苏科版数学九年级上册 全册期末复习试卷综合测试(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版数学九年级上册 全册期末复习试卷综合测试(Word 版 含答案)
一、选择题
1.下列方程中,是关于x 的一元二次方程的为( ) A .2
21
0x x
+
= B .220x x --=
C .2320x xy -=
D .240y -=
2.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )
A .40
B .50
C .60
D .70 3.下列方程有两个相等的实数根是( )
A .x 2﹣x +3=0
B .x 2﹣3x +2=0
C .x 2﹣2x +1=0
D .x 2﹣4=0
4.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .
14
B .
34
C .
15
D .
35
5.二次函数2
2y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <
B .2x >
C .0x <
D .0x >
6.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月
D .1月,2月,3
月,12月
7.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 8.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出
1个球是红球的概率是( )
A .13
B .14
C .
1
5
D .
16
9.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,
2y ,3y 的大小关系为( )
A .123y y y >>
B .132y y y >>
C .231y y y >>
D .312y y y >>
10.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A .
23
32
π-
B .
233
π
- C .32
π-
D .3π-
11.如图,
O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直
线PB 于点C ,则ABC 的最大面积是 ( )
A .
12
B .1
C .2
D .2
12.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .
14
B .
13
C .
12
D .
23
13.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )
A .25°
B .40°
C .45°
D .50°
14.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2 D .中位数是3,众数是4
15.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区
域的概率为( )
A .
12
B .
14
C .
13
D .
19
二、填空题
16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.
17.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .
18.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.
19.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)
20.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm . 21.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是
54
π
,则O 的半径是__________.
22.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).
23.长度等于2的弦所对的圆心角是90°,则该圆半径为_____.
24.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.
25.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 26.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则
1212x x x x +-•=__________.
27.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.
28.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.
29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2
S 甲、2
S 乙,且
22S S >甲乙,则队员身高比较整齐的球队是_____.
30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.
三、解答题
31.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.
(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 32.如图,已知直线l 切⊙O 于点A ,B 为⊙O 上一点,过点B 作BC ⊥l ,垂足为点C ,连接AB 、OB .
(1)求证:∠ABC =∠ABO ;
(2)若AB 10,AC =1,求⊙O 的半径.
33.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.
(1)判断OE 与BC 的位置关系,并说明理由; (2)若3
tan 4
BCD ∠=
,求EF 的长. 34.如图,在平面直角坐标系中,一次函数y =
1
2
x +2的图象与y 轴交于A 点,与x 轴交于B 点,⊙P 的半径为5,其圆心P 在x 轴上运动.
(1)如图1,当圆心P 的坐标为(1,0)时,求证:⊙P 与直线AB 相切;
(2)在(1)的条件下,点C 为⊙P 上在第一象限内的一点,过点C 作⊙P 的切线交直线AB 于点D ,且∠ADC =120°,求D 点的坐标;
(3)如图2,若⊙P 向左运动,圆心P 与点B 重合,且⊙P 与线段AB 交于E 点,与线段BO 相交于F 点,G 点为弧EF 上一点,直接写出
1
2
AG +OG 的最小值 . 35.如图,直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5相交于A 、D 两点.抛物线的顶点为C ,连结AC .
(1)求A ,D 两点的坐标;
(2)点P 为该抛物线上一动点(与点A 、D 不重合),连接PA 、PD .
①当点P的横坐标为2时,求△PAD的面积;
②当∠PDA=∠CAD时,直接写出点P的坐标.
四、压轴题
36.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,
4),一次函数
2
3
y x b
=-+的图像与边OC、AB分别交于点D、E,并且满足OD BE
=,
M是线段DE上的一个动点
(1)求b的值;
(2)连接OM,若ODM
△的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.
37.已知,如图1,⊙O是四边形ABCD的外接圆,连接OC交对角线BD于点F,延长AO 交BD于点E,OE=OF.
(1)求证:BE=FD;
(2)如图2,若∠EOF=90°,BE=EF,⊙O的半径25
AO=ABCD的面积;
(3)如图3,若AD=BC ;
①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 38.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;
(2)在整个运动过程中,点O 的运动路径长_____;
(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.
39.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).
时,求t 的取值范围.(直接写出答案即可) 40.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线
2x =.
(1)求抛物线的解析式;
(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.
①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点
Q .若APM △与BQO △ 相似, 求直线AB 的解析式;
②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、
b .当点M 在y 轴上时,直接写出
m a
m b
--的值为 ;当点M 不在y 轴上时,求证:m a
m b
--为一个定值,并求出这个值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】
根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程. 【详解】 解:A.2
21
0x x
+
=,是分式方程, B.220x x --=,正确,
C.2320x xy -=,是二元二次方程,
D.240y -=,是关于y 的一元二次方程, 故选B 【点睛】
此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.
2.D
【解析】
【分析】
根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】
解:∵ ADC=110°,即优弧ABC的度数是220°,
∴劣弧ADC的度数是140°,
∴∠AOC=140°,
∵OC=OB,
∴∠OCB=1
2
∠AOC=70°,
故选D.
【点睛】
本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
3.C
解析:C
【解析】
【分析】
先根据方程求出△的值,再根据根的判别式的意义判断即可.
【详解】
A、x2﹣x+3=0,
△=(﹣1)2﹣4×1×3=﹣11<0,
所以方程没有实数根,故本选项不符合题意;
B、x2﹣3x+2=0,
△=(﹣3)2﹣4×1×2=1>0,
所以方程有两个不相等的实数根,故本选项不符合题意;
C、x2﹣2x+1=0,
△=(﹣2)2﹣4×1×1=0,
所以方程有两个相等的实数根,故本选项符合题意;
D、x2﹣4=0,
△=02﹣4×1×(﹣4)=16>0,
所以方程有两个不相等的实数根,故本选项不符合题意;
故选:C.
【点睛】
本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.
4.D
解析:D
【分析】
根据题意即从5个球中摸出一个球,概率为3 5 .
【详解】
摸到红球的概率=
33 235
=
+

