高考数学压轴专题最新备战高考《平面向量》难题汇编含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新单元《平面向量》专题解析
一、选择题
1.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=u u u r u u u r
( )
A .134
-
B .
54
C .5
D .
154
【答案】B 【解析】 【分析】
据题意以菱形对角线交点O 为坐标原点建立平面直角坐标系,用坐标表示出,DE DF u u u r u u u r
,再
根据坐标形式下向量的数量积运算计算出结果. 【详解】 设AC 与BD 交于点O ,以O 为原点,BD u u u r 的方向为x 轴,CA u u u r
的方向为y 轴,建立直角
坐标系,
则1,12E ⎛⎫
- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r ,
所以95144
DE DF ⋅=-=u u u r u u u r .
故选:B. 【点睛】
本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.
2.已知,a r b r 是平面向量,满足||4a =r ,||1b ≤r 且|3|2b a -≤r r ,则cos ,a b 〈〉r
r 的最小值是
( )
A .
1116
B .
78
C .
158
D .
315
16
【答案】B 【解析】 【分析】
设OA a =u u u r r ,3OB b =u u u r r
,利用几何意义知B 既在以O 为圆心,半径为3的圆上及圆的内部,又在以A 为圆心,半径为2的圆上及圆的内部,结合图象即可得到答案. 【详解】
设OA a =u u u r r ,3OB b =u u u r r
,由题意,知B 在以O 为圆心,半径为3的圆上及圆的内部,
由|3|2b a -≤r r
,知B 在以A 为圆心,半径为2的圆上及圆的内部,如图所示
则B 只能在阴影部分区域,要cos ,a b 〈〉r
r 最小,则,a b <>r r 应最大,
此时()
222222min
4327
cos ,cos 22438
OA OB AB a b BOA OA OB +-+-〈〉
=∠===⋅⨯⨯r
r .
故选:B. 【点睛】
本题考查向量夹角的最值问题,本题采用数形结合的办法处理,更直观,是一道中档题.
3.已知向量a r 与向量b r 满足||2a =r ,||2b =r ||||5a b a b +⋅-=r r r r ,则向量a r
与向量b r
的夹角为( )
A .
4π或
34
π B .6π或56π
C .3π或23π
D .2π 【答案】A 【解析】 【分析】
设向量a r ,b r
的夹角为θ,则2||1282a b θ+=+r r ,2||1282a b θ-=-r r ,即可
求出2cos θ,从而得到向量的夹角;
【详解】
解:设向量a r ,b r
的夹角为θ,222||||||2||||cos 4882cos a b a b a b θθ+=++=++r r r r r r 1282cos θ=+,222||||||2||||cos 4882cos 1282cos a b a b a b θθθ-=+-=+-=-r r r r r r
,所以
2222||||144128cos (45)80a b a b θ+⋅-=-==r r r r ,2
1cos 2
θ∴=,因为[0,)θπ∈,故
4
π
θ=

34
π
,故选:A. 【点睛】
本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.
4.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若
(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r
,则λ+μ的值为( )
A .
65
B .
85
C .2
D .83
【答案】B 【解析】 【分析】
建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r
,列
出方程组求解即可. 【详解】
建立如图所示的平面直角坐标系,则D (0,0).
不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),
(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u r
CA CE DB λμ=+u u u r u u u r u u u r Q
∴(-2,2)=λ(-2,1)+μ(1,2),
2222λμλμ-+=-⎧∴⎨+=⎩解得65
2
5λμ⎧=⎪⎪⎨⎪=⎪⎩
则85λμ+=.
故选:B 【点睛】
本题主要考查了由平面向量线性运算的结果求参数,属于中档题.
5.在ABC ∆中,若点D 满足3CD DB =u u u r u u u r ,点M 为线段AC 中点,则MD =u u u u r
( )
A .3144A
B A
C -u u u
r u u u r B .1136
AB AC -u u u r u u u r
C .2133AB AC -u u u r u u u r
D .3144AB AC +u u u
r u u u r
【答案】A 【解析】 【分析】
根据MD MA AB BD =++u u u r u u u u u u r u r u u u r
,化简得到答案. 【详解】 ()
11312444
MD MA AB BD AC AB AC AB AB AC =++=-++-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u
u u u u r r u u u r .
故选:A . 【点睛】
本题考查了向量的运算,意在考查学生的计算能力.
6.已知向量a v ,b v 满足a b a b +=-r r
v v
,且||a =v ||1b =r ,则向量b v 与a b -v v 的夹角为
( ) A .
3
π B .
23
π C .
6
π D .
56
π 【答案】B 【解析】 【分析】
对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与
a b
-v v 的夹角,并根据它补角的正切值求得对应的角的大小.
【详解】
因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .
如图,设AB a =u v v ,AD b =u u u v v
,则向量b v 与a b -v v 的夹角为BDE ∠,因为
tan 3BDA ∠
=,所以3
BDA π
∠=
,23
BDE π
∠=
.故选B.
【点睛】
本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.
7.若向量a b r r ,的夹角为3
π
,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( )
A .1
2
-
B .
12
C .
32
D .3 【答案】A 【解析】 【分析】
由|2|||a b a b -=+r r r r 两边平方得22b a b =⋅r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r
,可得20t a a b ⋅+⋅=r r r
,即可得出答案.
【详解】
由|2|||a b a b -=+r r r r
两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r .
即22b a b =⋅r r r ,也即22cos 3
b a b π
=r r r ,所以b a =r r .
又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r
,即20t a a b ⋅+⋅=r r r .
所以222
1122b
a b t a b
⋅=-=-=-r r r r r 故选:A 【点睛】
本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题.
8.设x ,y 满足10
2024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩
,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m
的最小值为( )
A .
125
B .125
-
C .
32
D .32
-
【答案】B 【解析】 【分析】
先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】
解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r

