自控原理习题解答(第五章)
自动控制原理考试试题第五章习题及答案
第五章 线性系统的频域分析与校正练习题及答案——25-12 已知)(1s G 、)(2s G 和)(3s G 均为最小相角传递函数,其近似对数幅频特性曲线如图5-79所示。
试概略绘制传递函数 G s G s G s G s G s 412231()()()()()=+的对数幅频、对数相频和幅相特性曲线。
解:(1) L K 11204511()lg .ω== ∴=K 1180则: G s K 11()= (2) G s K s s 22081()(.)=+20201022lg /lgK K ω== , K 21= (3)L K K 333202001110()lg lg .ωω=== s s K s G K 9)(,9111.01333====∴(4) G s G G G G 412231()=+ 将G G G 123,,代入得:G s s s 41801251()(.)=+对数频率特性曲线如图解5-12(a)所示,幅相特性曲线如图解5-12(b)所示:图解5-12 (a) Bode 图 (b) Nyquist 图5-13 试根据奈氏判据,判断题5-80图(1)~(10)所示曲线对应闭环系统的稳定性。
已知曲线(1)~(10)对应的开环传递函数如下(按自左至右顺序)。
题号 开环传递函数PNN P Z 2-=闭环 稳定性 备注 1 G s KT s T s T s ()()()()=+++1231110 -1 2 不稳定 2 G s Ks T s T s ()()()=++12110 0 0 稳定 3G s Ks Ts ()()=+21-12不稳定4 G s K T s s T s T T ()()()()=++>12212110 0 0 稳定 5 G s K s ()=30 -1 2 不稳定 6 G s K T s T s s ()()()=++123110 0 0 稳定 7 G s K T s T s s T s T s T s T s ()()()()()()()=++++++5612341111110 0 0 稳定 8 G s KT s K ()()=->1111 1/2 0 稳定 9 G s KT s K ()()=-<1111 0 1 不稳定 10G s Ks Ts ()()=-11-1/22不稳定)1)(1()(++=s Ts s Ks G ; )0,(>T K(1)2=T 时,K 值的范围; (2)10=K 时,T 值的范围; (3)T K ,值的范围。
自动控制原理第五章习题及答案
第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。
u r R1u cR2CR2R1u r u c(a) (b)题5-1图R-C网络解(a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(RRCRRTCRRRRKsTsKsCRsCRRRsUsUrcττωωτωωωωω11121212121)1()()()(jTjKCRRjRRCRRjRjUjUjGrca++=+++==(b)依图:⎩⎨⎧+==++=+++=CRRTCRsTssCRRsCRsUsUrc)(1111)()(2122222212ττωωτωωωωω2221211)(11)()()(jTjCRRjCRjjUjUjGrcb++=+++==5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(tcs和稳态误差)(tes(1)tt r2sin)(=(2))452cos(2)30sin()(︒--︒+=ttt r题5-2图反馈控制系统结构图解 系统闭环传递函数为: 21)(+=Φs s 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ(2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应h t e e t tt ()..=-+≥--11808049试求系统频率特性。
自控原理第五章习题参考答案
5-1 5()0.251G s s =+5()0.251G j j ωω=+()A ω=()arctan(0.25)ϕωω=-输入 ()5cos(430)5sin(460) =4r t t t ω=-︒=+︒(4)A ==(4)arctan(0.25*4)45ϕ=-=-︒系统的稳态输出为()(4)*5cos[430(4)]3045)17.68cos(475)17.68sin(415)c t A t t t t ϕ=-︒+=-︒-︒=-︒=+︒ sin cos(90)cos(90)cos(270)αααα=︒-=-︒=+︒或者,()(4)*5sin[460(4)]6045) 17.68sin(415)c t A t t t ϕ=+︒+=+︒-︒=+︒所以,对于cos 信号输入下的稳态输出计算规律与sin 信号作用下计算相同。
5-3(2)1()(1)(12)G s s s =++ 1()(1)(12)G j j j ωωω=++()A ω=()arctan arctan 2ϕωωω=--起点:0ω= (0)1;(0)0A ϕ==︒ 位于正实轴上。
