线性规划问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要点一、线性规划的有关概念:
线性约束条件:
如果两个变量、满足一组一次不等式组,则称不等式组是变量、的约束条件,这组约束条件都是关于、的一次不等式,故又称线性约束条件.
线性目标函数:
关于、的一次式是欲达到最大值或最小值所涉及的变量、
的解析式,叫线性目标函数.
线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

可行解、可行域和最优解:
在线性规划问题中,
①满足线性约束条件的解叫可行解;
②由所有可行解组成的集合叫做可行域;
③使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
要点诠释:线性规划问题,就是求线性目标函数在线性约束条件下的最大值或最小值的问题.
要点二、线性规划的应用
1.线性规划也是求值的一种,是求在某种限制范围之下的最大值或最小值的问题,其关键是列出所有的限制条件,不能有遗漏的部分,如有时变量要求为正实数或自然数,其次是准确找到目标函数,如果数量关系多而杂,可以用列表等方法把关系理清.
2.线性规划的理论和方法经常被用于两类问题中:一是在人力、物力、资金等资源一定的条件下,如何使用其完成最多的任务;二是给定一项任务,如何合理安排和规划,能用最少的人力、物力、资金等资源来完成这项任务.
3.在生产和生活中,常用于下料问题;优化安排活动问题;优化运营问题等.
要点诠释:在生产和生活中,常用于下料问题;优化安排活动问题;优化运营问题等.
要点三、确定线性规划中的最优解
对于只有两个变量的线性规划(即简单的线性规划)问题,可以用图解法求解.其基本的解决步骤是:
①设变量,建立线性约束条件及线性目标函数;
②画出可行域;
③求出线性目标函数在可行域内的最值(即最优解);
④作答.
要点诠释:
确定最优解的思维过程:
线性目标函数(A,B不全为0)中,当时,,
这样线性目标函数可看成斜率为,且随变化的一组平行线,则把求的最大值和最小值的问题转化为直线与可行域有公共点,直线在轴上的截距的最大
值最小值的问题.因此只需先作出直线,再平行移动这条直线,最先通过或最后通过的可行域的顶点就是最优解.特别注意,当B>0时,的值随着直线在y轴上的截距的增大而增大;当B<0时,的值随着直线在y轴上的截距的增大而减小.通常情况可以利用可行域边界直线的斜率来判断.
对于求整点最优解,如果作图非常准确可用平移求解法,也可以取出目标函数可能取得最值的可行域内的所有整点,依次代入目标函数验证,从而选出最优解,最优解一般在可行域的定点处取得,若要求最优整解,则必须满足x,y均为整数,一般在不是整解的最优解的附近找出所有可能取得最值的整点,然后将整点分别代入目标函数验证选出最优整解.上述求整点最优解的方法可归纳为三步:
找整点---验证--- 选最优解。

相关文档
最新文档