当节气门松开,发动机处于怠速 而汽车进行滑行时,汽车驱动轮通过变速器输出轴驱动 行星齿轮机构,因前后太阳轮组件始终被B2固定,行星 齿轮变速器输入轴被反向驱动,以原来的转速旋转,变 矩器涡轮转速高于泵轮的转速,成为汽车驱动轮通过变 矩器逆向驱动发动机曲轴的工况,因此可利用发动机制 动。
辛普森式三档行星齿轮变速机构
⑤前进3档(D位3档) 前进档离合器C1和倒档及高档离合器C2同时结合,前
排齿圈与太阳轮组件转速相同,前行星排被连接成一个整 体同速旋转,从行星架输出动力至输出轴。后行星架虽然 与输出轴同速,但只是作空转。此时,行星齿轮变速器的 传动比i=1,即为直接档(如图)。
D位3档的传动原理
档位与执行元件关系(见下表)。
四档辛普森式行星齿轮变速器传动简图
1-输入轴 2-超速行星排 3-中间轴 4-前行星排 5-后行星排 6-输出轴
C0 -直接离合器 C1- 前进离合器 C2 –倒档及高档离合器 B0 – 超速制动 B1 – 2档单向离合器 B2 – 2档强制制动器 B3 – 抵档及倒档制动器 F0- 直接单向离合器 F1 – 2档单向离合器 F2- 抵档单向离合器

第三节 行星齿轮变速机构

第三节 行星齿轮变速机构
第四章 自动变速器 《汽车底盘构造》
8
4.变速原理(减速)
当齿圈固定,
太阳轮输入,
行星架输出时 为减速传动, 传动比为:
2.5~5
行星架和太阳 轮转向相同。
第四章 自动变速器 《汽车底盘构造》
9
5.变速原理(减速)
当太阳轮固 定齿圈输入, 行星架输出时 为减速传动, 传动比为: 齿圈和行星架 转向相同。
第三节 行星齿轮变速机构
行星齿轮变速器的结构组成
行星齿轮变速器的工作原理 行星齿轮机构在自动变速器上的应用
第四章 自动变速器
《汽车底盘构造》
1
一、行星齿轮机构
行星 齿轮
第四章 自动变速器
中心 齿轮
行星 架
《汽车底盘构造》
齿圈
组装 图
2
行星齿轮机构动画
第四章 自动变速器
《汽车底盘构造》
3
行星齿轮机构的组成
第四章 自动变速器 《汽车底盘构造》
13
第四章 自动变速器
《汽车底盘构造》
4
二、行星齿轮变速原理
F1=F2 F3=-2F2 r M1=F1r1 M2=iF1r1 M3=-(i+1)F1r1 M1w1+Mw2+Mw3=0
第四章 自动变速器 《汽车底盘构造》
5
1.行星齿轮机构变速比计算
传动比i=从动件齿
数/主动件齿数
n1+in2-(1+i)n3=0
1.25》
10
6.变速原理(倒挡)
当行星架固定, 太阳轮输入, 齿圈输出时, 为减速传动, 传动比为: 太阳轮和齿圈 转向相反。
1.5~4
第四章 自动变速器
《汽车底盘构造》