终点:ω→∞ ()0;()180A ϕ∞=∞=-︒+∆ 从第三象限趋于原点因此,,Nyquist 曲线与虚轴有交点,并且满足:()arctan arctan 290ϕωωω=--=-︒ arctan arctan 290ωω+=︒所以有,1/(2)ωω= 21/2ω=()0.473A ω=== 因此,与虚轴的交点为(0,-j0.47)()ω(3)1()(1)(12)G s s s s =++ 1()(1)(12)G j j j j ωωωω=++()A ω=()90arctan arctan 2ϕωωω=-︒--起点:0ω= (0);(0)90A ϕ=∞=︒∆-- 位于负虚轴(左侧)无穷远方向终点:ω→∞ ()0;()270A ϕ∞=∞=-︒+∆ 从第二象限趋于原点因此,,Nyquist 曲线与实轴有交点,并且满足:()90arctan arctan 2180ϕωωω=-︒--=-︒ arctan arctan 290ωω+=︒1/(2)ωω= 21/2ω=2()0.673A ω===与实轴的交点为(-0.67,-j0))ω(4)21()(1)(12)G s s s s =++ 21()()(1)(12)G j j j j ωωωω=++()A ω=()180arctan arctan 2ϕωωω=-︒--起点:0ω= (0);(0)180A ϕ=∞=︒∆-- 位于负实轴(上侧)无穷远方向终点:ω→∞ ()0;()360A ϕ∞=∞=-︒+∆ 从第一象限趋于原点因此,,Nyquist 曲线与虚轴有交点,并且满足:()180arctan arctan 2270ϕωωω=-︒--=-︒ arctan arctan 290ωω+=︒1/(2)ωω= 21/2ω=()0.94A ω===与虚轴的交点为(0,j0.94))ω=5-4(2)10.5ω=,21ω=,1K =,0ν=(3)10.5ω=,21ω=,1K =,1ν=低频段直线(延长线)与0db 线交点的频率为:1/cK νω'=。
自动控制原理简明教程第二版课后答案第五章习题答案
5-13 试用奈氏判据分宾判断题 5-5,5-6 系统的闭环稳定性。 解:5-5 (1)τ > T 时系统闭环稳定。 (2)T >τ 5-6 (1)ν =1 时系统闭环稳定。 (2)ν = 2,3,4 时系统闭环不稳定。 5-14 已知下列系统开环传递函数(参数 K,T,Ti > 0;i = 1,2,,6 ) : 时系统闭环不稳定。
8
胡寿松自动控制原理习题解答第五章 电 3 刘晓峰制作
L(ω ) (dB)
60 40 20
-20 -40 -20
0
0.1 1 2 10
-40 20 -60
100ω
ω 0 − 90
−180
5-11 绘制下列函数的对数幅频渐进特性曲线:
2
(1)G(s) =
(2s +1)(8s +1) 200 (2)G(s) = s 2(s +1)(10s +1)
1
所以:G(s) = 100(0.001s/ω
1
+1)
(s
/ω 1 +1)(s /100 +1)
11
胡寿松自动控制原理习题解答第五章 电 3 刘晓峰制作
(b)G(s) = s 102 (s(s/ω /ω
21
++11) )
(c)
G(s) = (s
2
2ξ ω nKs+2ω + s
n 2
ω
n
2
)(s /10 +1)
0.5 −87.2
1 −92.1
3 −164
5 − 216
7 − 234.5
10 − 246
自动控制原理第五章课后答案
五 频域分析法2-5-1 系统单位阶跃输入下的输出)0(8.08.11)(94≥+-=--t e e t c tt ,求系统的频率特性表达式。
【解】: 98.048.11)]([L )(1+++-==-s s s t c s C 闭环传递函数)9)(4(36198.048.11)()()(++=+++-==s s ss s s s R s C s G )9tg 4(tg 2211811636)9)(4(36)(ωωωωωωω--+-+⨯+=++=j ej j j G2-5-2系统时,系统的稳态输出(1))30sin()(0+=t t r ; (2))452cos(2)(0+=t t r ;(3))452cos(2)30sin()(00--+=t t t r 。
【解】:求系统闭环传递函数5tg 21254)5(4)(54)(1)()()()(14)(ωωωω--+=+=+=+==+=j B K K B K ej j G s s G s G s R s C s G s s G根据频率特性的定义,以及线性系统的迭加性求解如下:(1)︒===30,1,11θωr A︒--====-3.1151tg )1(178.0264)1()(1j j j B e eeA j G θωω[])7.18sin(78.0)1(sin )1()sin()(12︒+=++=+=t t A A t A t c r c s θθθ(2)︒===45,2,21θωr A︒--==+=-8.2152tg 274.02544)(1j j B e ej G ωω)2.232cos(48.1)(︒+=t t c s(3))8.662cos(48.1)7.18sin(78.0)(︒--︒+=t t t c s2-5-3 试求图2-5-3所示网络的频率特性,并绘制其幅相频率特性曲线。
【解】:(1)网络的频率特性1)(111)(212212+++=+++=ωωωωωC R R j C jR C j R R C j R j G(2)绘制频率特性曲线)tg (tg 22212121111)(1)(11)(ωωωωωωωT T j eT T jT jT j G ---++=++= 其中1221221,)(,T T C R R T C R T >+==。
