有理数的乘方(1)教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6有理数的乘方
第一课时
蚌埠六中马静
二0一二年九月十日
有理数的乘方
第一课时
蚌埠六中马静
一、教学目标
(一)知识与技能:
1、能让学生在一定的现实背景中理解有理数乘方的意义;会熟练地进行有理数的乘方运算。
2、在解决问题的过程中注重与他人的合作,培养观察、分析、对比、归纳、概括能力,初步渗透转化思想。
(二)过程与方法:经历探索有理数乘方的意义的过程,培养转化的思想方法。
(三)情感态度与价值观:培养学生善于观察、猜想的能力。
二、教学重、难点
1、重点:乘方的相关概念及意义
2、难点:理解有理数的乘方、幂、底数、指数的概念以及相互间的关系
三、课时安排2课时
四、学法指导探究法
五、教学过程
(一)知识回顾:
计算下列各题:
(1)2×3×4×(-5)
(2)2×3×(-4) ×(-5)
(3)2×(-3) ×(-4) ×(-5)
(4)(-2) ×(-3) ×(-4) ×(-5)
想一想:积的符号与负因数的个数有什么关系?
几个不等于0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
(二)探究新知1:
1、一正方形的边长为a,则它的面积为a×a ;
2、一正方体的棱长为a,则它的体积为a×a×a ;
3、1个细胞每过30分钟便由一个分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?
乘方的概念:求n 个相同因数a 的积的运算叫做乘方,记作a n
即a ×a ×… ×a ×a=a n ,这种运算就是乘方,它的运算结果叫幂,a 叫底数,n 叫指数, a n 读作a 的n 次方(或a 的n 次幂)
巩固新知:
1、判断下列各题是否正确
①23=2 ×3; ( 不正确 )
②2+2+2=23; ( 不正确 )
③23=2×2 ×2. ( 正确 )
2、写出下列各幂的底数与指数:
(1)在64中,底数是6 ,指数4 ;
(2)在a 4中,底数是a ,指数是4 ;
(3)在(-6)5中,底数是-6 ,指数是5 ;
(4)在(-a )7中,底数是-a ,指数是7 。
3、把下列相同因数的乘积写成幂的形式,并说出底数和指数.
(1)(-6)×(-6)×(-6)
(2)3
2323232⨯⨯⨯ 议一议:23-与2)3(-结果相等吗?
(三)探究新知2:
做一做:1、计算:
(1)2)3(- (2)8)1(- (3)5)2(- (4)3)21
(- (5)34 (6)2
)53
( 2、想一想:观察计算的结果,你能发现乘方运算结果的符号有什么规律吗? 乘方运算的符号规律:
规律: 1、负数的偶次幂是正数;
2、负数的奇次幂是负数;
3、正数的任何次幂都是正数。
练一练:(先确定符号,再算结果)
(1)7)1(- (2)10)1(- (3)38 (4)3)5(-
(5)31.0 (6)4
)21
(- (7)4)10(- 新知应用:
一个数的平方为16,这个数可能是几?一个数的平方可能是零吗?有没有一个数的4次方
为负数?
(四)课堂小结
通过本节课的学习,谈一谈你有什么收获和感受?
1、什么叫乘方?用字母怎么表示?每个字母表示什么?读作什么?
求n个相同因数a的积的运算叫做乘方;a n;a表示底数,n表示指数,a n表示幂;读作a的n次方(或a的n 次幂)
2、有理数的乘方的符号法则
正数的任何次幂都是正数;
负数的偶次幂是正数;负数的奇次幂是负数。
3、数学思想方法
(五)作业:必做题
选做题
六、板书设计
七、课后反思。