行星齿轮机构变速原理

行星齿轮机构变速原理

行星齿轮机构变速原理嘿,朋友们!今天咱们来唠唠行星齿轮机构变速原理这事儿。

这可不是什么枯燥的学术话题哦,就像探索一个神秘的机械小宇宙一样有趣。

我有个朋友叫小李,他是个汽车迷。

有一次我们聊天,他就跟我说起汽车变速器里的行星齿轮机构,可把我给吸引住了。

那行星齿轮机构啊,就像是一个小团队,里面的每个成员都有自己独特的任务,共同协作来实现变速这个大目标。

行星齿轮机构主要由太阳轮、行星轮、行星架和齿圈这几个部分组成。

你可以把太阳轮想象成这个小团队的核心领导,它在中间呢。

行星轮就像是围绕着领导转的小助手,而且还不止一个行星轮哦,通常是好几个呢,它们都安装在行星架上。

这行星架就好比是小助手们的活动场地,带着行星轮一起转。

齿圈呢,就像是这个小团队的外部框架,限制着大家的活动范围。

那这个小团队是怎么实现变速的呢?这可就有趣了。

当我们固定住其中一个部件的时候,其他部件之间的相对运动就会发生变化,就像在玩一个特殊的游戏规则。

比如说,如果我们把齿圈固定住,然后让太阳轮转动起来,这时候行星轮就会一边绕着太阳轮公转,一边在行星架的带动下自转。

就好像小助手们在领导的指挥下,按照特定的规则进行复杂的舞蹈动作。

这个时候,行星架的转速就会和太阳轮的转速有一个特定的比例关系,这个比例关系就是变速的关键所在。

我还有个搞机械维修的朋友老张,他给我讲过一个例子。

他在维修一辆汽车的变速器时,就遇到了行星齿轮机构的问题。

那辆车变速的时候老是有顿挫感。

老张就像一个侦探一样,开始检查行星齿轮机构。

他发现原来是行星轮和齿圈之间的磨损比较严重,就好比这个小团队里的小助手和外部框架之间的配合出了问题。

小助手们不能顺畅地按照规则工作了,那整个团队的工作效率当然就下降了。

这就导致了变速的时候不顺畅,出现顿挫感。

咱们再换个情况看看。

如果把行星架固定住,让太阳轮转动,那行星轮就只能在原地自转,同时带动齿圈转动。

这种情况下,太阳轮、行星轮和齿圈之间又会有另外一种转速的比例关系。

自动变速器行星齿轮机构的组成

自动变速器行星齿轮机构的组成

自动变速器行星齿轮机构的组成
自动变速器行星齿轮机构由以下几部分组成:
1. 太阳齿轮(Sun Gear):太阳齿轮位于行星齿轮机构的中央,它是整个系统的驱动齿轮,与引擎输出轴相连。

2. 行星齿轮(Planetary Gear):行星齿轮是围绕太阳齿轮旋转的一组齿轮,它们的轴线固定在一个行星齿轮架上。

3. 行星齿轮架(Planetary Gear Carrier):行星齿轮架是固定
行星齿轮的结构,它通过一个轴连接到自动变速器的输出轴,使得行星齿轮能够绕太阳齿轮旋转。

4. 环形齿轮(Ring Gear):环形齿轮是行星齿轮机构的外圈,它与行星齿轮的外齿啮合,固定在自动变速器的外壳上。

5. 载星器(Carrier):载星器是连接行星齿轮架和输入轴的组件,它使得行星齿轮架能够绕载星器以及输入轴旋转。

通过太阳齿轮、行星齿轮、行星齿轮架、环形齿轮和载星器的组合运动,行星齿轮机构实现了多种不同的齿轮传动比例,从而实现汽车自动变速器的变速功能。

行星齿轮变速机构

行星齿轮变速机构

“D”-2档传动路线
B2
c0
c1
D2执行元件工作状况 D2传动状况 D-2传动路线简图;
后排
“D”-2档传动路线简图
B1 B2 B3
B0
C0
C2
F1 F2
C1
F0 输入
输出
后排行星架作用 n21+ α n 22-(1+) α n23=0 n21=0 iD-2=n22/n23=(1+ α)/ α
“D”-3档传动路线
1、滚柱斜槽式单向(超越)离合器
1-外环 2-内环 3-滚柱 4-弹簧。
二、楔块式单向(超越)离合器
1-外环 2-内环 3-楔块。
三、棘轮式单向(超越)离合器
1-外轮 2-棘爪 3-棘轮 4-叶片弹簧。
四、单向离合器作用
(1) 连锁作用 ---将二元件直接连接使之一起运动。
(2) 固定作用—将行星齿轮机构中某一元件与壳体相连,使该元件被固定。
辛普森(Simpson)行星齿轮机构
特点:两个行星排共用1个太阳轮。(前排齿圈与后排的行星架 相连作为输出,太阳轮和齿圈可作动力输入)
行星齿轮 后行星架
前行星架和 后齿圈组件
行星齿轮 前齿圈
后行星架
太阳轮组件
前齿圈
前行星架和 后齿圈组件
太阳轮组件
丰田A43D: 前圈与后行 星架相连作 为输出;
丰田A340E: 前行星架 与后圈相 连作为输 出
四、直接传动★
n1
n2 刚性联接3
直接传动:传动比=1 条件:任何两元件被刚性联接。 n1+αn2-(1+α) n3 = 0 n3= n1或n3= n2或n1= n2 传动比=1
五、增速传动