自动控制原理及其应用课后习题第五章答案
ω
20 0 -20
10 ωc
1
2 -20dB/dec
ω
-60dB/dec
10 ≈1 ω2 0.5 c
ω c=4.5
5 ≈1 ω c=7.9 ω 0.01 c3
第五章习题课 (5-17)
-20
低频段曲线: 低频段曲线: 20lgK=20dB φ (ω ) 0 ω1=5 ω2=15 -90 相频特性曲线: 相频特性曲线: -180 -270 φ ( )= -90o ω ω=0 φ ( )= -270o ω ω=∞
-60dB/dec
ω
第五章习题课 (5-2)
10(s+0.2) 1.33(5s+1) (5) G(s)= s2(s+0.1)(s+15)=s2(10s+1)(0.67s+1) 解: 低频段曲线: 低频段曲线: 20lgK=2.5dB
第五章习题课 (5-7)
5-7 已知奈氏曲线,p为不稳定极点个数, 已知奈氏曲线, 为不稳定极点个数 为不稳定极点个数, υ为积分环节个数,试判别系统稳定性。 为积分环节个数,试判别系统稳定性。 Im υ=2 (b) p=0 (a) p=0 Im υ=0
ω=0 Re -1 0 ω=0+ -1 0 ω=0 Re
第五章习题课 (5-1)
5-1(1) 已知单位负反馈系统开环传递函数, 已知单位负反馈系统开环传递函数, 当输入信号r(t)=sin(t+30o),试求系统的稳态 当输入信号 , 输出。 输出。 10 G(s)=(s+1) 10 解: φ(s)= (s+11) 10 = 10 = 10 ω A( )= 2 2 112+1√ 122 =0.905 √ 11 +( ) √ ω φ ( )=-tg-1ω =-tg-1 1 =-5.2o ω 11 11 cs(t)=0.9sin(t+24.8o)
《自动控制原理》第5章习题答案
G0 ( s ) =
1 s (0.1s + 1)
特征方程为, D( s ) = 0.1s 2 + s + 1 = 0 ,即,s + 10 s + 10 = 0 ,
2
ω n = 10 = 3.162 , ζ =
10 = 1.58 ,原系统为过阻尼系统, 2ω n
2
σ % = 0 , ts >
4
ζω n
解: G ( jω ) =
ω=0 时, G (0) = 0.4 ,在低频段, L(ω ) = 20 lg 0.4 = −8dB ; ω → ∞ 时, G ( j∞) = 1 ,
在高频段, L(ω ) = 20 lg1 = 0dB 。转折频率 ω1 = 2 ,ω 2 = 5 。串联校正装置是超前校正装 置。
-j 3.46
②计算期望主导极点位置。 系统期望闭环主导极点具有阻尼系数 ζ =
2 ,自然振荡频率 ω n = 4 2 , 2
θ = arccosζ = arccos
2 = 450 , 则 一 个 具 有 期 望 极 点 的 2 阶 系 统 特 征 方 程 为 , 2
s 2 + 8s + 32 = 0
jω
期望极点
期望极点
− p3
j
600
j0.58
− p2
-1
− p1
0 -j
-3
-2
σ
-2
19.150 -1
40.880 0.33 0
119.640
校核相角条件: 根据在图中主导极点位置的近似值-0.33 ± j 0.58 和开环极点的位置, 作由各开环极点到期望主导极点的向量,
Φ = -119.640 -40.880 -19.150 = -179.670≈-1800
《自动控制原理》第五章习题解答
2 ωn s( s + 2ζω n )
G( s) =
当取 r (t ) = 2 sin t 时,系统的稳态输出
css (t ) = 2 sin(t − 450 )
试确定系统参数 ω n , ζ 。 解:根据公式(5-16)和公式(5-17) 得到: c ss (t ) = A G B ( jω ) sin(ωt + ϕ + ∠G B ( jω ))
根据题目给定的条件: ω = 1 A = 2 所以: G B ( jω ) =
2 (ω n − ω 2 ) + (2ζω nω ) 2
=
=1
(1)
∠G B ( jω ) = − arctan
2ξω nω 2ξω = − arctan 2 n = −45 0 2 2 ωn − ω ωn −1
(2)
由式(1)得 ω n = (ω n − 1) + ( 2ζω n )
20
ϕ (ω )
− 89 o
− 87.2 o
− 92.1o − 164 o
− 216 o
− 234.5 o
− 246 o
− 254 o
− 258 o
ω
30
50
100
ϕ (ω )
− 262 o
− 265 o
− 267.7 o
作系统开环对数频率特性图,求得 ω c = 1 ,系统的穿越频率 ω r = 18 系统的幅值裕度和相角裕度为 h =
-26
-20
5-12 已知最小相位系统的对数幅频渐进特性曲线如图 5-50 所示, 试确定系统的开环传递函 数。 解: (a) G ( s ) =
自控控制原理习题 王建辉 第5章答案
第五章 频率法5-1用时域与频域法分析设计和设计系统的主要区别是什么? 5-2用时域法分析和设计系统的主要优点是什么? 5-3奈氏稳定判据的本质是什么?5-4何谓幅值裕度与相位裕度,并举例说明之。
5-5试述二阶系统闭环频率特性与时域中阶跃相应之间的关系。
5-6试定性叙述伯德图各段与时域指标之间的对应关系。