故选:D.
【点睛】
此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.
5.C
解析:C
【解析】
【分析】
先求函数的对称轴,再根据开口方向确定x的取值范围.
【详解】
22
2(1)1
y x x x
=-+=--+,
∵图像的对称轴为x=1,a=-10
<,
∴当x1
<时,y随着x的增大而增大,
故选:C.
【点睛】
此题考查二次函数的性质,当a0a0
<时,对称轴左增右减,当>时,对称轴左减右增. 6.D
解析:D
【解析】
【分析】
【详解】
当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.
故选D
7.D
解析:D
【解析】
试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),
2013年的产量为100(1+x)(1+x)=100(1+x)2,
即所列的方程为100(1+x )2=144,
故选D .
点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
8.A
解析:A
【解析】
【分析】
根据红球的个数以及球的总个数,直接利用概率公式求解即可.
【详解】
因为共有6个球,红球有2个, 所以,取出红球的概率为2163
P =
=, 故选A.
【点睛】
本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键. 9.A
解析:A
【解析】
【分析】
根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.
【详解】
解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .
【点睛】
本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.
10.B
解析:B
【解析】
【分析】
根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出
△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.
【详解】
连接BD ,
∵四边形ABCD 是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB 是等边三角形,
∵AB=2,
∴△ABD 3,
∵扇形BEF 的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,
在△ABG 和△DBH 中,
2
{34
A A
B BD ∠=∠=∠=∠,
∴△ABG ≌△DBH (ASA ),
∴四边形GBHD 的面积等于△ABD 的面积,
∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602
π⨯-⨯ =
233
π 故选B . 11.B
解析:B
【解析】
【分析】
连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则
60AOB ∠=︒,根据圆周角定理得1302
APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.
【详解】
解:连接OA 、OB ,如图1,
2OA OB ==,2AB =,
OAB ∴为等边三角形, 60AOB ∴∠=︒,
1302
APB AOB ∴∠=∠=︒, 60PAC ∠=︒
90ACP ∴∠=︒
2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,
作ABC 的外接圆D ,如图2,连接CD ,
90ACB ∠=︒,点C 在D 上,AB 是D 的直径,
当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,
CD AB ∴⊥,1CD =,
12ABC S ∴=⋅AB ⋅CD 12112
=⨯⨯=, ABC ∴的最大面积为1.
故选B .
【点睛】
本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.
12.C
解析:C
【解析】
【分析】
画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.
【详解】
根据题意画图如下:
共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,
则2次抽出的签上的数字的和为正数的概率为
6
12

