中考复习数学真题汇编8:分式方程及应用(含答案)

合集下载

初二八年级数学分式方程中考专项练习题(含答案)完整版

初二八年级数学分式方程中考专项练习题(含答案)完整版

分式方程精华练习题(含答案)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83D.x =24.,04412=+-x x 那么x2的值是( )A.2B.1C.-2D.-15.下列分式方程去分母后所得结果正确的是( )A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14D.211010++x x =1 7.若关于x 的方程0111=----x xx m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1 8.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于21. 13.分式方程0222=--x xx 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C 9.B ,10.D ;二、11.0;12.3,13.2=x ;14.212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20.()240024008120%xx-=+;三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32-经检验,x=32-是原方程的根. 22.6天,24.解;5=x(二)一、选择题(每小题3分,共30分) 1.下列式子是分式的是( )A .2x B .x 2 C .πx D .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .a m a n m n ++=3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( )A.3+m m B.3+-m mC.3-m mD.m m -3 5.若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.若分式方程xa xa x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c ba +的值是( ) A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

2020人教版中考数学专题《分式方程及其应用》含解答

2020人教版中考数学专题《分式方程及其应用》含解答

2020中考数学专题《分式方程及其应用》含解答第一批一、选择题6.(2019·苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本.设软面笔记本每本售价为x元,根据题意可列出的方程为()A.15243x x=+B.15243x x=-C.15243x x=+D.15243x x=-【答案】A【解析】本题考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.直接利用“小明和小丽买到相同数量的笔记本”,得15243x x=+,故选A.5.(2019·株洲)关于x的分式方程253x x-=-的解为()A.﹣3 B.﹣2 C.2 D.3【答案】B【解析】解分式方程,去分母,化分式方程为整式方程,方程两边同时乘以x(x-3)得,2(x-3)-5x=0,解得,x=-2,所以答案为B。