单排行星齿轮机构变速原理

单排行星齿轮机构变速原理

单排行星齿轮机构变速原理当然,我可以帮你探讨单排行星齿轮机构变速原理。

首先,我们可以从这玩意儿的基本构造开始说起。

想象一下,一个齿轮箱就像是汽车的“变速箱”,但这里的“齿轮”可是有点特别。

单排行星齿轮机构可不是普通的齿轮,它就像个星星,围着中心的“太阳齿轮”转。

这个机构的魅力在于,它能让动力的传递变得更加灵活,简直就像你在开车时,能够根据路况随时切换档位一样。

1. 基础知识1.1 什么是单排行星齿轮机构?简单来说,单排行星齿轮机构就是有一个中心齿轮(太阳齿轮)和若干个小齿轮(行星齿轮),这些小齿轮围着中心转。

听起来是不是有点像“跑马圈地”?哈哈,没错,就是这样的感觉!这些小齿轮还能与一个外圈齿轮(环齿轮)相啮合,形成一种完美的互动。

1.2 工作原理当你给中心齿轮加上动力,它就会开始转动。

这时候,那些小齿轮就像小朋友在游乐场里转圈圈一样,围着它不停地转。

通过这些转动,小齿轮能够把动力传递给外圈齿轮。

这就实现了不同的速度和扭矩输出,简直是车子变速的“秘密武器”!2. 实际应用2.1 在汽车中的作用说到实际应用,你可能会想到汽车。

单排行星齿轮机构在汽车变速箱中可谓是不可或缺的角色。

就像我们生活中有不同的角色一样,这个齿轮机构能让车子在高速公路上飞驰,也能在城市里慢慢前行,真是“游刃有余”!2.2 优点分析为什么这么多汽车制造商都爱用这个机构呢?首先,它的体积小,重量轻,简直就是为汽车量身定做的!其次,效率高,能让动力损失降到最低,真是“节能减排”的好帮手!还有,工作平稳,噪音小,不像某些机械传动系统那样“噪音扰民”。

3. 未来展望3.1 技术发展未来,单排行星齿轮机构可能会有更多的进化。

随着科技的发展,我们可能会看到更智能的变速系统,甚至实现自动驾驶。

这就好比给你的车装上了“智能大脑”,让它能够更聪明地选择最佳的行驶方式。

3.2 生活中的影响想象一下,如果每辆车都能用上这种高效的变速机构,交通将会变得多么顺畅!省油、环保,还能减少拥堵,真是一举多得,简直是“好事成双”啊!我们未来的出行,可能会变得更加轻松,坐在车里就像在家里沙发上看电视一样惬意。