5-7已知单位反馈系统的开环传递函数为 W K (s)=110+s当系统的给定信号为 (1))30sin()(01+=t t x r(2) )452cos(2)(02-=t t x r(3))452cos(2)30sin()(03--+=t t t x r求系统的稳态输出。
解:5-7(1)系统的闭环传递函数为1110)(1)()(+=+=s s W s W s W K K B因为)30sin()(0+=t t x r )30(0)(+=t j r ej X ω 02.511arctan29054.012110)(j j B eej W --=+=ωωω)2.530(09054.0)()()(-+==t j B r c ej W j X j X ωωω所以)8.24sin(9054.0)(0+=t t x c 解:5-7(2)系统的闭环传递函数为1110)(1)()(+=+=s s W s W s W K K B因为)452cos(2)(0-=t t x r 化为正弦表达形式则)452sin(2)(0+=t t x r )452(02)(+=t j r ej X ω 3.1011arctan28944.012110)(j j B eej W --=+=ωωω)3.10452(07888.1)()()(-+==t j B r c ej W j X j X ωωω所以)7.342sin(7888.1)(0+=t t x c解:5-7(3)根据叠加原理,系统的输出为5-7(1)-5-7(2))7.342sin(7888.1)8.24sin(9054.0)(0+-+=t t t x c5-8绘出下列各传递对应的幅相频率特性。
自动控制原理_第5章习题解答-
第5章频率特性法教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。
求放大系数K 及时间常数T 。
解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。
(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。
《自动控制原理》答案 李红星 第五章
某系统结构图如题 5-1 图所示,试根据频率特性的物理意义,求下列输入信号作用时,
系统的稳态输出 c s (t ) 和稳态误差 e s (t ) (1) (2)
r (t ) = sin 2t r (t ) = sin(t + 30°) − 2 cos( 2t − 45°)
题 5-1 图
解:
系统闭环传递函数为: Φ ( s ) =
(T1 > 0, T2 > 0, T3 > 0, T4 > 0)
又知它们的奈奎斯特曲线如题 5-7 图(a)(b)(c)所示。 找出各个传递函数分别对应的奈奎斯 特曲线,并判断单位反馈下闭环系统的稳定性
145
题 5-7 图 解:三个传递函数对应的奈奎斯特曲线分别为 b, c, a 对 G1 ( s ) =
要求画出以下 4 种情况下的奈奎斯特曲线,并判断闭环系统的稳定性: a. T2 = 0 ;
141
b. 0 < T2 < T1 ; c. 0 < T2 = T1 ; d. 0 < T1 < T2 。 解: a. 当 T2 = 0 时, Q ( s ) =
K , s (T1 s + 1)
2
其开环幅相曲线如题 5-5 解图 a 所示, P = 0 ,N=2 则 Z=P+N=2,故在 s 平面右半平面有 2 个闭环极点,闭环系统不稳定; b.当 0 < T2 < T1 时, Q( jω ) =
当 τ > T 时,开环幅相曲线始终处于第三象限,如题 5-4 解图 a 所示; 当 T > τ 时,开环幅相曲线始终处于第二象限,如题 5-4 解图 b 所示。
题 5-4 解图 a 开环幅相曲线
自动控制原理课后习题答案第五章
第 五 章5-2 若系统单位阶跃响应为49()1 1.80.8tth t ee--=-+试确定系统的频率特性。
分析 先求出系统传递函数,用j ω替换s 即可得到频率特性。
解:从()h t 中可求得:(0)0,(0)0h h '==在零初始条件下,系统输出的拉普拉斯变换()H s 与系统输出的拉普拉斯变换()R s 之间的关系为()()()H s s R s =Φ⋅即()()()H s s R s Φ=其中()s Φ为系统的传递函数,又1 1.80.836()[()]49(4)(9)H s L h t s s s s s s ==-+=++++1()[()]R s L r t s ==则()36()()(4)(9)H s s R s s s Φ==++令s j ω=,则系统的频率特性为()36()()(4)(9)H j j R j j j ωωωωωΦ==++5-7 已知系统开环传递函数为)1s T (s )1s T (K )s (G 12++-=;(K、T1、T2>0)当取ω=1时, o180)j (G -=ω∠,|G(jω)|=0.5。
当输入为单位速度信号时,系统的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。
分析:根据系统幅频和相频特性的表达式,代入已知条件,即可确定相应参数。
