第1课时 产品配套问题和工程问题 精品教案(大赛一等奖作品)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章一元一次方程
3.4 实际问题与一元一次方程
第1课时产品配套问题和工程问题
学习目标:
1.理解配套问题、工程问题的背景.
2.分清有关数量关系,能正确找出作为列方程依据的主要等量关系.(重点)
3.掌握用一元一次方程解决实际问题的基本过程.(重点)
学习重点:
1.配套问题:
某车间工人生产螺钉和螺母,一个螺钉要配两个螺母,要使生产的产品刚好配套,则应生产的螺母数量恰好是螺钉数量的2倍
2.工程问题:
(1)工作时间、工作效率、工作量之间的关系:
①工作量=工作时间×工作效率.
②工作时间=工作量÷工作效率.
③工作效率=工作量÷工作时间.
(2)通常设完成全部工作的总工作量为1,如果一项工作分几个阶段完成,那么各阶段工作量的和=总工作量,这是工程问题列方程的依据..
(3)一项工作,甲用a小时完成,若总工作量可看成1,则甲的工作效率是1/a .若这项工作乙用b小时完成,则乙的工作效率是1/b .
(4)人均工作效率:人均工作效率表示平均每人单位时间完成的工作量.例如,一项工作由m个人用n小时完成,那么人均工作效率为1/mn ,a个人b小时完成的工作量=人均工作效率×a×b.
一、自主学习
判断(打“√”或“×”)
(1)用纸板折无盖的纸盒,则一个盒身与两个盒底配套.( )
(2)一件工作,某人5小时单独完成,其工作效率为( )
(3)一项工程,甲单独做4小时能完成,乙单独做3小时能完成,则两人合作1小时完成全部工作的( )
二、合作探究
知识点1 用一元一次方程解决配套问题
【例1】用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,1个盒身与2个盒底配成1个罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
【解题探究】1.设x张铁皮制盒身,则36-x张铁皮制盒底.
2.用x怎样表示所制盒身、盒底的个数?
提示:由题意可知制盒身25x个,盒底40(36-x)个.
3.制成的盒身与盒底有什么数量关系?
提示:盒身个数的2倍=盒底的个数.
4.所以可列方程:2×25x=40(36-x)
5.解方程,得:x=16
6.用16张制盒身,20张制盒底.
配套问题的两个未知量及两个等量关系
1.两个未知量:
这类问题有两个未知数,设其中哪个为x 都可以,另一个用含x 的代数式表示,两种设法所列方程没有繁简或难易的区别.
2.两个等量关系:
例如本题,一个是“制盒身的铁皮张数+制盒底的铁皮张数=36”,此关系用来设未知数.另一个是制成的盒身数与盒底数的倍数关系,这是用来列方程的等量关系.
知识点 2 用一元一次方程解决工程问题
【例2】一本稿件,甲打字员单独打20天可以完成,甲、乙两打字员合打,12天可以完成,现由两人合打7天后,余下部分由乙打,还需多少天完成?
【思路点拨】先求出甲一天的工作效率,甲、乙合作一天的工作效率及甲乙合打7天的工作量,再求出乙一天的工作效率,设乙还需x 天完成,用含x 的代数式表示乙x 天的工作量,根据“两人合打7天的工作量+乙x 天的工作量=1”,列出方程,求解并作答.
【自主解答】设乙还需x 天完成,根据题意,得
解这个方程,得x=12.5.
答:乙还需12.5天完成.
【总结提升】解决工程问题的思路
1.三个基本量:
工程问题中的三个基本量:工作量、工作效率、工作时间,它们之间的关系是:工作量=工作效率×工作时间.若把工作量看作1,则工作效率=
2.相等关系: (1)按工作时间,各时间段的工作量之和=完成的工作量.
(2)按工作者,若一项工作有甲、乙两人参与,则甲的工作量+乙的工作量=完成的工作量.
3.2 解一元一次方程(一)——合并同类项与移项
第1课时 用合并同类项的方法解一元一次方程
教学目标:
1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.
2.学会合并同类项,会解“ax+bx=c ”类型的一元一次方程.
3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.
教学重点:建立方程解决实际问题,会解 “ax+bx=c ”类型的一元一次方程.
教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.
教学过程:
一、设置情境,提出问题
(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎
711()x 1.121220+-=1.工作时间
样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
出示课本P86问题1:
某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?
二、探索分析,解决问题
引导学生回忆:
实际问题一元一次方程
设问1:如何列方程?分哪些步骤?
师生讨论分析:
(1)设未知数:前年这个学校购买计算机x台;
(2)找相等关系:
前年购买量+去年购买量+今年购买量=140台.
(3)列方程:x+2x+4x=140.
设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:
根据分配律,可以把含x的项合并,即
x+2x+4x=(1+2+4)x=7x
老师板演解方程过程:略.
为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.
设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?
学生讨论回答,师生共同整理:
“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.
三、拓广探索,比较分析
学生思考回答:若设去年购买计算机x台,得方程
+x+2x=140.
若设今年购买计算机x台,得方程
++x=140.
课本P87例2.
问题:①每相邻两个数之间有什么关系?
②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?
③根据题意列方程解答.
四、综合应用,巩固提高
1.课本P88练习第1,2题.
2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?
(学生思考、讨论出多种解法,师生共同讲评.)
3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.
五、课时小结
1.你今天学习的解方程有哪些步骤,每一步的依据是什么?
2.今天讨论的问题中的相等关系有何共同特点?
学生思考后回答、整理:
解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。

相关文档
最新文档