第3章行星齿轮变速器结构与工作原理

第3章行星齿轮变速器结构与工作原理

第3章行星齿轮变速器结构与工作原理行星齿轮变速器是一种主要用于传递大扭矩的传动装置,广泛应用于机械工程领域。

本章将介绍行星齿轮变速器的结构和工作原理。

行星齿轮变速器由太阳齿轮、行星齿轮组和内齿轮组成。

其中,太阳齿轮位于中心,行星齿轮围绕太阳齿轮旋转,内齿轮作为固定不动的部分。

这种结构使得行星齿轮变速器具有更高的传动效率、更大的扭矩传递能力和更小的外形尺寸。

行星齿轮组由行星轮、行星架和行星轴组成。

行星轮可以自由旋转,并通过行星架与太阳齿轮和内齿轮连接。

行星轴同时连接行星轮和行星架,使得行星轮能够绕行星轴旋转。

行星架是行星齿轮变速器的支撑结构,通过轴承支撑行星轴和行星轮。

行星齿轮变速器的工作原理是通过行星齿轮组的运动实现传动比的变化。

当太阳齿轮作为输入轮旋转时,行星齿轮组开始工作。

太阳齿轮传递动力给行星齿轮,行星齿轮绕太阳齿轮和内齿轮旋转,并通过行星架传递动力给输出轮。

同时,内齿轮作为固定不动的部分,起到定位和支撑作用。

通过调整太阳齿轮、行星齿轮和内齿轮的相对位置,可以实现不同的传动比。

当太阳齿轮作为输入轮旋转时,太阳齿轮的转速决定了输出轮的转速。

当太阳齿轮的转速大于行星齿轮的转速时,输出轮的转速会减小,传动比降低;当太阳齿轮的转速小于行星齿轮的转速时,输出轮的转速会增加,传动比提高。

总之,行星齿轮变速器通过太阳齿轮、行星齿轮和内齿轮之间的运动,实现了传动比的变化。

其结构紧凑,传动效率高,扭矩传递能力强,已被广泛应用于机械工程领域,例如汽车、航空航天、工程机械等。

第3章 行星齿轮变速器结构与工作原理

第3章 行星齿轮变速器结构与工作原理
阳轮
2、拉威娜式自动变速器齿轮机构动力传递 路线
1)行星架制动,小太阳轮输入
传动路线:
小太阳轮→短行星齿轮→长行星齿轮(仅有自 转)→内齿圈→输出轴,此变速结果为同向减 速传动。
2)大太阳轮制动,小太阳轮输入
传动路线:
小太阳轮→短行星齿轮→长行星齿轮(随行星 架公转)→内齿圈→输出轴,此变速结果为 同向减速传动。
3)大太阳轮制动,行星架输入 传动路线:
行星架→长行星齿轮(随行星架公转)→内齿 圈→输出轴,此变速结果为同向增速传动。
4)行星架制动,大太阳轮输入 传动路线:
大太阳轮→长行星齿轮(仅有自转)→内齿圈 →输出轴,此变速结果为反向减速传动。
1)D位一档传动路线
小太阳轮→短行星 齿轮→长行星齿轮 →内齿圈→输出轴
长行星齿轮在带动内 齿圈顺时针转动的同 时,对行星架产生逆 时针力矩,F1在逆 时针方向合行星架固 定。
此时,发动机的动力
经输入轴,小太阳轮、
图3-16 D位1挡传动路线示意图
短行星齿轮、长行星
C1-前进挡离合器;F1-低挡单向离合器; F2-前进挡向离合器 齿轮传给内齿圈和输
出轴。
2)D位2档传动路线
离合器、制动器、单向离合器统称为自动变速器行 星齿轮机构换档执行元件或施力元件。
3.4 典型行星齿轮传动原理及工 作分析
3.4.1 拉威娜式行星齿轮传动原理
图3-13 拉威娜式行星齿轮变速机构 1-小(前)太阳轮;2-行星架;3-短行星轮;4-长行星齿轮;5-齿圈;6-大(后)太阳轮
工作过程:
1)小太阳轮输入,行星架固定
3)D位3档传动路线
C1、C2同时接合,
F2锁止,使输入轴同
时和小、大太阳轮相