解: 由题意知:()G j ω=21()90arctan arctan G j T T ωωω∠=---因为该系统为Ⅰ型系统,且输入为单位速度信号时,系统的稳态误差为0.1,即1()lim ()0.1ss s e E s K→∞===所以:10K =当1ω=时,(1)0.5G j ==21(1)90arctan arctan 180G j T T ∠=---=-由上两式可求得1220,0.05T T ==,因此10(0.051)()(201)j G j j j ωωωω-+=+5-14 已知下列系统开环传递函数(参数K 、T 、T i>0,i=1,2,…,6)(1))1s T )(1s T )(1s T (K)s (G 321+++=(2))1s T )(1s T (s K)s (G 21++=(3))1Ts (s K )s (G 2+=(4))1s T (s )1s T (K )s (G 221++=(5)3s K )s (G =(6)321s)1s T )(1s T (K )s (G ++=(7))1s T )(1s T )(1s T )(1s T (s )1s T )(1s T (K )s (G 432165++++++=(8)1Ts K)s (G -=(9)1Ts K )s (G +--=(10))1Ts (s K)s (G -=其系统开环幅相曲线分别如图5-6(1)~(10)所示,试根据奈氏判据判定各系统的闭环稳定性,若系统闭环不稳定,确定其s 右半平面的闭环极点数。
自动控制原理(孟华)第5章习题解答
137习 题5-1 某系统的单位阶跃响应为c (t ) = 1-e -t +e -2t- e -4t ,试求系统的频率特性。
解:238s+8G(s)(1)(2)(4)s s s s +=+++,将s =j ω代入,得23()8+8()(1)(2)(4)j j G j j j j ωωωωωω+=+++5-2 设系统传递函数为1)1()()(12++=s T s T K s R s C 当输入信号r (t )=A sin ωt 时,试求系统的稳态输出。
解:系统的稳态输出为21()arc tan -arc tan )ss C t t T T ωωω=+5-3画出下列传递函数的Bode 图。
(1) G (s )=1121++s T s T , ( T 1 > T 2 > 0 ) ; (2) G (s )=1121+-s T s T , ( T 1 > T 2 > 0 )(3) G (s )=1121++-s T s T , ( T 1 > T 2 > 0 )解:答案见胡寿松主编《自动控制原理习题集》Page709,B5-13。
5-4画出下列传递函数对数幅频特性的渐近线和相频特性曲线。
(1) G (s )=)18)(12(2++s s ; (2) G (s )=)16)(1(5022+++s s s s(3) G (s )=)1.0()2.0(102++s s s ; (4) G (s )=)254)(1()1.0(822+++++s s s s s s解:对数幅频特性的渐近线和相频特性曲线如习题5-4(1)~ 5-4(4)答案图所示。
M a g n i t u d e (d B )1010101010P h a s e (d e g )Frequency (rad/sec)M a g n i t u d e (d B )101010101010P h a s e (d e g )Frequency (rad/sec)习题5-4(1)答案图 习题5-4(2)答案图138M a g n i t u d e (d B )10101010P h a s e (d e g )Frequency (rad/sec)M a g n i t u d e (d B )10101010101010P h a s e (d e g )Frequency (rad/sec)习题5-4(3)答案图 习题5-4(4)答案图5-5系统开环传递函数如下。
《自动控制原理》课后习题答案(5章)
《自动控制原理》课后习题答案(5章)5.1 系统的结构图如图5-68所示。
试依据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出ss c 和稳态误差ss e 。
⑴()t t r 2sin =⑵()()()︒︒--+=452cos 230sin t t t r图5-1解 系统的传递函数:()()()21+==Φs s R s C s ()()()21++==Φs s s R s E s e 幅频特性及相频特性:()()2,2122ωωωωarctgj j -=Φ+=Φ()()2,21222ωωωωωωarctgarctg j e e -=Φ++=Φ(1)()2,2sin ==ωt t r 稳态输出:()()︒︒-=-+=452sin 221452sin 441t t c ss()︒-≈452sin 354.0t稳态误差:⎪⎭⎫ ⎝⎛-+++=2222sin 2221222arctg arctg t e ss()()︒︒+≈+=43.182sin 791.043.182sin 225t t(2)()()()()()︒︒︒︒+-+=--+=452sin 230sin 452cos 230sin t t t t t r⎪⎪⎭⎫ ⎝⎛+∠+++•-⎪⎪⎭⎫ ⎝⎛+∠+++=︒︒221452sin 221212130sin 211222j t j t c ss ()t t 2sin 225.3sin 55-+=︒ ()t t 2sin 708.05.3sin 447.0-+≈︒⎪⎭⎫ ⎝⎛-++++•-⎪⎭⎫ ⎝⎛-++++=︒︒222452sin 2221221130sin 12112222222arctg arctg t arctg arctg t e ss ()()︒︒︒︒︒︒-++•--++=4543.63452sin 410257.264530sin 510t t ()()︒︒+-+≈43.632sin 582.143.48sin 632.0t t ()()︒︒--+=57.1162sin 582.143.48sin 632.0t t5.2 若系统的单位阶跃响应:()t t e e t h 948.08.11--+-=()0≥t 试求系统的频率特性。