由a b ⊥r r
得20x m y +-=,∴当直线经过点C 时,m 有最小值,
由242x y x y +=⎧⎨=⎩,得85
4
5x y ⎧=⎪⎪⎨⎪=⎪⎩
,∴84,55C ⎛⎫ ⎪⎝⎭,
∴416122555
m y x =-=-=-, 故选:B.
【点睛】
本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
9.已知点1F ,2F 分别是椭圆22
22:1(0)x y C a b a b
+=>>的左,右焦点,过原点O 且倾斜
角为60°的直线l 与椭圆C 的一个交点为M ,且1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r
,则椭圆C
的离心率为( ) A 31 B .23
C .
1
2
D .
22
【答案】A 【解析】 【分析】
由1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r
两边平方,得120MF MF ⋅=u u u u r u u u u r ,在12Rt MF F V 中,求出2MF ,1MF ,
,a c 的关系,求出离心率可得选项. 【详解】
将1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r 两边平方,得120MF MF ⋅=u u u u r u u u u r ,即
12121
||2
MF MF OM F F c ⊥=
=,.
又60MOF ∠=︒,∴2MF c =,1MF =,∴2a c =+,∴1c
e a
=
=. 故选:A. 【点睛】
考查了向量的数量积,椭圆的定义,离心率的求法,关键在于得出关于,a c 的关系,属于中档题.
10.设双曲线()22
2210,0x y a b a b
-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线
于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若
(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225
+=8
λμ,则双曲线的离心率为( )
A .
3
B .
5
C .
2
D .
98
【答案】A 【解析】 【分析】
先根据已知求出,u λ,再代入2
2
5
+=
8
λμ求出双曲线的离心率. 【详解】
由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2
(,),(,),(,),bc bc b A c B c P c a a a
-
因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a a
λλ=+-.
所以,,b
u c u c
λλ+=-= 解之得,.22b c c b
u c c
λ+-=
=
因为2
2
5+=8λμ,所以225(
)(),228b c c b c e c c a +-+=∴=∴= 故答案为A 【点睛】
本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v
求出,u λ.
11.在平行四边形ABCD 中,4AB =,2AD =,3
BAD π∠=
,M 为DC 的中点,N
为平面ABCD 内一点,若AB NB AM AN -=-u u u v u u u v u u u u v u u u v ,则AM AN ⋅=u u u u v u u u v ( )
A .16
B .12
C .8
D .6
【答案】D 【解析】 【分析】
根据条件及向量加减法的几何意义即可得出|AN u u u r |=|MN u u u u r
|,再根据向量的数量积公式计算即可 【详解】
由|AB NB -u u u r u u u r |=|AM AN -u u u u r u u u r |,可得|AN u u u r
|=|NM u u u u r |,
取AM 的中点为O ,连接ON ,则ON ⊥AM ,
又12
AM AD AB =+u u u u r u u u r u u u r ,
所以AM u u u u r •21122AN AM ==u u u r u u u u r (12AD AB +u u u r u u u r )212=(2214AD AB AD ++u u u r u u u r u u u r •AB u u u r )12=
(414+
⨯16+2×41
2⨯)=6, 故选:D .
【点睛】
本题主要考查了平面向量的几何表示,数量积的几何意义,运算求解能力,属于中档题
12.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共
线的非零向量OAOB OC u u u r u u u r u u u r
,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过
O 点,则S 2010等于( ) A .1005 B .1006
C .2010
D .2012
【答案】A 【解析】 【分析】
根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r
,及三点A ,
B ,
C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】
由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;
由10051006OC a OA a OB =+u u u r u u u r u u u r ,
所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010(
)
12010201020101
10052
2
a a +⨯=
=
=. 故选:A. 【点睛】
本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.
13.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v
,点E 为线段
AD 的中点,34
AE AB AC λ=+u u u v u u u v u u u v
,则λ=( )
A .
1
4
B .14
-
C .
13
D .13
-
【答案】B 【解析】 【分析】
由12AE AD =u u u r u u u r ,AD BD BA =-u u u r u u u r u u u r ,AC BC BA =-u u u
r u u u r u u u r ,32
BD BC =u u u r u u u r ,代入化简即可得出.
【详解】 13,,,22AE AD AD BD BA BD BC BC AC AB ==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v
,带人可得
()
13132244AE AC AB AB AB AC ⎡⎤=-+=-+⎢⎥⎣⎦
u u u v u u u v u u u v u u u v u u u v u u u v ,可得14λ=-,
故选B. 【点睛】
本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.
14.已知椭圆C :2
212
x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C
于点B ,若3FA FB =u u u v u u u v
,则AF u u u v =( )
A .2
B .2
C .3
D .3
【答案】A 【解析】 【分析】