4.(2019·益阳)解分式方程321212=-+-xxx时,去分母化为一元一次方程,正确的是()A.x+2=3B.x-2=3C.x-2=3(2x-1)D.x+2=3(2x-1)【答案】C 【解析】两边同时乘以(2x-1),得x-2=3(2x-1) .故选C.1. (2019·济宁)世界文化遗产“三孔”景区已经完成5G幕站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是()A.5005004510x x-=B.5005004510x x-=C.500050045x x-=D.500500045x x-=【答案】A【解析】由题意知:设4G网络的峰值速率为每秒传输x兆数据,则5G网络的峰值速率为每秒传输10x兆数据,4G传输500兆数据用的时间是500x,5G传输500兆数据用的时间是50010x,5G网络比4G网络快45秒,所以5005004510x x-=.2. (2019·淄博)解分式方程11222xx x-=---时,去分母变形正确的是()A.112(2)x x-+=--- B.112(2)x x-=--C.112(2)x x-+=+- D.112(2)x x-=---【答案】D.【解析】方程两边同乘以x-2,得112(2)x x-=---,故选D.二、填空题11.(2019·江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的班马线路段A-B-C横穿双向行驶车道,其中AB=BC=6米,在绿灯亮时,小明共用11秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.【答案】112.166=+xx【解析】设小明通过AB时的速度是x米/秒,则通过BC的速度是通1.2x米/秒,根据题意列方程得112.166=+xx.1. (2019·岳阳)分式方程121x x=+的解为x=.【答案】1【解析】去分母,得:x+1=2x,解得x=1,经检验x=1是原方程的解.2. (2019·滨州)方程+1=的解是____________.【答案】x=1【解析】去分母,得x-3+x-2=-3,解得x=1.当x=1时,x-2=-1,所以x=1是分式方程的解.3. (2019·巴中)若关于x的分式方程2222x mmx x+=--有增根,则m的值为________.【答案】1【解析】解原分式方程,去分母得:x-2m=2m(x-2),若原分式方程有增根,则x=2,将其代入这个一元一次方程,得2-2m=2m(2-2),解之得,m=1.4. (2019·凉山)方程1121122=-+--xxx解是.【答案】x=-2【解析】原方程可化为1)1)(1(2112=-+---xxxx,去分母得(2x-1)(x+1)-2=(x+1)(x-1),解得x1=1,x2=-2,经检验x1=1是增根,x2=-2是原方程的解,∴原方程的解为x=-2.故答案为x=-2.11.(2019·淮安)方程121=+x的解是.【答案】-1 【解析】两边同时乘以(x+2),得x+2=1,解得x=-1.5. (2019·重庆B卷)某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83 .甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是【答案】1819【解析】设第一车间每天生产的产品数量为12m ,则第五、六车间每天生产的产品数量分别9m 、32m; 设甲、乙两组检验员的人数分别为x ,y 人;检查前每个车间原有成品为n.∵甲组6天时间将第一、二、三车间所有成品同时检验完∴每个甲检验员的速度=1212126m m m n n nx 6()+++++∵乙组先用2天将第四、五车间的所有成品同时检验完∴每个乙检验员的速度=1292m m n n y 2()+++∵乙再用了4天检验完第六车间的所有成品∴每个乙检验员的速度=324m n y 6⨯+∵每个检验员的检验速度一样∴1212122(129)632624m m m n n n m m n n m n x y y 6()++++++++⨯+==∴1819x y =.故答案为1819.三、解答题19.(2019山东省德州市,19,8)先化简,再求值:(﹣)÷(﹣)•(++2),其中+(n ﹣3)2=0.【解题过程】(﹣)÷(﹣)•(++2)=÷•=••=﹣.∵+(n ﹣3)2=0.∴m+1=0,n ﹣3=0,∴m =﹣1,n =3.∴﹣=﹣=.∴原式的值为.18.(2019·遂宁)先化简,再求值b a a ab a b a b ab a +--÷-+-2222222 ,其中a,b 满足01)22=++-b a ( 解:b a a b a a b a b a b a +--÷-+-=2)())(2)((原式=b a b a b a b a +--⨯+-21=b a +-1∵01)22=++-b a (∴a=2,b=-1,∴原式=-117.(2)(2019·泰州,17题,8分)【解题过程】去分母:2x -5+3(x -2)=3x -3,去括号:2x -5+3x -6=3x -3,移项,合并:2x =8,系数化为1:x =4,经检验,x =4是原分式方程的解.21.(2019山东滨州,21,10分)先化简,再求值:(-)÷,其中x 是不等式组的整数解.【解题过程】解:原式=[-]•=•=,………………………………………………………………………………5分解不等式组,得1≤x <3,…………………………………………………………7分 则不等式组的整数解为1、2.……………………………………………………8分 当x=1时,原式无意义;…………………………………………………………9分 当x =2,∴原式=.……………………………………………………………10分17. (2)(2019·温州)224133x x x x x +-++.【解题过程】原式=24-13x x x ++=233x x x ++=3(3)x x x ++=1x .19.(2019山东威海,19,7)列方程解应用题小明和小刚约定周末到某体育公园去打羽毛球.他们到体育公园的距离分别是1200米,300米.小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度. 【解题过程】设小明的速度为x 米/分钟,则小刚的速度为3x 米/分钟,根据题意,得, 解得x =50经检验,得x =50是分式方程的解, 所以,3x =150.答:小明和小刚两人的速度分别是50x 米/分钟,小刚的速度为150米/分钟.1000300043xx -=20.(2019山东省青岛市,20,8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天. (1)求甲、乙两人每天各加工多少个这种零件(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲加工了多少天?【解题过程】解:(1)设乙每天加工x 个零件,则甲每天加工1.5x 个零件,由题意得:60060051.5x x =+化简得600 1.56005 1.5x ⨯=+⨯ 解得40x =1.560x ∴=经检验,40x =是分式方程的解且符合实际意义. 答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x 天,乙加工了y 天,则由题意得604030001501207800x y x y +=⎧⎨+⎩①②…由①得75 1.5y x =-③将③代入②得150120(75 1.5)7800x x +-… 解得40x …, 答:甲至少加工了40天.24.(2019·衡阳)某商店购进A 、B 两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等. (1)求购买一个A 商品和一个B 商品各需多少元:(2)商店准备购买A 、B 两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A 、B 商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?解:(1)设买一个B 商品为x 元,则买一个A 商品为(x+10)元,则30010010x x =+,解得x =5元.所以买一个A 商品为需要15元,买一个B 商品需要5元.(2)设买A 商品为y 个,则买B 商品(80-y )由题意得4(80)1000155(80)1050y y y y ≥-⎧⎨≤+-≤⎩,解得64≤y≤65;所以两种方案:①买A 商品64个,B 商品16个 ;②买A 商品65个,B 商品15个. 1. (2019·自贡)解方程:xx−1−2x =1.解:方程两边乘以x(x-1)得, x2-2(x-1)=x(x-1)解得,x=2.检验:当x=2时,x(x-1)≠0,∴x=2是原分式方程的解.∴原分式方程的解为x=2.2. (2019·眉山)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天. (1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天? 解:(1)设乙队每天能完成的绿化面积为xm2,则甲队每天能完成的绿化面积为2xm2, 根据题意,得:60060062x x -=,解得:x=50,经检验,x=50是原方程的解,∴2x=100.答:甲队每天能完成的绿化面积为100m2,乙队每天能完成的绿化面积为50m2.(2)设甲工程队施工a 天,乙工程队施工b 天刚好完成绿化任务.由题意得:100a+50b=3600,则a=722b-=1362b -+,根据题意,得:1.2×722b -+0.5b ≤40,解得:b ≥32.答:至少应安排乙工程队绿化32天.3. (2019·乐山)如图,点A 、B 在数轴上,它们对应的数分别为2-,1+x x,且点A 、B 到原点的距离相等.求x 的值.解:根据题意得:21=+x x,去分母,得)1(2+=x x , 去括号,得22+=x x ,解得2-=x经检验,2-=x 是原方程的解.4. (2019·达州) 端午节前后,张阿姨两次到超市购买同一种粽子, 节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个,这种粽子的标价是多少? 解:设粽子的标价是x 元,则节后价格为0.6x,根据题意得:276.07296=+x x ,57.6+72=16.2x, x=8,经检验:x=8是原分式方程的解,且符合题意. 答:这种粽子的标价是8元.BA5. (2019·巴中)在”扶贫攻坚”活动中,某单位计划选购甲,乙两种物品慰问贫困户,已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同. ①请问甲,乙两种物品的单价各为多少?②如果该单位计划购买甲,乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:(1)设甲物品x 元,则乙物品单价为(x -10)元,根据题意得:50045010x x =-,解之,得x =100,经检验,x =100是原分式方程的解,所以x -10=90,答:甲物品单价为100元,乙物品单价为90元.(2)设购买甲种物品a 件,则购买乙种物品(55-a)件,根据题意得5000≤100a+90(55-a)≤5050,解之,得5≤a ≤10,因为a 是整数,所以a 可取的值有6个,故共有6种选购方案.6.(2019·泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍.(1)求A,B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A,B 两种粽子共2600个,已知A,B 两种粽子的进价不变.求A 种粽子最多能购进多少个?解:(1)设B 种粽子单价为x 元,则A 种粽子单价为1.2x 元,购买A 种粽子与购买B 种粽子的费用相同,共花费3000元,故两种粽子都花费1500元,根据题意得:1500150011001.2x x +=,解之,得x =2.5,经检验,x =2.5是原分式方程的解,∴1.2x =3,答:A 种粽子单价为3元,B 种粽子单价为2.5元;(2)设购进A 种粽子y 个,则购进B 种粽子(2600-y)个,根据题意得:3y+2.5(2600-y)≤7000,解之,得:y ≤1000,∴y 的最大值为1000,故A 种粽子最多能购进1000个.7. (2019·无锡)解方程:(2)1421+=-x x .解:去分母得x+1=4(x-2),解得x =3,经检验 x = 3是方程的解.第二批一、选择题4.(2019·海南)分式方程112x =+的解是( )A.x =1B.x =-1C.x =2D.x =-2【答案】B【解析】去分母得,1=x+2,移项,合并,得:x =-1,经检验,x =-1是原分式方程的解,∴x -1,故选B. 【知识点】分式方程的解法6.( 2019·广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .120x=150x−8 B .120x+8=150x C .120x−8=150x D .120x=150x+8【答案】D 【解析】解:设甲每小时做x 个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得方程:120x=150x+8,故选:D .14.(2019·齐齐哈尔)关于x 的分式方程3111-x a -2x =--x 的解为非负数,则a 的取值范围为.【答案】a ≤4,且a ≠3【解析】方程两边同时乘以(x-1)去分母得(2x-a)+1=3(x-1),∴x=4-a,∵解为非负数, ∴x ≥0且x ≠1∴a ≤4,且a ≠312.(2019·黄石)分式方程:241144x x x -=--的解为 __________________.【答案】x =﹣1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.去分母得:4﹣x =x2﹣4x ,即x2﹣3x ﹣4=0,解得:x =4或x =﹣1,经检验x =4是增根,分式方程的解为x =﹣1,12.(2019甘肃天水,12,4分)分式方程1x−1−2x =0的解是_____________. 【答案】x =2 【解析】原式通分得:x−2(x−1)x(x−1)=0去分母得:x ﹣2(x ﹣1)=0 去括号解得,x =2经检验,x =2为原分式方程的解 故答案为x =213. (2019·甘肃)分式方程3512x x =++的解为_____________. 【答案】12【解析】解:去分母,得3655x x +=+,解得12x =, 经检验12x =是分式方程的解.故答案为12. 16.(2019·绵阳)一艘轮船在静水中的最大航速为30km/h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为 km/h . 【答案】10【解析】设江水的流速为xkm/h ,根据题意可得:12030+x=6030−x ,解得:x =10,经检验得:x =10是原方程的根, 答:江水的流速为10km/h .16.(2019 ·宿迁)关于x 的分式方程1x−2+a−22−x =1的解为正数,则a 的取值范围是_____________. 【答案】a <5且a ≠3【解析】解:去分母得:1﹣a+2=x ﹣2, 解得:x =5﹣a ,解得:a <5,当x =5﹣a =2时,a =3不合题意, 故a <5且a ≠3.故答案为:a <5且a ≠3.三、解答题18. (2019 ·南京)解方程:x x−1−1=3x 2−1. 【思路分析】方程两边都乘以最简公分母(x+1)(x ﹣1)化为整式方程,然后解方程即可,最后进行检验.【解题过程】解:方程两边都乘以(x+1)(x ﹣1)去分母得, x (x+1)﹣(x2﹣1)=3, 即x2+x ﹣x2+1=3, 解得x =2检验:当x =2时,(x+1)(x ﹣1)=(2+1)(2﹣1)=3≠0, ∴x =2是原方程的解, 故原分式方程的解是x =2.23. (2019 ·扬州)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?【思路分析】直接利用甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等,得出等式求出答案. 【解题过程】解:设甲工程队每天修x 米,则乙工程队每天修(1500)x -米,根据题意可得:360024001500x x =-,解得900x =,经检验得:900x =是原方程的根, 故1500900600()m -=,答:甲工程队每天修900米,乙工程队每天修600米. 【知识点】分式方程的应用16.(2019·陕西)(本题5分)解分式方程:22211x x x -+=--. 【思路分析】去分母,解整式方程,检验根的情况,回答问题.【解题过程】22211x x x -+=-- 22211x x x -+=---方程两边同乘(1)x -,得22(1)2x x -+-=-解得23x =检验:当23x =时,(1)0x -≠,所以23x =是原分式方程的解所以原分式方程的解为23x =.21.(2)(2019·黔三州) (6分)解方程:331221x xx x --=++.【思路分析】(1)根据绝对值的定义,乘方法则,负整数指数幂和零指数幂的运算法则计算即可; (2)首先去分母,将分式方程转化为整式方程,然后解出整式方程即可. 【解题过程】(2)去分母,得2x+2-(x-3)=6x 去括号,得2x+2-x+3=6x , 移项,得2x-x-6x=-2-3, 合并同类项,得-5x=-5, 系数化为1,得x=1.经检验,x=1是原分式方程的解.【知识点】绝对值的定义;乘方法则;负整数指数幂;零指数幂;解分式方程.22.(2019·毕节)解方程:. 【思路分析】观察可得最简公分母是2(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解题过程】解:去分母得,2x+2﹣(x ﹣3)=6x ,∴x+5=6x ,解得,x =1经检验:x =1是原方程的解. 【知识点】解分式方程.18.(2019•广安)解分式方程:241244x x x x -=--+. 【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解题过程】解:241244x x x x -=--+, 方程两边乘2(2)x -得:2(2)(2)4x x x ---=, 解得:4x =,检验:当4x =时,2(2)0x -≠.所以原方程的解为4x =.【知识点】解分式方程20. (2019·宜宾)甲、乙两辆货车分别从A 、B 两城同时沿高速公路向C 城运送货物.已知A 、C 两城相距450千米,B 、C 两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C 城.求两车的速度.【思路分析】设乙车的速度为x 千米/时,则甲车的速度为(10)x +千米/时,路程知道,且甲车比乙车早半小时到达C 城,以时间做为等量关系列方程求解.【解题过程】解:设乙车的速度为x 千米/时,则甲车的速度为(10)x +千米/时. 根据题意,得:4501440102x x +=+, 解得:80x =,或110x =-(舍去),80x ∴=,经检验,x =,80是原方程的解,且符合题意.当80x =时,1090x +=.答:甲车的速度为90千米/时,乙车的速度为80千米/时.【知识点】分式方程的应用17.(2019·随州)解关于x 的分式方程:963+3x x =-【思路分析】本题考查了分式方程的解法,去分母将分式方程化为整式方程,然后解这个整式方程,求出的解要代入最简公分母中进行检验.【解题过程】解:方程两边同时乘以(3+x )(3-x )得9(3-x )=6(3+x ),整理得15 x =9,解得x =35,经检验,x =35是原分式方程的解,所以原分式方程的解为x =35.【知识点】分式方程的解法;21.(2019·黔东南)(2)解方程:1−x−32x+2=3x x+1【思路分析】(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解题过程】解:(2)去分母得:2x+2﹣x+3=6x ,解得:x=1,经检验x=1是分式方程的解.【知识点】解分式方程18. (2019·菏泽)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.【思路分析】设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x千米/分钟,根据“行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟”列出方程并解答.【解题过程】解:设汽车行驶在普通公路上的平均速度是x千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x千米/分钟,由题意,得811.8x +36=81x.解得x=1.经检验,x=1是所列方程的根,且符合题意.所以1.8x=1.8(千米/分钟).答:汽车行驶在高速公路上的平均速度是1.8千米/分钟.【知识点】分式方程的应用20. (2019·菏泽)解方程:5x−2=3x.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.【知识点】解分式方程第三批一、选择题9.(2019 ·荆州)已知关于x的分式方程xx−1−2=k1−x的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 【答案】B【解析】解:∵xx−1−k1−x=2,∴x+kx−1=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.【知识点】分式方程的解;解一元一次不等式17.(2019·龙东地区)已知关于x的分式方程213x mx-=-的解是非正数,则m的取值范围是()A.m≤3B.m<3 C.m>-3 D.m≥-3 【答案】A【解析】由213x mx-=-得x=m-3,∵方程的解是非正数,∴m-3≤0,∴m≤3.当x-3=0即x=3时,3=m-3,m=6,∵m=6不在m≤3内,∴m≤3.故选A.【知识点】分式方程的增根9.(2019·本溪)为推进垃圾分类,推动绿色发展,某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是( )A.360480140x x=- B.360480140x x=- C.360480140x x+=D.360480140x x-=【答案】A.【思路分析】本题考查了分式方程的应用,设甲种型号机器人每台的价格是x万元,根据“用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同”,列出关于x的分式方程.【解析】设甲型机器人每台x万元,根据题意,可得:360480140x x=-,故选A.【知识点】分式方程的应用.二、填空题14.(2019·安顺)某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为.【答案】205.193636=+-xx【解析】根据种植亩数=总产量÷平均亩产量结合改良后的种植面积比原计划少20亩,可得出分式方程 解:设原计划平均亩产量为x 万千克,则改良后平均每亩产量为1.5x 万千克, 依题意,得:205.193636=+-x x 故答案为:205.193636=+-x x【知识点】由实际问题抽象出分式方程12.(2019·永州)方程x x 112=-的解为.【答案】x=-1【解析】去分母得,2x=x -1,解得x=-1,经检验,x=-1是原方程的解,所以原方程的解是x=-1.12.(2019·孝感)方程3221+=x x 的解为 ☆ .答案: x=1三、解答题18. (2019·云南)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.解:设甲校师生所乘大巴车的平均速度为xkm/h ,则乙校师生所乘大巴车的平均速度为1.5xkm/h.根据题意得15.1270240=-x x ,解得x =60,经检验,x =60是原分式方程的解.x =60,1.5x =90.答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h 和90km/h.21.(2019·大庆)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,求该工厂原来平均每天生产多少台机器?解:设原来每天生产x 台机器,则现在每天生产(x+50)台,根据题意得:45060050xx =+,解之,得x =150,经检验,x =150是原分式方程的解.答:该工厂原来平均每天生产150台机器.【知识点】分式方程的应用17. (2019·长春)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务。