自动控制原理习题答案任彦硕主编习题解答-第5章
习题解答第5章题5-1:试绘制下列开环传递函数的幅相频率特性曲线。
(1) 10G(s)H(s)(s 1)(0.2s 1)=++ (2) 25(s 1)G(s)H(s)(s 3)(s 2s 2)+=+++(3) 100G(s)H(s)(s 1)(s 3)(s 4)=+++ 题5-6:试绘制题5-1各开环传递函数的对数幅频特性渐近线和半对数相频特性曲线。
(1) 2221010122()()(1)(0.21)(1)(10.04)j G j H j j j ωωωωωωω−−==++++ω 实频特性:)04.01)(1(210)(222ωωωω++−=P 虚频特性:)04.01)(1(12)(22ωωωω++−=Q 相频特性:()arctan arctan 0.2ϕωω=−−ωNyqist 曲线:起点:0ω=(0)10P ⇒=,(0)0Q =,(0)0ϕ=D 终点:ω=∞()0P ⇒∞=,()0Q ∞=, ()180ϕ∞=−D 与虚轴交点:()0P ω= 2.236ω⇒=() 3.73Q ω⇒=−Nyqist 曲线如下:转折频率1:111T ω==;转折频率2:215T ω==对数幅频特性:()20lg ()20lg10L A ωω==−− 半对数相频特性:()arctan arctan 0.2ϕωω=−−ωBode 图如下:(2) 25(1)()()(3)(22)j G j H j j j ωωωωωω+=+−+ 222222225(3)(2)202(12)(9)[(2)4]j ωωωωωωω+−+−+=+−+ω实频特性:]4)2)[(9(20)2)(3(5)(2222222ωωωωωωω+−++−+=P虚频特性:]4)2)[(9()21(10)(22222ωωωωωω+−++−=Q 相频特性:2()arctan arctanarctan310.5ωωϕωωω=−−−Nyqist 曲线: 起点:0ω=5(0)6P ⇒=,(0)0Q =,(0)0ϕ=D 终点:ω=∞()0P ⇒∞=,()0Q ∞=, ()180ϕ∞=−D 与虚轴交点:()0P ω= 2.09ω⇒=()0.66Q ω⇒=−Nyqist 曲线如下:225(1)0.83(1)()()(3)(22)(0.331)[(0.7)1]j j G j H j j j j j j ωωωωωωωωωω++==+−++++ 转折频率1:11 1.414T ω==;转折频率2:213T ω== 对数幅频特性:5()20lg ()20lg 6L A ωω==+半对数相频特性:2()arctan arctanarctan310.5ωωϕωωω=−−−Bode 图如下:(3) 23222100100[128(19)]()()(1)(3)(4)(1)(3)(4)j G j H j j j j ωωωωωωωωωωω−+−==++++++ 实频特性:)4)(3)(1()812(100)(2222ωωωωω+++−=P 虚频特性:)4)(3)(1()19(100)(2223ωωωωωω+++−=Q相频特性:()arctan arctan 0.33arctan 0.25ϕωωω=−−−ωNyqist 曲线:起点:0ω=(0)8.33P ⇒=,(0)0Q =,(0)0ϕ=D 终点:ω=∞()0P ⇒∞=,()0Q ∞=, ()270ϕ∞=−D 与虚轴交点:()0P ω= 1.22ω⇒=() 4.77Q ω⇒=− 与实轴交点:()0Q ω= 4.36ω⇒=()0.71P ω⇒=−Nyqist 曲线如下:8.33()()(1)(0.331)(0.251)G j H j j j j ωωωωω=+++转折频率1:111T ω==;转折频率2:213T ω==;转折频率3:314T ω== 对数幅频特性:()20lg ()18.4L A ωω==−−半对数相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=−−−Bode 图如下:题5-2:已知某一控制系统的单位阶跃响应为4t 9t c(t)1 1.8e 0.8e −−=−+试求该系统的开环频率特性。
自动控制原理(黄坚)第五章答案
第五章 频率特性法习题5-1 单位反馈控制系统的开环传递函数110)(+=s s G ,当下列信号作用在系统输入端时,求系统的稳态输出。