行星齿轮变速器结构与工作原理

行星齿轮变速器结构与工作原理

小太阳轮→短行 星齿轮→长行星 齿轮→内齿圈→ 输出轴
大太阳轮被制动器B1
固定,长行星轮在顺时
针转动,同时还将朝顺
时针方向公转,带动内
具圈与输出轴以时针
转动。发动机动力由
小太阳轮经短行星齿
轮、长行星齿轮传递
至内齿圈与输出轴,将
图3-17 D位2挡传动路线示意图 C1-前进挡离合器;F2-前进挡向离合器;B1-2挡及4挡制动器
传动比i >1 (较大)
约等1 >1 (较小) 无传动
<-1 无传动
1 1
3、2、5 行星齿轮传动得优缺点:
优点:
⑴体积小、质量小、结构紧凑、承载能力大。 ⑵传动效率高 ⑶传动比较大,可实现运动得合成与分解 ⑷运动平稳
缺点:
材料价格高、结构复杂、制造安装困难
3、3 行星齿轮变速器得换挡执行 机构得工作原理
小阳轮正转
Ⅰ、短行星轮反转→ 长行星轮正转→内 齿圈正向减速
Ⅱ、短行星轮反转→ 长行星轮正转→大 太阳轮反向减速
2)行星架输入,小太阳轮固定
行星架绕太阳轮正转→短行星轮正转→长 行星轮反转→齿圈正转
3)小太阳轮与行星架固定,一同输入。
两个元件固定在一起,由于行星轮不能自转,输入 与输出同步
拉威娜式自动变速器得结构特点
2)渐开线上任意一点法线必然与基圆相切。 换言之,基圆得切线必为渐开线上某点得 法线。
3)渐开线齿廓上某点得法线与该点得速度 方向所夹得锐角称为该点得压力角。
4)渐开线得形状只取决于基圆大小。 5)基圆内无渐开线。
渐开线齿轮得力学分析:
3、1、2 齿轮得速比与传动比
从公式可以获知,若想获得大得传动比,必须相互啮合得齿 轮所拥有得齿数相差较大,又由于相互啮合得齿轮模数相同,所 以,必然两个齿轮尺寸相关较大,这必然占据较大得布置空间, 给机械设计带来一定难度。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B0
B2 B1
二、片式制动器
结构基本同离合器,所不同的是制动器的壳体,活塞上没有单向阀 。
三、带式制动器
带式制动器结构:
1-变速器壳体 2-制动带 3-制动鼓 4-活塞 5-液压缸施压腔 6-液压 缸端盖 7-液压缸释放腔 8-推杆 9-调整螺钉 10-回位弹簧
带式制动器工作过程:
间隙如何测量、调整?
1.2.3、单向离合器
常见类型有:棘轮式、滚柱斜槽式 和 楔块式单向(超越)离合器 作用:连锁作用,固定作用,改善换档的平稳性。
1、滚柱斜槽式单向(超越)离合器
1-外环 2-内环 3-滚柱 4-弹簧。
二、楔块式单向(超越)离合器
1-外环 2-内环 3-楔块。
三、棘轮式单向(超越)离合器
1-外轮 2-棘爪 3-棘轮 4-叶片弹簧。
有什么作用?--连接、连锁和固定
1.2.1、多片式离合器
一、离合器结构
离合器活塞
离合器鼓;
卡环;
弹簧座 钢片、摩擦片
回位弹簧
二、离合器工作过程
分离
接合
三、带有球阀的多片离合器
单向阀作用:防止高速运转时,不作用的离合器被压紧。
1-球阀 2-进油腔 3-油封 4-泄油通道 5-活塞
进油时,球阀封死泄油孔
齿圈n2
行星轮
太阳轮n1
行星架n3
一、不传递动力
齿圈n2
太阳轮n1
行星架n3
一)、不传递动力:传动比=0 条件:三个元件自由转动 n1+αn2-(1+α) n3 = 0
二、减速传动
制动n2
输入n1
输出n3
二)★减速:传动比=1+α ★ 条件: 主动件-太阳轮,被动件-行星架,固定件-齿圈。 n1+αn2-(1+α) n3 = 0 n2=0 传动比=n1/n3=1+α
四、单向离合器作用
(1) 连锁作用 ---将二元件直接连接使之一起运动。
(2) 固定作用—将行星齿轮机构中某一元件与壳体相连,使该元件被固定。
(3)改善换档的平稳性。
连锁作用
锁止作用
单向离合器会装反吗? 单向离合器装反会如何?
一、行星齿轮机构
小结
n1+αn2-(1+α) n3 = 0
1档 2档 倒档 超速或4档
制动n2
输出n1
输入n3
二)、增速传动:传动比=1/ (1+α ) 条件:主动件-行星架,被动件-太阳轮,固定件-齿圈。 n1+αn2-(1+α) n3 = 0 n2=0 传动比=n3/n1=1/ (1+α )
六、增速反向传动
被动件
输出n1
输入n2 制动n3
主动件
增速反向传动:传动比=-1/ α 条件:主动件-齿圈,被动件-太阳轮,固定件-行星架。 n1+αn2-(1+α) n3 = 0 n3=0 传动比=n2/n1=-1/ α
输入n2 制动n1
输出n3
二)、减速:传动比=(1+α)/α ★ 条件:主动件-齿圈,被动件-行星架,固定件-太阳轮。 n1+αn2-(1+α) n3 = 0 n1=0 传动比=n2/n3=(1+α)/α
三、减速反向传动★
输出n2
输入n1
制动n3
减速反向:传动比=-α 条件:主动件-太阳轮,被动件-齿圈,固定件-行星架。 n1+αn2-(1+α) n3 = 0 n3=0 传动比=n1/n2=-α
B1 传动比=1
C2
C1
输入n3
B
C
输出n2
输入n3
B
C
输出n2
档位
C
B
传动比
1档