1
2

故选:C.
【点睛】
本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,
13.B
解析:B
【解析】
【分析】
连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.
【详解】
连接OA,
由圆周角定理得,∠AOP=2∠B=50°,
∵PA是⊙O的切线,
∴∠OAP=90°,
∴∠P=90°﹣50°=40°,
故选:B.
【点睛】
本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.
14.A
解析:A
【解析】
【分析】
先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.
【详解】
解:将这组数据从小到大排列为:
2,2,2,3,5,6,8,
最中间的数是3,
则这组数据的中位数是3;
2出现了三次,出现的次数最多,
则这组数据的众数是2;
故选:A.
【点睛】
此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.
15.B
解析:B
【解析】
【分析】
针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.
【详解】
解:∵如图所示的正三角形,
∴∠CAB =60°,
∴∠OAB =30°,∠OBA =90°,
设OB =a ,则OA =2a ,
则小球落在小⊙O 内部(阴影)区域的概率为
()2214
2a a ππ=. 故选:B .
【点睛】
本题考查了概率问题,掌握圆的面积公式是解题的关键.
二、填空题
16.3
【解析】
【分析】
把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-
3m),然后利用整体代入的方法计算.
【详解】
解:∵m是方程2x2﹣3x=1的一个根,
解析:3
【解析】
【分析】
把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.
【详解】
解:∵m是方程2x2﹣3x=1的一个根,
∴2m2﹣3m=1,
∴6m2﹣9m=3(2m2﹣3m)=3×1=3.
故答案为3.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
17.【解析】
【分析】
首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.
【详解】
解:如
解析:13 3
【解析】
【分析】
首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.
【详解】
解:如图所示,
∵四边形MEGH为正方形,∴NE GH
∴△AEN~△AHG
∴NE:GH=AE:AG
∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9
∴NE=20 9
同理可求BK=8 9
梯形BENK的面积:120814
3 2993⎛⎫
⨯+⨯=

⎝⎭
∴阴影部分的面积:
1413 33
33⨯-=
故答案为:13 3
.
【点睛】
本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.
18.y=2(x-2)2+3
【解析】
【分析】
根据平移的规律:左加右减,上加下减可得函数解析式.
【详解】
解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为
解析:y=2(x-2)2+3
【解析】
【分析】
根据平移的规律:左加右减,上加下减可得函数解析式.
【详解】
解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,
故答案为:y =2(x -2)2+3.
【点睛】
此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.
19.或
【解析】
【分析】
根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.
【详解】
解:AB=10cm ,C 是黄金分割点,
当AC>BC 时,
则有
解析:5 或1555
【解析】
【分析】
根据黄金分割比为12
计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.
【详解】
解:AB=10cm ,C 是黄金分割点,
当AC>BC 时,
则有AC=12AB=12
×10=5, 当AC<BC 时,
则有×10=5-,
∴AC=AB-BC=10-(5 )=15-,
∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555
【点睛】
本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.
20.【解析】
利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.
【详解】
解:设扇形半径为R,根据弧长公式得,
∴R
解析:
【解析】
【分析】
利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.
【详解】
解:设扇形半径为R,根据弧长公式得,
90
=25
180
R
∴R=20,
22
5515 .
故答案为:
【点睛】
本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.
21.【解析】
【分析】
连接OB、OC,如图,由圆周角定理可得∠BOC的度数,然后根据弧长公式即可求出半径.
【详解】
解:连接OB、OC,如图,
∵,
∴∠BOC=90°,
∵的长是,
∴,
解得:
解析:5 2
【解析】
连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.
【详解】
解:连接OB 、OC ,如图,
∵45BAC ∠=︒,
∴∠BOC =90°,
∵BC 的长是
54π, ∴9051804
OB ππ⋅=, 解得:52OB =
. 故答案为:52
.
【点睛】
本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.
22.【解析】
【分析】
直接利用黄金分割的定义求解.
【详解】
解:∵点C 是线段AB 的黄金分割点且AC >BC ,
∴AC =AB .
故答案为:.
【点睛】
本题考查了黄金分割的定义,点C 是线段AB 的黄金分
51- 【解析】
【分析】
直接利用黄金分割的定义求解.
【详解】
解:∵点C 是线段AB 的黄金分割点且AC >BC ,
∴AC =512
-AB . 故答案为:
51-. 【点睛】 本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则
512
AC BC -=,正确理解黄金分割的定义是解题的关键. 23.6
【解析】
【分析】
结合等腰三角形的性质,根据勾股定理求解即可.
【详解】
解:如图AB =6,∠AOB =90°,且OA =OB ,
在中,根据勾股定理得,即
∴,
故答案为:6.
【点睛】
解析:6
【解析】
【分析】
结合等腰三角形的性质,根据勾股定理求解即可.
【详解】
解:如图AB =62,∠AOB =90°,且OA =OB ,
在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,
0OA >
6OA ∴=
故答案为:6.
【点睛】
本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.
24.【解析】
【分析】
作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案
解析:24 5
【解析】
【分析】
作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.
【详解】
作BM⊥AC于M,交AD于F,
∵AB=AC=5,BC=6,AD是BC边上的中线,
∴BD=DC=3,AD⊥BC,AD平分∠BAC,
∴B、C关于AD对称,
∴BF=CF,
根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,
即CF+EF≥BM,
∵S△ABC=1
2
×BC×AD=
1
2
×AC×BM,
∴BM=
6424
55 BC AD
AC