(1) )30sin()(︒+=t t r (2) )452cos(2)(︒-=t t r (3) )452cos(2)30sin()(︒--︒+=t t t r解:本题注意事项:一定要用闭环传递函数求模求角,计算角度一定要看象限 (1)1110)(+=Φs s ,1110)(+=Φωωj j ,︒-∠=-∠=+=Φ-19.5905.0111122101110)1(1tg j j )8.24sin(905.0)19.530sin(905.0)(︒+=︒-︒+=t t t c ss(2)︒-∠=+=Φ3.10894.011210)2(j j)3.552cos(788.1)(︒-=t t c ss(3))3.552cos(788.1)8.24sin(905.0︒--︒+=t t c ss5-2 设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2) )1008()1(1000)(2+++=s s s s s G (3) 13110)(++=s s s G 解:(1)起点s 10,︒-∞∠90;终点3750s ,︒-∠2700;交点5.0)75(-=j G (2)起点s 10,︒-∞∠90;终点21000s,︒-∠1800;交点)100927()1(1000)(232-++-=s s s s s s G ,)]92()1007[()1(1000)(222ωωωωωω--++=j j j G ,03.13)92(j j G -=(3)起点1;终点,3.33,与坐标轴无交点;曲线在第一象限(1)(2)5-4 最小相位系统对数幅频特性曲线如图所示,试写出他们的传递函数。
解: (a)11.010)(+=s s G (b)105.01.0)(+=s ss G (c))101.0)(1100(100)(++=s s s s G(d))101.0)(11.0)(1(19.251)(+++=s s s s G (书后答案有误)5-5 试由下述幅值和相角计算公式确定最小相位系统的开环传递函数。
自控原理习题解答第五章
1.1 0.38 s 0.45, s j0.67 0.93
2
5-5设控制系统的开环传递函数为
k G (s)H(s) s(s 2)(s 7)
(1)试绘制系统的根轨迹图。 (2)试确定系统稳定情况下k的取值范围; (3)试确定阻尼系数ζ =0.707情况下的k值。
i i 1
l1 l 2 l 3 l4
2
l1 1, l 2 1 2 5 , l 3 5 , l 4 4 l1 l 2 l 3 k 1.25 l4
• S值如果满足相角方程,也一定满足幅值方 程。 • 注意: • 测量相角时,规定以逆时针为正,即矢量 与正实轴的夹角。 • 绘制根轨迹时,应令s平面实轴与虚轴比例 尺相同,只有这样才能反映s平面坐标位置 与相角的关系。 • 在本章常用的是开环根轨迹增益k*(首1 型),而工程实际中常用的是开环k,一定 要注意两者的定量比例关系。
2实轴上的根轨迹: 0,2, 7, 3n m 3, 渐近线的倾角和渐近线 与实轴的交点 2l 1 , l 0,1,2
1
i 1 i j1
m
n
j
2l 1 , l 0,1,2,
0 180 63.4 63.4 180 s1点满足幅角方程,它是 根轨迹上的点。
求k 由式5 14得 k
(s p )
j j1 m
n
(s z )
s 1.1s 1.3s 0.5s k 0
4 3 2
k s 1.1s 1.3s 0.5s
4 3 2
dk 3 2 4s 3.3s 2.6s 0.5 0 ds
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1 i j1
m
n
j
2l 1 , l 0,1,2,
0 180 63.4 63.4 180 s1点满足幅角方程,它是 根轨迹上的点。
求k 由式5 14得 k
(s p )
j j1 m
n
(s z )
答5 12画出零极点在s平面上的位置图
p1 0, p 2 2 j2, p 3 2 j2, z 5
s 2 4s 8 s 2 j2s 2 j2, 开环极点为: 2 1 180 tg 126.87, 2 0, 1.5 2 1 4 1 3 tg 82.874, 1 tg . 29.7 0.5 5 - 1.5 用式5 11检验s 2 是不是根轨迹上的点
2实轴上的根轨迹:,2, 7, 0 3n m 3, 渐近线的倾角和渐近线 与实轴的交点 2l 1 , l 0,1,2
3
a
p z
j i 1
m
i
nm
2.5 5 1.25 2.803 3
4求与虚轴的交点 s 2 s 2.5s 5 10ks 1.25 0
s 4 7.5s3 12.5s2 10ks 12.5k 0 s4 s3 s2 s1 s0 1 7.5 7.5 12.5- 10k 7.5 (7.5 12.5- 10k) 10k - 7.52 12.5k 7.5 12.5- 10k 12.5k 12.5 12.5k 10k 7.5 12.5k- 0 7.5
4求与虚轴的交点 2 ss 4 s 2s 2 k 0
s 6s 10s 8s k 0
4 4 3 2 3 2
s s s s s
1 6 6 10 - 1 8 52 6 6 52 8 - 36k 416 36k 52 52 k
10 8 6k - 0 6 0
答5 11
画出零极点在 平面上的位置图 s s 4s 8 s 2 j2s 2 j2
2
开环极点为: p1 0, p 2 2 j2, p 3 2 j2, z 5
3
p2
j
2
2
1
l2
0
-1
o
1
l4
1
z1
l1
p1
第五章习题解答
5-1 设闭环系统的开环传递函数为
k (s 5) G(s)H(s) 2 s(s 4s 8)
试用幅角条件检验下列s平面上的点是不是根轨迹上 的点,如是,则用幅值条件计算该点所对应的k值。 (1)点(-1,j0);(2)点(-1.5,j2);(3)点(-6,j0); (4)点(-4,j3);(5)点(-1,j2.37)。