中考复习分式方程应用题专题(含答案)

中考复习分式方程应用题专题(含答案)

分式方程应用题专题1、我国“八纵八横〞铁路骨干网的第八纵通道——温〔州〕福〔州〕铁路全长298千米.将于2021年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间〔结果精确到0.01小时〕.2、某商店在“端午节〞到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,假设2007年每天的污水处理率比2006年每天的污水处理率提高40%〔污水处理率 污水处理量〕.污水排放量〔1〕求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?〔结果保存整数〕〔2〕预计我市2021年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2021年省会城市的污水处理率不低于...70%〞,那么我市2021年每天污水处理量在2007年每天污还需要增加多少万吨,才能符合国家规定的要求?水处理量的根底上至少..4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要〔 〕A.6天B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的选项是〔 〕A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程〔 〕A .9001500300x x=+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在方案每天加固的长度比原方案增加了20m ,因而完成河堤加固工程所需天数将比原方案缩短2天,假设设现在方案每天加固河堤x m ,那么得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?〔利润=售价-进价,利润率100%=⨯利润进价〕12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原方案提高了20%,结果提前8小时完成任务.求原方案每小时修路的长度.假设设原方案每小时修x m ,那么根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了〔不考虑其它因素〕?假设赔钱,赔多少?假设赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐〞号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程工程,现在甲、乙两个工程队有能力承包这个工程.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,那么轮船在静水中的速度是千米/时.。

