磁悬浮小球matlab
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁悬浮系统建模及其PID控制器设计Magnetic levitation system based on PID controller simulation
摘要
磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。
随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。
本设计以PID控制为原理,设计出PID控制器对磁悬浮系统进行控制。
在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。
最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。
PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。
目前大多数工业控制器都是PID控制器或其改进型。
尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。
关键字:磁悬浮系统;PID控制器;MATLAB仿真
设计报告内容
1. 简述磁悬浮球系统的工作原理;
2. 依据电磁等相关物理定理,列写磁悬浮系统的运动方程;
3. 根据磁悬浮系统的运动方程搭建被控对象在Simulink环境下的仿真模型;
4. 结合单位反馈控制系统的控制原理,为被控对象设计PID控制器。
5. 分析综述比例P、积分I、微分D三个调节参数对系统控制性能的影响。
设计报告正文
1. 简述磁悬浮球系统的工作原理;
磁悬浮控制系统由铁心、线圈、光位移传感器、控制器、功率放大器和被控对象(钢球)等元器件组成。
它是一个典型的吸浮式悬浮系统。
系统开环结构如图4所示。
图2系统开环结构图
电磁铁绕组中通以一定的电流会产生电磁力,控制电磁铁绕组中的电流,使之产生的电磁力与钢球的重力相平衡,钢球就可以悬浮于空中而处于平衡状态。
但是这种平衡是一种不稳定平衡,这是由于电磁铁与钢球之间的电磁力的大小与它们之间的距离)(t x成反比,只要平衡状态稍微受到扰动(如:加在电磁铁线圈上的电压产生脉动、周围的振动、风等),就会导致钢球掉下来或被电磁铁吸住,因此必须对系统实现闭环控制。
由电涡流位移传感器检测钢球与电磁铁之间的
距离()x t 变化,当钢球受到扰动下降,钢球与电磁铁之间的距离()x t 增大,传感器输出电压增大,经控制器计算、功率放大器放大处理后,使电磁铁绕组中的控制电流相应增大,电磁力增大,钢球被吸回平衡位置,反之亦然。
2. 依据电磁等相关物理定理,列写磁悬浮系统的运动方程;
在物理法则允许条件下,建立磁悬浮系统的数学模型,假设 A1 铁芯是磁饱和的,没有磁滞现象;
A2 铁芯的磁通率无限大
A3 无视铁芯中的生成电流
A4 线圈中的电磁感应系数在平衡点附近是常数
在以上假设条件下,利用浮球的运动方程,磁铁引力,电路方程式等,建立以下等式:
)()(2
2t f Mg dt t x d M -= (1) 2
02))(())(()(x t x X t i I k t f +++= (2) )())(()(t e E t i I R dt
t di L +=++ (3) 这里,M 表示铁球的质量,X 表示电磁铁和铁球的定常间隙(气隙),)(t f 是电磁铁的引力,k ,0x 是对电磁体实际特性的修正参数,对应的参数值由实验辨识获得。
R L ,是电磁铁的电磁感应系数,阻抗。
对于(2)式的非线性表示,利用泰勒级数做近似处理得到:
)()()
()(202
t i K t x K x X kI t f i x +-+= (4) 302
)
(2x X kI K x += 20)(2x X kI K i += (5)
在平衡点),,,(0E x X I 处,有 202)
(x X kI Mg += (6) E RI = (7)
再结合(1)和(4)可得
)()()(22t i K t x K dt
t x d M i x -= )()()(t e t Ri dt
t di L =+ 3. 根据磁悬浮系统的运动方程搭建被控对象在Simulink 环境下的仿真模型;
4. 结合
单位反馈控制系统的控
制原理,为被控
对象设计PID 控制器。
仿真参数:第 2 组 参数
记号 数值(单位)
铁球的重量 M 0.2 kg
定常气
隙 X 3.0*10^-3 m
5. 分析综述比例P 、积分I 、微分D 三个调节参数对系统控
制性能的影响。
当I=7000,D=900时,P 分别为5000,7000,9000时的图像
比例系数K p 主要影响系统的响应速度。
增大比例系数,会提高系
统的响应速度,反之,减少比例系数会使调节过程变慢,增减系统调节时间。
但是在接近稳态区域时,如果比例系数选择过大,则会导致过大的超调,甚至可能带来系统的不稳定。
当P=9000,D=900时 I 分别为5000、8000、12000时的图像。
定常电
流 I 0.800 A
引力系
数
k
1.28*10^-4 Nm^2/A^2 修正系
数
0x 4.36*10^-3 m
阻抗
R 9.5 感应系
数
L 0.3 H
积分时间常数τi主要影响系统的稳态精度。
积分作用的引入,能消除系统静差,但是影响系统响应过程的初期,一般偏差比较大,如果不选取适当的积分系数,就可能使系统响应过程出现较大的超调或者引起积分饱和现象。
当P=9000,I=7000,D分别为700,900,1100时的图像:微分时间常数τd主要影响系统的动态性能。
因为微分作用主要是响应系统误差变化速率的,它主要是在系统响应过程中当误差向某个方向变化时起制动作用,提前预报误差的变化方向,能有效减少超调。
但是如果微分时间常数过大,就会使阻尼过大,导致系统调节时间过长。