即CF+EF的最小值是24
5

故答案为:24
5

【点睛】
本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,
是一道比较好的题目.
25.2023
【解析】
【分析】
根据一元二次方程的解的定义即可求出答案.
【详解】
解:由题意可知:2m2﹣3m ﹣1=0,
∴2m2﹣3m =1,
∴原式=3(2m2﹣3m )+2020=3+2020=2
解析:2023
【解析】
【分析】
根据一元二次方程的解的定义即可求出答案.
【详解】
解:由题意可知:2m 2﹣3m ﹣1=0,
∴2m 2﹣3m =1,
∴原式=3(2m 2﹣3m )+2020=3+2020=2023.
故答案为:2023.
【点睛】
本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.
26.2
【解析】
【分析】
根据根与系数的关系确定和,然后代入计算即可.
【详解】
解:∵
∴=-3, =-5
∴-3-(-5)=2
故答案为2.
【点睛】
本题主要考查了根与系数的关系,牢记对于(a≠
解析:2
【解析】
【分析】
根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.
解:∵2350x x +-=
∴12x x +=-3, 12x x •=-5
∴1212x x x x +-•=-3-(-5)=2
故答案为2.
【点睛】
本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a
•=是解答本题的关键. 27.【解析】
【分析】
作OH⊥AB,延长OH 交于E ,反向延长OH 交CD 于G ,交于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB∥CD,所以四边形ABCD 是平行
解析:163
【解析】
【分析】
作OH ⊥AB ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.
【详解】
如图,作OH ⊥AB ,垂足为H ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,则OA=OB=OC=OD=OE=OF=4,
∵弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,
∴OH=HE=1×
4=22,OG=GF=1×4=22
,即OH=OG , 又∵OB=OD ,
∴Rt △OHB ≌Rt △OGD ,
∴HB=GD ,
同理,可得AH=CG= HB=GD
又∵AB ∥CD
∴四边形ABCD 是平行四边形,
在Rt △OHA 中,由勾股定理得:
==
∴AB=
∴四边形ABCD 的面积=AB ×GH=
故答案为:.
【点睛】
本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.
28.2+
【解析】
【分析】
设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可
【详解】
∵线段AB =x ,点C 、D 是AB 黄金分割点
解析:
【解析】
【分析】
设线段AB =x ,根据黄金分割点的定义可知AD 35AB ,BC 35AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可
【详解】
∵线段AB =x ,点C 、D 是AB 黄金分割点,
∴较小线段AD =BC =32
x -,
则CD =AB ﹣AD ﹣BC =x ﹣x =1,
解得:x =
故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.
【解析】
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵,
∴队员身
解析:乙
【解析】
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵22S S 甲乙,
∴队员身高比较整齐的球队是乙,
故答案为:乙.
【点睛】
本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量
30.140
【解析】
试题解析::∵∠A=110°
∴∠C=180°-∠A=70°
∴∠BOD=2∠C=140°.
解析:140
【解析】
试题解析::∵∠A=110°
∴∠C=180°-∠A=70°
∴∠BOD=2∠C=140°.
三、解答题
31.(1)见解析;(2) ①当n =-3时,a =b ;②当-3<n <-1时,a >b ;③当n <-3或n >-1时,a <b
【解析】
【分析】
(1)方法一:当y=0时,(x-m )(x-m-4)=0,解得x 1=m ,x 2=-m-4,即可得到结论;方
法二:化简得y=x2+4x-m2-4m,令y=0,可得b2-4ac≥0,即可证明;
(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b 的大小.
【详解】
(1)方法一:
令y=0,(x-m)(x+m+4)=0,解得x1=m;x2=-m-4.
当m=-m-4,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;
当m≠-m-4,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.
综上不论m为何值,该二次函数的图像与x轴有公共点.
方法二:
化简得y=x2+4x-m2-4m.
令y=0,b2-4ac=4m2+16m+16=4(m+2)2≥0,方程有两个实数根.
∴不论m为何值,该二次函数的图像与x轴有公共点.
(2)由题意知,函数的图像的对称轴为直线x=-2
①当n=-3时,a=b;
②当-3<n<-1时,a>b
③当n<-3或n>-1时,a<b
【点睛】
本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论.
32.(1)详见解析;(2)⊙O的半径是13
2