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程一.选择题1.(2022·天津)计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2a a + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则. 2.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fvf v -B .f vfv-C .fvv f- D .v ffv-【答案】C【分析】利用分式的基本性质,把等式()111v f f u v =+≠恒等变形,用含f 、v 的代数式表示u .【详解】解:∵()111v f f u v =+≠,∵111f u ν=+,即111u f ν=-,∵1f uf νν-=,∵f u fνν=-,故选:C . 【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则. 3.(2022·四川眉山)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2a a + 【答案】B【分析】根据分式的混合运算法则计算即可.【详解】解:422a a +-+244=22-+++a a a 2=2+a a .故选:B【点睛】本题考查分式的混合运算法则,解题的关键是掌握分式的混合运算法则. 4.(2022·湖南怀化)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++,∵分式有3个,故选:B . 【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 5.(2022·四川凉山)分式13x+有意义的条件是( ) A .x =-3 B .x ≠-3 C .x ≠3 D .x ≠0【答案】B【分析】根据分式的分母不能为0即可得.【详解】解:由分式的分母不能为0得:30x +≠,解得3x ≠-, 即分式13x+有意义的条件是3x ≠-,故选:B . 【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.6.(2022·四川南充)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )AB .CD .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=a b +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∵222a ab b ab -+=,∵()2a b ab -=, ∵a>b>0,∵a b -=∵223a b ab +=,∵2225a ab b ab ++=,∵()25a b ab +=,∵a>b>0,∵a b +=,∵原式=,故选:B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 7.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵.则下列方程正确的是( ) A .40030050x x=- B .30040050x x=- C .40030050x x=+ D .30040050x x=+ 【答案】B【分析】设实际平均每天植树x 棵,则原计划每天植树(x -50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可. 【详解】解:设现在平均每天植树x 棵,则原计划每天植树(x -50)棵, 根据题意,可列方程:30040050x x=-,故选:B . 【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.8.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x1xx 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭ D .1x1x x 3+=+ 【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x 3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x 天,由题意可得,11x 221xx 3x 3-⎛⎫+⨯+= ⎪++⎝⎭, 整理得2x 1x x 3+=+,或2x 1x x 3=-+或23x x 3=+. 则ABC 选项均正确,故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 9.(2022·四川德阳)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 【答案】D【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案. 【详解】方程左右两端同乘以最小公分母x -1,得2x+a=x -1.解得:x=-a -1且x 为正数.所以-a -1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.) 【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息. 10.(2022·四川遂宁)若关于x 的方程221mxx =+无解,则m 的值为( ) A .0 B .4或6 C .6 D .0或4【答案】D【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =; 当40m -≠时,0x =或210x +=,此时,24x m =-,解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.11.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义. 【详解】解:由50004000302x x=-可得: 由50002x 表示的是足球的单价,而4000x表示的是篮球的单价, x 表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键. 二.填空题12.(2022·湖北黄冈)若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∵10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.13.(2022·浙江湖州)当a =1时,分式1a a+的值是______. 【答案】2【分析】直接把a 的值代入计算即可. 【详解】解:当a =1时,11121a a ++==.故答案为:2. 【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可. 14.(2022·湖南怀化)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.15.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2a a + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键. 16.(2022·四川泸州)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________. 【答案】1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x = 经检验,1x =是分式方程的解 把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.17.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可. 【详解】解:∵11ba b a ⊗=+,∵()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又∵21(1)++⊗=x x x x ,∵22121x x x x x++=+,∵()()()221210x x x x x ++-+=,∵()()2210x x x x +-+=,∵()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∵210x +=,解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-. 【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.18.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________. 【答案】16014010xx =- 【分析】先表示乙每小时采样(x -10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x -10)人,根据题意,得16014010xx =-. 故答案为:16014010xx =-. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 19.(2022·浙江金华)若分式23x -的值为2,则x 的值是_______. 【答案】4【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =- 去括号:226x =- 移项,合并同类项:28x = 系数化为1:4x =经检验,x =4是原方程的解, 故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键. 20.(2022·四川成都)分式方程31144x x x-+=--的解是_________. 【答案】3x =【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:31144x x x-+=-- 解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解, 故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.21.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【分析】适当引进未知数,合理转化条件,构造等式求解即可.【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a . ∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=,设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+,∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n ⋅-⋅-=++⋅+,故答案为:35.【点睛】本题考查未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键.22.(2022·湖南衡阳)计算:2422a a a +=++_________. 【答案】2【分析】分式分母相同,直接加减,最后约分. 【详解】解:2422a a a +++242a a +=+()222a a +=+2= 【点睛】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键. 23.(2022·浙江台州)如图的解题过程中,第∵步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-【答案】5【分析】根据题意得到方程3114xx -+=--,解方程即可求解. 【详解】解:依题意得:3114x x -+=--,即3204xx -+=-, 去分母得:3-x +2(x -4)=0, 去括号得:3-x +2x -8=0, 解得:x =5,经检验,x =5是方程的解, 故答案为:5.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验. 24.(2022·四川成都)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 【答案】72【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a --⎛⎫-÷ ⎪⎝⎭=22211a a a a a a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷ =22(1)1a a a a -⨯-=(1)a a -=2-a a . 2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=, 两边同除以2得272a a -=, ∵原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 25.(2022·湖南常德)方程()21522x x x x +=-的解为________. 【答案】4x =【分析】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解 故答案为:4x =【点睛】本题考查了解分式方程,解分式方程一定要注意检验. 三.解答题26.(2022·江苏宿迁)解方程:21122x x x =+--. 【答案】x =﹣1【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【详解】解:21122x x x =+--, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点睛】本题考查解分式方程,得出方程的解之后一定要验根.27.(2022·四川泸州)化简:22311(1).m m m m m-+-+÷ 【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可.【详解】解:22311(1)m m m m m-+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.28.(2022·新疆)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 【答案】1【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键.29.(2022·四川乐山)先化简,再求值:211121xx x x ⎛⎫-÷ ⎪+++⎝⎭,其中x = 【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121xx x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+ 1x =+,∵x∵原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 30.(2022·湖南邵阳)先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭.【答案】11x + 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷⎪+--⎝⎭11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦1(1)(1)x x x x x-=⋅+-=11x +, ∵x +1≠0,x -1≠0,x ≠0,∵x ≠±1,x ≠0当x=【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.31.(2022·陕西)化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭. 【答案】1a +【分析】分式计算先通分,再计算乘除即可.【详解】解:原式211112a a a a a++--=⋅-2(1)(1)12a a a a a +-=⋅-1a =+. 【点睛】本题考查了分式的混合运算,正确地计算能力是解决问题的关键. 32.(2022·湖南株洲)先化简,再求值:2111144x x x x +⎛⎫+⋅ ⎪+++⎝⎭,其中4x =. 【答案】12x +,16 【分析】先将括号内式子通分,再约分化简,最后将4x =代入求值即可. 【详解】解:2221111111441114241(2)2x x x x x x x x x x x x x x +++⎛⎫+⋅=⋅=⋅= ⎪+++++++++⎝⎭+++, 将4x =代入得,原式1112426x ===++. 【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则和完全平方公式是解题的关键.33.(2022·江苏扬州)计算:(1)(02cos 45π︒+ (2)22221121m m m m +⎛⎫+÷⎪--+⎝⎭【答案】(1)1 (2)12m - 【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可; (2)先合并括号里的分式,再对分子和分母分别因式分解即可化简; (1)解:原式=21-1 (2)解:原式=()()21211121m m m m m --⎛⎫+⋅ ⎪--+⎝⎭=()()211121m m m m -+⋅-+=12m -. 【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.34.(2022·江西)以下是某同学化筒分式2113422x x x x +⎛⎫-÷⎪-+-⎭的部分运算过程: (1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 【答案】(1)∵(2)见解析【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可. (1)第∵步出现错误,原因是分子相减时未变号,故答案为:∵; (2)解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+ 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 35.(2022·重庆)计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++- =()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.36.(2022·江苏连云港)化简:221311x x x x -+--. 【答案】11x x -+ 【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x xx x +-=+-- 22131x x x x ++-=-22211x x x -+=-22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.37.(2022·四川达州)化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中31a.【答案】11a +【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值.【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+1=1a +;当31a=. 【点睛】本题考查分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.38.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的. 【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. (1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++,……∵第(n +1)个式子1111(1)n n n n =+++; (2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n++=+==+++++=左边, ∵1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.39.(2022·四川凉山)先化简,再求值:524(2)23m m m m-++⋅--,其中m 为满足-1<m <4的整数.【答案】26--m ,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【分析】先计算括号内的分式加法,再计算分式的乘法,然后根据分式有意义的条件确定m 的值,代入计算即可得.【详解】解:原式(2)(2)52(2)223m m m m m m+--⎡⎤=+⋅⎢⎥---⎣⎦ 2452(2)()223m m m m m --=+⋅---292(2)23m m m m--=⋅--(3)(3)2(2)23m m m m m +--=⋅--2(3)m =-+26m =--, 20,30m m -≠-≠,2,3m m ∴≠≠,又m 为满足14-<<m 的整数,0m ∴=或1m =,当0m =时,原式262066m =--=-⨯-=-, 当1m =时,原式262168m =--=-⨯-=-,综上,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.40.(2022·山东滨州)先化简,再求值:2344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-【答案】22a a -+,0 【分析】先算括号内的减法,再将除法变成乘法进行计算,然后根据锐角三角函数,负指数幂和零次幂的性质求出a ,最后代入计算.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭()22213111a a a a a +⎛⎫-=-÷ ⎪---⎝⎭()222411a a a a +-=÷--()()()222112a a a a a +--=⋅-+22a a -=+; ∵101tan 45π122)2(1a -=︒+-=+-=,∵原式2220222a a --===++. 【点睛】本题考查了分式的化简求值,锐角三角函数,负指数幂和零次幂的性质,熟练掌握运算法则是解题的关键.41.(2022·重庆)计算:(1)()()224x x x ++-;(2)2212a a bb b -⎛⎫-÷ ⎪⎝⎭.【答案】(1)224x +(2)2a b+ 【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解. (1)解:原式22444x x x x =+++-224x =+ (2)解:原式2()()a b b b a b a b -=⨯+-2a b=+ 【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.42.(2022·山东泰安)(1)若单项式14m n x y -与单项式33812m n x y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111xx x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =. 【答案】(1)m =2,n =-1;(2)21x +,4-【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,∵-∵3⨯,可得:55n -=,解得:1n =-, 把1n =-代入∵,可得:(1)3m --=,解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x 时,原式21)12114=+=-+=-【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键.43.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时, 依题意,得:2020101.560x x -=,解得:x =40, 经检验,x =40是所列方程的根,且符合题意, 答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 44.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套 【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; (3)解:320270>,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.45.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲、乙恰好同时到达B地列方程求解即可.(1)解:设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:0.5 1.20.52x x⨯=+,解得:20x,则1.224x=(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:301303 1.2x x-=,解得15x=,经检验15x=是分式方程的解,则1.218x=(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.46.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∵甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∵两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米 则有5403609001.2100y y +=解得90y =经检验,90y=是原方程的解,符合题意∵乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.47.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x千米/小时,则汽车速度是3x千米/小时,根据题意得:454523x x=+,解之得15x=,经检验15x=是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.48.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,。