4 3 2
dk 3 2 4s 18s 20s 8 0 ds
s 1.5s 0.5 3 2 s 3 s 4.5s 5s 2
2
s 3s
3
2 2 2
1.5s 5s 1.5s 4.5s 0.5s 2 0.5s 1.5 0.5
s 0.5s 3 3 2 s 4 s 4.5s 5s 2
分离点d 0.25
5出射角 根据式5 26
l 180 i j
i 1 j1 j l m n
0.96 1 tg 107.35, 0.3 1 0.96 2 tg 78.23, 3 90 0.2 3 180 107.35 78.23 90 95.58
7.5 12.5- 10k 0 解得:k 9.375 (7.5 12.5- 10k) 10k - 7.5 12.5k 0
2
解得:k 2.34 由s 得方程:
2
7.5 12.5- 10ks
2
7.5 12.5k 0
解得:s j 3.12 j1.77 1.77
i i 1
l1 l 2 l 3 l4
2
l1 1, l 2 1 2 5 , l 3 5 , l 4 4 l1 l 2 l 3 k 1.25 l4
• S值如果满足相角方程,也一定满足幅值方 程。 • 注意: • 测量相角时,规定以逆时针为正,即矢量 与正实轴的夹角。 • 绘制根轨迹时,应令s平面实轴与虚轴比例 尺相同,只有这样才能反映s平面坐标位置 与相角的关系。 • 在本章常用的是开环根轨迹增益k*(首1 型),而工程实际中常用的是开环k,一定 要注意两者的定量比例关系。
k
1 0
416 36k 0, k 0 0 k 69.33 52s k 0 k 69.33 2 s 1.33 52 52 s j1.15
2
5-4设控制系统的开环传递函数为
k (0.8s 1) G(s)H(s) 2 s(s 0.5)(s 0.6s 1)
5出射角 根据式5 26
l 180 i j
i 1 j1 j l m n
1 1 135, 2 t g 18.43, 3 90 3 3 180 135 18.43 90
1
180 243.43 63.43 4 63.43
试绘制系统的根轨迹图。
2实轴上的根轨迹:,0.5 0 3n m 4, 渐近线的倾角和渐近线 与实轴的交点 2l 1 , l 0,1,2
nm l 0 : 1, 2
n
k 答5 - 4Gs Hs ss 0.5 s 2 0.6s 1 1n 4, m 0, p1 0, p 2 -0.5, p 3 0.3 j0.96, p 4 0.3 j0.96
2
s 4s
3
2 2 2
0.5s 5s 0.5s 2s 3s 2 3s 12 - 10
s 2 1.4s 0.66 3 2 s 3.1 s 4.5s 5s 2 s 3.1s
3 2
1.4s 5s
2 2
1.4s 4.34s 0.66s 2 0.66s 2.05 - 0.05 分离点d 3.1
l3
-2
p3
3
-3 -6
-5
-4
-3
-2
-1
0
1
2
用 表示极点,用 表示零点,用表示试验点。 . 由图可以计算出 2 1 180, 2 t g 63.4, 1 1 2 3 tg 63.4, 1 0 1 用式5 11检验s1是不是根轨迹上的点
4
j
45; l 1 : 3, 4 3 (135)
4
m i 1 i
a
p 0.3 j0.96- 0.3 - j0.96- 0 0.275 4
4分离点 2 ss 0.5s 0.6s 1 k 0
1.1 0.38 s 0.45, s j0.67 0.93
2
5-5设控制系统的开环传递函数为
k G (s)H(s) s(s 2)(s 7)
(1)试绘制系统的根轨迹图。 (2)试确定系统稳定情况下k的取值范围; (3)试确定阻尼系数ζ =0.707情况下的k值。
1
i 1 i j1
m
n
j
2l 1 , l 0,1,2,
1 1 2 3 2l 1
29.7 126.87 0 82.87 180.04
s 2点满足幅角方程,它是 根轨迹上的点。
3
2
j
2
l4
p2
l2
1
l1
1
0
-1
o
1
l3
z1
p1
-2
p3
3
-3 -6
-5
-4
-3
-2
-1
0
1
2
由式5 14得 k
求k
(s p )
j j1 m
n
(s z )
i i 1 2 2 2 2
l1 l 2 l 3 l4
l1 1.5 2 2.5, l 2 0.5, l 3 0.5 4 4.031 l 4 , l1 l 2 l 3 k 1.25 l4
1
4 95.58
6求与虚轴的交点
s 1.1s 1.3s 0.5s k 0
4 3 2
s4 s3 s s
2
1 1.1 0.93 0.465 1.21k 1.1k
1.3 0.5 1.1k 0
k
s1
0
2 0.465 1.21k 0,0 k 0.38;0.93s 1.1k 0
n
k 答5 - 3Gs Hs ss 4 s 1 js 1 j 1n 4, m 0, p1 0, p 2 -4, p 3 1 j, p 4 1 j
4
j
45; l 1 : 3, 4
m i 1 i
5 1.5
2
2 2 4.031
5-2设闭环系统的开环传递函数为
k (0.8s 1) G(s)H(s) 2 s (0.4s 1)(0.2s 1)
试绘制系统的根轨迹图。
2实轴上的根轨迹:1.25— -2.5 - 5 — - , 3n m 3, 渐近线的倾角和渐近线 与实轴的交点 2l 1 , l 0,1,2, l 0 : ; l 1 :