【解析】
【分析】
(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=
∠OAB,∠OBA=∠ABC,即可得出答案;
(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.
【详解】
(1)证明:连接OA,
∵OB=OA,
∴∠OBA =∠OAB ,
∵AC 切⊙O 于A ,
∴OA ⊥AC ,
∵BC ⊥AC ,
∴OA ∥BC ,
∴∠OBA =∠ABC ,
∴∠ABC =∠ABO ;
(2)解:过O 作OD ⊥BC 于D ,
∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,
∴∠ODC =∠DCA =∠OAC =90°,
∴OD =AC =1,
在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3, ∵OD ⊥BC ,OD 过O ,
∴BD =DC =12BC =132
⨯=1.5, 在Rt △ODB 中,由勾股定理得:OB ()22131 1.5+=
即⊙O 的半径是
132
. 【点睛】 此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.
33.(1)OE ∥BC .理由见解析;(2)
125
【解析】
【分析】
(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;
(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案.
【详解】
解:(1)OE∥BC.理由如下:
连接OC,
∵CD是⊙O的切线,
∴OC⊥CD,
∴∠OCE=90︒,
∴∠OCA+∠ECF=90︒,
∵OC=OA,
∴∠OCA=∠CAB.
又∵∠CAB=∠E,
∴∠OCA=∠E,
∴∠E+∠ECF=90︒,
∴∠EFC=180O-(∠E+∠ECF) =90︒.∴∠EFC=∠ACB=90︒,
∴OE∥BC.
(2)由(1)知,OE∥BC,
∴∠E=∠BCD.
在Rt△OCE中,∵AB=12,
∴OC=6,
∵tan E=tan∠BCD=OC CE


4
68
tan3
OC
CE
DCB
==⨯=


∴OE2=O C2+CE2=62+82,
∴OE=10
又由(1)知∠EFC =90︒,∴∠AFO=90︒.
在Rt△AFO中,∵tan A =tan E=3
4

∴设OF=3x,则AF=4x.
∵OA2=OF2+AF2,即62=(3x)2+(4x)2,
解得:
6
5 x=

18
5 OF=,

1832
10
55 EF OE OF
=-=-=.
【点睛】
本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.
34.(1)见解析;(2)D(23

3
+2);(3)
37

【解析】
【分析】
(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;
(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=1
2
∠ADC=60°,利用锐角三
角函数求出AD,设D(m,1
2
m+2),根据平面直角坐标系中任意两点之间的距离公式求
出m的值即可;
(3)在BA上取一点J,使得BJ=5,连接BG,OJ,JG,根据相似三角形的判定定理证
出△BJG∽△BGA,列出比例式可得GJ=1
2
AG,从而得出
1
2
AG+OG=GJ+OG,设J点的坐
标为(n,1
2
n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ
的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】
(1)证明:如图1中,连接PA.
∵一次函数y=1
2
x+2的图象与y轴交于A点,与x轴交于B点,
∴A(0,2),B(﹣4,0),。

相关文档
最新文档