中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。

1.(2023•天涯区一模)把分式方程﹣=1化为整式方程正确的是()A.1﹣(1﹣x)=1B.1+(1﹣x)=1C.1﹣(1﹣x)=x﹣2D.1+(1﹣x)=x﹣2【答案】D【解答】解:方程变形得:+=1,去分母得:1+(1﹣x)=x﹣2,故选:D.2.(宝应县二模)初三(1)班在今年的植树节领有平均每人植树6棵的任务,如果只由女同学完成,每人应植树15棵,如果只由男同学完成,每人应植树的棵数为()A.9B.10C.12D.14【答案】B【解答】解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.3.(2023•邵阳县一模)分式方程=的解是()A.x=3B.x=﹣1C.x=1D.x=﹣3【答案】D【解答】解:去分母得,3(x+1)=2x,去括号得,3x+3=2x,移项得,x=﹣3,检验:把x=﹣3代入x(x+1)=﹣3(﹣3+1)=6≠0,∴x=﹣3是原方程的解,故选:D.4.(2023•武威三模)在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x万棵,由题意得到的方程是()A.B.C.D.【答案】A【解答】解:由题意可得,=2,故选:A.5.(2023•龙江县校级三模)若关于x的分式方程无解,则a的值为()A.0B.1C.﹣1或0D.0或1【答案】D【解答】解:,方程两边同时乘以x﹣2,得1﹣a=2ax﹣4a,移项、合并同类项,得2ax =3a +1,∵方程无解,∴2a =0或=2,解得a =0或a =1.故选:D .6.(2023•环翠区一模)若关于x 的分式方程﹣1=有增根,则a 的值为()A .﹣3B .3C .2D .﹣【答案】A【解答】解:方程两边都乘以(x ﹣2)得:6﹣(x ﹣2)=﹣ax ,解得:x =,∵方程有增根,∴x ﹣2=0,∴x =2,∴=2,解得:a =﹣3.故选:A .7.(2023•东港区校级三模)某班级为做好疫情防控,班委会决定拿出班费中的a 元给同学们购买口罩,由于药店对学生购买口罩每包优惠2元,结果比原计划多买了5包口罩.设原计划购买口罩x 包,则依题意列方程为()A .B .C .D .【答案】B【解答】解:设原计划购买口罩x 包,则实际购买口罩(x +5)包,依题意得:=+2.故选:B.8.(2023•吴桥县校级模拟)“若关于x 的方程无解,求a的值.”尖尖和丹丹的做法如下:尖尖:去分母得:ax=12+3x﹣9,移项得:ax﹣3x=12﹣9,合并同类项得:(a﹣3)x=3,∵原方程无解,∴a﹣3=0,∴a=3.丹丹:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,解得:x=,∵原方程无解,∴x为增根,∴3x﹣9=0,解得x=3,∴=3,解得a=4.下列说法正确的是()A.尖尖对,丹丹错B.尖尖错,丹丹对C.两人都错D.两人的答案合起来才对【答案】D【解答】解:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,∵原方程无解,∴x为增根或a﹣3=0,当3x﹣9=0,解得x=3,此时=3,解得a=4;当a﹣3=0,解得a=3;综上所述:a的值为3或4,故选:D.9.(2023•义乌市模拟)若分式的值为1,则x的值是()A.5B.4C.3D.1【答案】A【解答】解:根据题意得:=1,去分母得:x﹣2=3,解得:x=5,检验:把x=5代入得:x﹣2≠0,∴分式方程的解为x=5.故选:A.10.(2023•黄埔区校级二模)在正数范围内定义一种运算“※”,其规定则为a※b=,如2※4=,根据这个规则,则方程3※(x+1)=1的解为()A.B.1C.﹣1D.﹣【答案】A【解答】解:由题意得:3※(x+1)=.∵3※(x+1)=1,∴.∴x+1+3=3(x+1).∴x+4=3x+3.∴﹣2x=﹣1.∴x=.当x=时,3(x+1)≠0.∴这个方程的解为x=.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2023•柳州三模)分式方程的解是x=﹣2.【答案】x=﹣2.【解答】解:,方程两边都乘x(x﹣3),得2(x﹣3)=5x,解得:x=﹣2,检验:当x=﹣2时,x(x﹣3)≠0,所以x=﹣2是分式方程的解.故答案为:x=﹣2.12.(2023•梁山县模拟)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为.【答案】.【解答】解:设学生步行的速度为每小时x里,则牛车的速度是每小时1.5x里,∵学生早出发1小时,孔子和学生们同时到达书院,∴,故答案为:.13.(2023•建湖县一模)关于x的分式方程=2的解为正数,则a的取值范围是a<4且a≠2.【答案】a<4且a≠2.【解答】解:去分母得:1﹣(a﹣1)=2(x﹣1),解得:x=2﹣a,由分式方程的解为正数,得到2﹣a>0,且2﹣a≠1,解得:a<4且a≠2,故答案为a<4且a≠2.14.(2023•盐田区二模)当x=﹣8时,分式的值为2.【答案】﹣8.【解答】解:根据题意得:=2,去分母得:x﹣2=2(x+3),解得:x=﹣8,检验:把x=﹣8代入得:x+3≠0,∴分式方程的解为x=﹣8,则当x=﹣8时,分式的值为2.故答案为:﹣8.15.(2023•市北区三模)甲、乙两人同时从学校出发,去距离学校15千米的农场参加劳动.甲的速度是乙的1.2倍,结果甲比乙早到10分钟,求甲和乙的速度各是多少?设乙的速度为x千米/小时,则根据题意可列方程为.【答案】.【解答】解:设乙的速度为x千米/小时,则甲的速度为1.2x千米/小时,根据题意得:.故答案为:.16.(2023•九龙坡区校级模拟)若关于x的不等式组有且仅有四个整数解,关于y的分式方程+=1有整数解,则符合条件的所有整数a的和是﹣10.【答案】﹣10,【解答】解:关于x的不等式组整理得,∵关于x的不等式组有且仅有四个整数解,∴1≤<2,∴﹣8<a≤﹣3,解分式方程得y=且≠2,∵关于y的分式方程有整数解,且a为整数,∴符合条件的所有整数a为﹣7,﹣3,∴符合条件的所有整数a的和为:﹣7﹣3=﹣10.故答案为:﹣10.三、解答题(本题共7题,共58分)。