设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v
,得043x =
,01
3
y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v
【详解】 根据题意作图:
设点()2,A n ,()00,B x y .
由椭圆C :2
212
x y += ,知22a =,21b =,21c =,
即1c =,所以右焦点F (1,0).
由3FA FB =u u u v u u u v
,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =
,01
3
y n =. 将x 0,y 0代入2
212
x y +=,
得22
1411233n ⎛⎫⎛⎫
⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2
212112AF n u u u v =-+=+=
【点睛】
本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.
15.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r ,则当,1[]2t ∈-时,a tb -r r 的最大值为( ) A .2 B .3 C .2 D .5 【答案】D
【解析】
【分析】 根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r ,得到1a =r ,1b =r ,0a b ⋅=r r ,再利用22()1a tb a tb t -=-=+r r r r 求解.
【详解】 因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r ,
所以1a =r ,1b =r ,0a b ⋅=r r ,
所以22()1a tb a tb t -=-=+r r r r ,
当[]2,1t ∈-时,max
5a tb -=r r . 故选:D
【点睛】
本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.
16.如图,AB ,CD 是半径为1的圆O 的两条直径,3AE EO =u u u v u u u v ,则•EC ED u u u v u u u v
的值是( )
A .45-
B .1516-
C .14-
D .5
8
- 【答案】B
【解析】
根据向量表示化简数量积,即得结果.
【详解】 ()()()()
•••EC ED EO OC EO OD EO OC EO OC =++=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2221151416EO OC ⎛⎫=-=-=- ⎪⎝⎭
u u u v u u u v ,选B. 【点睛】
本题考查向量数量积,考查基本分析求解能力,属基础题.
17.已知平面向量,,a b c r r r 满足||||2a b ==r r ,a b ⊥r r ,()()a c b c -⊥-r r r r ,则(a b c ⋅r r r +)的取值范围是( )
A .[0,2]
B
.[0, C .[0,4] D .[0,8] 【答案】D
【解析】
【分析】
以点O 为原点,OA u u u r ,OB uuu r
分别为x 轴,y 轴的正方向建立直角坐标系,根据AC BC ⊥,得到点C 在圆22(1)(1)2x y -+-=,再结合直线与圆的位置关系,即可求解.
【详解】 设,,OA a OB b OC c ===u u u r r u u u r r u u u r r
, 以点O 为原点,OA u u u r ,OB uuu r 分别为x 轴,y 轴的正方向建立直角坐标系,则
(2,0),(0,2)A B ,
依题意,得AC BC ⊥,所以点C 在以AB 为直径的圆上运动, 设点(,)C x y ,则22(1)(1)2x y -+-=,()22a b c x y +⋅=+r r r ,
由圆心到直线22x y t +=
的距离d =
≤,可得[0,8]t ∈.
故选:D .
【点睛】
本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力.
18.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r 的最大值为( )
A .714-
B .24-
C .514-
D .30-
【答案】A
【分析】
依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求
出E 的坐标,求出边CD 所在直线的方程,设(,M x +,利用坐标表示,AM ME u u u u r u u u r ,根据二次函数的性质求出最大值.
【详解】
解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,
()
0,0A ∴,(B ,(C ,()5,0D
因为点E 在线段CB 的延长线上,设(0E x ,01x < AE BE =Q
()22
2001x x +=-解得01x =-
(
E ∴-
(
C Q ,()5,0D
CD ∴所在直线的方程为y =+
因为点M 在边CD 所在直线上,故设(,M x + (
,AM x ∴=+u u u u r
(
1E x M -=--u u u r
()
1AM ME x x -∴⋅=--++u u u u r u u u r 242660x x =-+-
242660x x =-+-
23714144x ⎛⎫= ⎪⎭---⎝
当134
x =时()max 714
AM ME ⋅=-u u u u r u u u r 故选:A
【点睛】
本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.
19.已知,A B 是圆22
:16O x y +=的两个动点,524,33AB OC OA OB ==-u u u v u u u v u u u v ,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v ( ) A .843+B .843-C .12 D .4
【答案】C
【解析】
【分析】
【详解】 由题意1122
OM OA OB =+u u u u r u u u r u u u r ,则22521151133226
32OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .
点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.
20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r

120BAC ∠=︒,则||EB =u u u r ( )
A .4
B
C .2
D .4
【答案】A
【解析】
【分析】 根据向量的线性运算可得3144
EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.
【详解】 因为11131()22244
EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6
EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216
=⨯-⨯⨯⨯-+⨯ 1916
=

所以||4
EB =u u u r , 故选:A
【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。

相关文档
最新文档