×
1
2档
×

α/(1+α)
如果输入n2,输出n3?
输出n3
B
C
ห้องสมุดไป่ตู้
输入n2
输出n3
B
C
档位
C
B
1档
×

2档

×
输入n2
传动比 (1+α)/ α 1
如果输入n2,输出n3?
1.2 换档执行机构
常见的有多片离合器,制动器(制动带)及单向离合器三种; 其中,单向离合器的工作情况是由运动条件所决定,而离合 器的接合和分离及制动器的制动和释放是由液压控制系统自 动控制的。
3档
小结
二、换档执行机构
常见有多片离合器,制动器(制动带)及单向离合器三种 离合器单向阀作用:防止高速运转时,不作用的离合器被压紧。
离合器作用: (1)连接作用—将行星齿轮机构中某一元件与主动部分相连。 (2)连锁作用—将行星齿轮机构中任二元件连锁为一体,实现直接
传动。
制动器作用:固定作用—将行星齿轮机构中某一元件与壳体相连,使该 元件固定。 制动器种类:带式和多片式制动器。
泄油后、球阀离开泄油孔。?
四、离合器作用
(1)连接作用—将行星齿轮机构中某一元件与主动部分相连。 (2)连锁作用—将行星齿轮机构中任二元件连锁为一体,实现直接传动。
连锁作用
连接作用
C0 C1
C2
C2
C1
C1
C2
C2 C1 连接作用与连锁作用
1.2.2、制动器
一、作用与种类 作用:固定作用—将行星齿轮机构中某一元件与壳体相连,使 该元件固定。 种类:带式和多片式制动器。 固定作用
单排行星齿轮机构的传动方案
1档 2档 倒档 超速或4档
3档
讨论
1、单排行星齿轮机构能否满足车辆的档位要求? 2、三元件主动、被动与固定的变换如何实施?采用什么机构? 3、当直接传动时,图中利用离合器使行星架与齿圈连成一体;还有其他的方法 实现直接传动吗? C1结合,B1作用或结合,传动比=1+α ;C1,C2同时结合,传动比=1 C1,C2离合器,B1制动带,(B1)制动器; 设计出能实现传动比1+α,1, 1/(1+α)的单排行星齿轮机构离合器,制动带 的配置方法。
1、 行星齿轮机构的结构与传动原理
齿轮传动机构类型分:固定轴式(平行轴式), 行星齿轮式传动机构
1.1 行星齿轮机构传动原理 1.1.1 单排行星齿轮机构
组成:太阳轮、齿圈、行星轮与行星架 。
1.1.2 单排行星齿轮机构传动过程分析
令太阳轮齿数为Z1、半径为r1,齿圈齿数为Z2、半径为r2。设 α=Z2/Z1=r2/r1;则有公式: n1+αn2-(1+α) n3 = 0。 分别把三元件中任一元件当主动件,被动件及固定件就可以得到以下 不同的传动方案:
四、直接传动★
n1
n2 刚性联接3
直接传动:传动比=1 条件:任何两元件被刚性联接。 n1+αn2-(1+α) n3 = 0 n3= n1或n3= n2或n1= n2 传动比=1
五、增速传动
制动n1
输出n2 输入n3
一)、 ★增速传动:传动比=α/(1+α ) 条件:主动件-行星架,被动件-齿圈,固定件-太阳轮。 n1+αn2-(1+α) n3 = 0 n1=0 传动比=n3/n2=α/ (1+α )
相关文档
最新文档