中考复习数学真题汇编:分式方程及应用

中考复习数学真题汇编:分式方程及应用

一、选择题1.(2015四川省遂宁市,9,4分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均亩产量为1.5x万千克.根据题意列方程为().A.B.C.D.【答案】A.【解析】相等关系:原计划种植亩数-实际种植亩数=20.由题意可得方程.注意此类题并不难,同学们出错最多的地方就是审题不清,而误选其它答案.这样可以少出错:一是要明白x 的含义,而是要区分是谁与谁的差,这样不容易不错.2.(2015四川省自贡市,3,4分)方程=0的解是 ······································()A.1或-1 B.-1 C.0 D.1【答案】D3.(2015天津市,8,3分)分式方程的解是()A.x=0B.x=3C.x=5D.x=9【答案】D4. (2015年山东省济宁市)解分式方程时,去分母后变形正确的为()A. 2+(+2)=3(-1)B. 2-+2=3(-1)C. 2-(+2)=3D. 2-(+2)=3(-1)【答案】D5.(2015贵州遵义,7,3分)若x=3是分式方程的根,则a的值是()A.5 B.-5 C.3 D.-3【答案】A【解析】解:根据方程根的意义,将x=3代入分式方程得:,即转换成关于a的一元一次方程,解得a=5,故选A.6.(2015湖南常德,7,3分)分式方程的解为()A. 1B. 2C.D. 0【答案】A二、填空题1.(2015四川省巴中市,14,3分)分式方程的解x= .【答案】4.2.(2015山东省德州市,14,4分)方程的解为x= .【答案】23.(2015湖南省长沙市,16,3分)分式方程的解为________.【答案】4.(2015四川省凉山州市,16,4分)分式方程的解是.【答案】【解析】解:方程两边乘,得;移项,合并得,故答案为.5.(2015山东省威海市16,3分)分式方程的解为.【答案】x=4.【解析】方程两边同乘以(x-3),得1-x=-1-2(x-3).解得x=4.经检验,x=4是原方程的解.6.(2015浙江省温州市,14,5分)方程的根是________.【答案】x=27.(2015江苏淮安,9,3分)方程的解是。

2020年九年级中考数学 专题复习 分式方程及应用(含答案)

2020年九年级中考数学 专题复习 分式方程及应用(含答案)

2020中考数学专题复习分式方程及其应用(含答案)一、选择题(本大题共5道小题)1. 小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本.设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=2. 分式方程=1的解是()A.x=1B.x=-1C.x=2D.x=-23. 解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x-2=3C.x-2=3(2x-1)D.x+2=3(2x-1)4. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=5. 已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2二、填空题(本大题共5道小题)6. 方程12x=2x-3的解是________.7. 方程+=1的解是.8. 一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km所用时间,与以最大航速逆流航行60 km所用时间相同,则江水的流速为km/h.9. 若关于x的分式方程+=2m有增根,则m的值为.10. 若关于x的分式方程+=2a无解,则a的值为.三、解答题(本大题共5道小题)11. 解方程:=1.12. 解分式方程:(1)=;(2)-1=.13. (1)解方程:x2-2x-1=0.(2)解方程组:(3)解分式方程:-1=.(4)解不等式组:并把解集在数轴上表示出来.14. 如图是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.15. 为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度. 2020中考数学专题复习分式方程及其应用-答案一、选择题(本大题共5道小题)1. 【答案】A[解析]本题考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.直接利用“小明和小丽买到相同数量的笔记本”,得=,故选A.2. 【答案】B[解析]去分母得,1=x+2,移项,合并同类项,得:x=-1,经检验,x=-1是原分式方程的解,∴x=-1,故选B.3. 【答案】C[解析]两边同时乘以(2x-1),得x-2=3(2x-1).故选C.4. 【答案】D5. 【答案】D[解析]解分式方程得x=m-3,∵方程的解是负数,∴m-3<0,∴m<3,∵当x+1=0,即x=-1时方程有增根,∴m-3≠-1,即m≠2.∴m<3且m≠2.故选D.二、填空题(本大题共5道小题)6. 【答案】x=-1【解析】化简12x=2x-3得x-3=4x,则-3x=3,所以x=-1,经检验x=-1是原方程的根.7. 【答案】x=-2[解析]原方程可化为=1,去分母,得(2x-1)(x+1)-2=(x+1)(x-1),解得x1=1,x2=-2,经检验x1=1是增根,x2=-2是原方程的解,∴原方程的解为x=-2.故答案为x=-2.8. 【答案】10[解析]设江水的流速为x km/h,根据题意可得:=,解得:x=10,经检验,x=10是原方程的根,且符合题意,所以江水的流速为10 km/h.9. 【答案】1[解析]分式方程去分母,得:x-2m=2m·(x-2),若原分式方程有增根,则x=2,得2-2m=2m(2-2),解得m=1.10. 【答案】或1[解析]去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,得a=;当1-2a≠0,x==3时,分式方程无解,得a=1,故关于x的分式方程=2a无解,则a的值为:1或.三、解答题(本大题共5道小题)11. 【答案】解:方程两边同时乘x(x-1)得,x2-2(x-1)=x(x-1),解得x=2.检验:当x=2时,x(x-1)≠0,∴x=2是原分式方程的解.∴原分式方程的解为x=2.12. 【答案】解:(1)去分母,得x+1=4(x-2),解得x=3,经检验x=3是原分式方程的解.所以方程的解为x=3.(2)方程两边同时乘(x-2)2得:x(x-2)-(x-2)2=4,解得x=4,检验:当x=4时,(x-2)2≠0.所以原方程的解为x=4.13. 【答案】解:(1)配方法:移项,得x2-2x=1,配方,得x2-2x+1=1+1,即(x-1)2=2,开方,得x-1=±,即x1=1+,x2=1-.公式法:a=1,b=-2,c=-1,Δ=b2-4ac=4+4=8>0,故方程有两个不相等的实数根,∴x===1±,即x1=1+,x2=1-.(2)②-①,得:3x=9,解得:x=3.把x=3代入①,得:3+y=1,解得:y=-2.∴原方程组的解为(3)方程左右两边同乘以3(x-1),得3x-3(x-1)=2x,3x-3x+3=2x,2x=3,x=1.5.检验:当x=1.5时,3(x-1)≠0,∴原分式方程的解为x=1.5.(4)解不等式①,得:x>-4;解不等式②,得:x≤0,∴不等式组的解集为-4<x≤0.将这个不等式组的解集表示在数轴上如图:14. 【答案】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米(乙队修路600米)所需的时间.故答案为:甲队每天修路的长度甲队修路400米(乙队修路600米)所需的时间(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间; 庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20米.(选择一个即可)(3)选冰冰所列的方程:=,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x,x+20均不为零,∴x=40是分式方程的根.答:甲队每天修路的长度为40米.选庆庆所列的方程:=20,去分母,得:600-400=20y,将y的系数化为1,得:y=10,检验:当y=10时,分母y不为0,∴y=10是分式方程的根,∴=40.答:甲队每天修路的长度为40米.15. 【答案】解:设其他班的平均速度为x米/分,则九(1)班的平均速度为1.25x米/分,依题意得:=10,解得:x=80.经检验:x=80是所列方程的解.此时,1.25x=1.25×80=100.答:九(1)班的平均速度为100米/分,其他班的平均速度为80米/分.。

中考数学总复习《分式方程及其应用》专题训练(附带答案)

中考数学总复习《分式方程及其应用》专题训练(附带答案)

中考数学总复习《分式方程及其应用》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________知识梳理分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行“双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.同步练习一、选择题1.为响应“绿色出行”的号召,小李上班由自驾车改为乘坐公交车.已知小李家距上班地点20km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程少12km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,小李乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.某服装店用4.5万元购进某种品牌的服装,由于销售状况良好,服装店又调拨11万元资金购进该种服装,但这次的单价比第一次的单价贵20元,购进服装的数量比第一次的2倍还多50件,求该服装第一次的单价.为解决此问题,设该服装第一次的单价为x元,根据题意列出方程,其中正确的是()A.11 4.525020x x=⨯++B.1100004500025020x x=⨯++C.1100004500025020x x=⨯+-D.1100004500025020x x=⨯-+3.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为()A.80千米/小时B.90千米/小时C.100千米/小时D.110千米/小时4.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为;把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍.根据题意列方程为900900213x x⨯=+-,其中x表示()A.快马的速度B.慢马的速度C.规定的时间D.以上都不对5.为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单6.一个圆柱形容器的容积为3Vm,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用t则大,小两根水管的注水速一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间min.7.八年级学生去距学校10千米的荆州博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车A.实际工作时每天铺设的管道比原计划降低了20%,结果延误3天完成了这一任务B.实际工作时每天铺设的管道比原计划降低了20%,结果提前3天完成了这一任务C.实际工作时每天铺设的管道比原计划提高了20%,结果延误3天完成了这一任务D.实际工作时每天铺设的管道比原计划提高了20%,结果提前3天完成了这一任务二、填空题数称为调和数,如15,5,3也是一组调和数.现有一组调和数:x ,3,2(3)x >,则x = . 12.甲、乙两船从相距150km 的A ,B 两地同时匀速沿江出发相向而行,甲船从A 地顺流航行90km 时与从B 地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h ,则江水的流速为 km/h . 13.甲、乙、丙三名工人共承担装搭一批零件.已知甲乙丙丁四人聊天时的对话信息如表,如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需 小时. 甲说:我单独完成任务所需时间比乙单独完成任务所需时间多5小时;乙说:我3小时完成的工作量与甲4小时完成的工作量相等;丙说:我工作效率不高,我的工作效率是乙的工作效率的12;丁说:我没参加此项工作,但我可以计算你们的工作效率,知道工程问题三者关系是:工作效率⨯工作时间=工作总量.三、解答题14.为深刻践行习近平总书记的“绿水青山就是金山银山”重要思想,某单位积极开展植树活动,准备购买甲、乙两种树苗、已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗便宜6元.(1)求甲种树苗的单价;(请根据题意列方程解答)(2)若购买这两种树苗共100棵,且费用不超过3800元,则至少购买乙种树苗多少棵?15.科学中,经常需要把两种物质混合制作成混合物,研究混合物的物理性质和化学性质.现将甲、乙两种密度分别为ρ甲,ρ乙的液体混合(ρρ<甲乙),研究混合物的密度(=物体的质量物体的密度物体的体积),假设混合前后液体的总体积不变,令等体积的甲乙两种液体的混合溶液密度为1ρ,等质量的甲乙两种液体的混合溶液的密度为2ρ.(1)请用含ρ甲,ρ乙式子表示1ρ;(2)比较1ρ,2ρ的大小,并通过运算说明理由:(3)现有密度为31.2g /cm 的盐水600g ,加适量的水(密度为31.0g /cm )进行稀释,问:需要加水多少g ,才能使密度为31.1g /cm 的鸡蛋悬浮在稀释后的盐水中?16.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg 产品,甲型机器人搬运800kg 产品所用时间与乙型机器人搬运600kg 产品所用时间相等.根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运kg x 产品,可列方程为__________.小惠同学设甲型机器人搬运800kg 产品所用时间为y 小时,可列方程为__________.(2)求乙型机器人每小时搬运多少千克产品.17.某大型品牌书城购买了A B 、两种新出版书籍,商家用1600元购买A 书籍,1200元购买B 书籍,A B 、两种书籍的进价之和为40元,且购买A 书籍的数量是B 书籍的2倍.(1)求商家购买A 书籍和B 书籍的进价;(2)商家在销售过程中发现,当A 书籍的售价为每本25元,B 书籍的售价为每本33元时,平均每天可卖出50本A 书籍,25本 B 书籍.据统计,B 书籍的售价每降低0.5元平均每天可多卖出5本.商家在保证A 书籍的售价和销量不变且不考虑其他因素的情况下,为了促进B 的销量,想使A 书籍和B 书籍平均每天的总获利为775元,则每本B 书籍的售价为多少元?18.为更好地满足市民休闲、健身需求,提升群众的幸福感获得感,丰都县从年初开始对滨江公园进行“微改造”、“精提升”,将原有的边坡地带改造为观景平台,同时增设多处具有体育、文化、智慧元素的文体场所和设施,把3.5公里滨江健身长廊打造成智慧休闲乐园.施工过程中共有5000吨渣土要运走,现计划由甲、乙两个工程队运走渣土,已知甲、乙两个工程队,原计划乙平均每天运走的渣土比甲平均每天运走的渣土多13,这样乙运走2600吨渣土的时间比甲运走剩下渣土的时间少3天. (1)求原计划乙平均每天运渣土多少吨?(2)实际施工时,甲平均每天运走的渣土比原计划增加了m 吨,乙平均每天运走的渣土比原计划增加了200m ,甲、乙合作10天后,乙临时有其他任务;剩下的渣土由甲再单独工作5天完成.若运走每吨渣土的运输费用为30元,请求出乙工程队的运输费用.答案第1页,共1页 参考答案 1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】810.【答案】1260012600251.5x x-= 11.【答案】612.【答案】613.【答案】319414.【答案】(1)40元(2)34棵15.【答案】(1)12ρρρ+=乙甲(2)12ρρ>(3)需要加水50g 16.【答案】(1)80060010x x=+ 80060010y y -=(2)乙型机器人每小时搬运30kg 产品 17.【答案】(1)商家购买A 书籍的进价为16元/本,购买B 书籍的进价为24元/本;(2)29元. 18.【答案】(1)200(2)6900。

初三中考数学复习分式方程专项复习练习含答案与解析

初三中考数学复习分式方程专项复习练习含答案与解析

x- 3
3- m
3-m
=3-m,即 x= 3 ,原方程无解,即此时存在 x= 3 =3,m=- 6.
7. 解:方程两边同乘以 (x-1),得 2=1+x-1,解得 x=2,把 x=2 代入原方 程检验: ∵左边=右边, ∴x=2 是分式方程的根 8. 解:方程两边同乘 x-2,1-3(x-2)=- (x-1),即 1-3x+6=- x+1,则 -2x=- 6,得 x=3.检验,当 x=3 时, x-2 ≠,0所以原方程的解为 x=3 【解析】分式方程同乘 (x-2)去分母转化为整式方程. 9. 解:去分母得 x+1=2x-14,解得 x=15, 经检验 x=15 是分式方程的解
y 900 (2)小明家与图书馆之间的路程最多是 y 米,根据题意可得 60≤180×2,解得 y≤ 60,0 则小明家与图书馆之间的路程最多是 600 米
【解析】 (1)根据等量关系:小明步行回家的时间=骑车返回时间+ 10 分钟,列 分式方程求解即可; (2)根据 (1)中计算的速度列出不等式解答即可.
【解析】 (1)设原计划每年绿化面积为 x 万平方米,则实际每年绿化面积为 1.6x
万平方米.根据 “实际每年绿化面积是原计划的 1.6 倍,这样可提前 4 年完成任
务”列出方程; (2)设平均每年绿化面积增加 a 万平方米.则由 “完成新增绿化面
积不超过 2 年”列出不等式. 13. 解:设甲队每天筑路 5x 公里,乙队每天筑路 8x 公里,根据题意得
m
无解,求 m 的值.
x-5 10-2x
12. 某市为创建全国文明城市,开展 “美化绿化城市 ”活动,计划经过若干年使城 区绿化总面积新增 360 万平方米.自 2013 年初开始实施后,实际每年绿化面积 是原计划的 1.6 倍,这样可提前 4 年完成任务. (1)问实际每年绿化面积多少万平方米? (2)为加大创城力度,市政府决定从 2016 年起加快绿化速度,要求不超过 2 年完 成,那么实际平均每年绿化面积至少还要增加多少万平方米?

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)知识总结1. 列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。

②设未知数——根据问题与等量关系直接或间接设未知数。

③列方程:根据等量关系与未知数列出分式方程。

④解方程——按照解分式方程的步骤解方程。

④答——检验方程的解是否满足实际情况,然后作答。

练习题1、(2022•内蒙古)某班学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x km /h ,下列方程正确的是( )A .2021010=−x x B .2010210=−x x C .3110210=−x xD .3121010=−x x【分析】根据汽车的速度和骑车学生速度之间的关系,可得出汽车的速度为2xkm /h ,利用时间=路程÷速度,结合汽车比骑车学生少用20min ,即可得出关于x 的分式方程,此题得解.【解答】解:∵骑车学生的速度为xkm /h ,且汽车的速度是骑车学生速度的2倍, ∴汽车的速度为2xkm /h . 依题意得:﹣=,即﹣=.2、(2022•淄博)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( )A .()10%1512000020000−−⨯=x x B .()x x %151200*********−⨯=− C .()10%1512000020000+−⨯=x x D .()xx %151200*********−⨯=+ 【分析】根据题目中的数据和两次购买的数量相同,可以列出相应的分式方程. 【解答】解:由题意可得,,故选:D .3、(2022•阜新)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( )A .202.13030=−x xB .2.1203030=−−x x C .20302.130=−xxD .2.1302030=−−xx【分析】由实际接种人数与原计划接种人数间的关系,可得出实际每天接种1.2x 万人,再结合结果提前20天完成了这项工作,即可得出关于x 的分式方程,此题得解. 【解答】解:∵实际每天接种人数是原计划的1.2倍,且原计划每天接种x 万人, ∴实际每天接种1.2x 万人,又∵结果提前20天完成了这项工作, ∴﹣=20.4、(2022•襄阳)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .190023900+⨯=+x x B .190023900+⨯=−x xC .390021900+⨯=−x x D .390021900−⨯=+x x 【分析】根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天,再利用速度=路程÷时间,结合快马的速度是慢马的2倍,即可得出关于x 的分式方程,此题得解. 【解答】解:∵规定时间为x 天,∴慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天, 又∵快马的速度是慢马的2倍,两地间的路程为900里, ∴=2×.故选:B .5、(2022•朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( )A .60305.16060=−x x B .6030605.160=−x x C .305.16060=−xx D .30605.160=−xx 【分析】设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm ,根据基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达,列方程即可.【解答】解:设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm , 根据题意可得:﹣=.故选:A .6、(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( )A .x x 302436⨯=− B .x x 302436⨯=+ C .430236−⨯=x x D .430236+⨯=x x 【分析】根据该农户耕作完旱地所用的时间是耕作完水田所用时间的一半列出方程即可. 【解答】解:根据题意得:=2×.故选:D .7、(2022•济宁)一辆汽车开往距出发地420km 的目的地,若这辆汽车比原计划每小时多行10km ,则提前1小时到达目的地.设这辆汽车原计划的速度是xkm /h ,根据题意所列方程是( )A .110420420+−=x x B .10420420+=+x x C .110420420++=x xD .10420420−=+x x 【分析】根据提速后及原计划车速间的关系,可得出这辆汽车提速后的速度是(x +10)km /h ,利用时间=路程÷速度,结合提速后可提前1小时到达目的地,即可得出关于x的分式方程,此题得解.【解答】解:∵这辆汽车比原计划每小时多行10km ,且这辆汽车原计划的速度是xkm /h , ∴这辆汽车提速后的速度是(x +10)km /h . 依题意得:=+1,故选:C .8、(2022•辽宁)小明和小强两人在公路上匀速骑行,小强骑行28km 所用时间与小明骑行24km 所用时间相等,已知小强每小时比小明多骑行2km ,小强每小时骑行多少千米?设小强每小时骑行xkm ,所列方程正确的是( ) A .22428+=x x B .xx 24228=+ C .xx 24228=− D .22428−=x x 【分析】根据小强与小明骑行速度间的关系可得出小明每小时骑行(x ﹣2)km ,利用时间=路程÷速度,结合小强骑行28km 所用时间与小明骑行24km 所用时间相等,即可得出关于x 的分式方程,此题得解.【解答】解:∵小强每小时比小明多骑行2km ,小强每小时骑行xkm , ∴小明每小时骑行(x ﹣2)km . 依题意得:=.故选:D .9、(2022•恩施州)一艘轮船在静水中的速度为30km /h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km /h ,则符合题意的方程是( )A .v v −=+309630144 B .v v 9630144=− C .vv +=−309630144 D .vv +=3096144 【分析】根据“顺流航行144km 与逆流航行96km 所用时间相等”列分式方程即可. 【解答】解:根据题意,可得,故选:A .10、(2022•绥化)有一个容积为24m 3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm 3,由题意列方程,正确的是( )A .3041212=+x x B .2441515=+x x C .2423030=+xxD .3021212=+xx【分析】设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3,利用注油所需时间=注油总量÷注油速度,即可得出关于x 的分式方程,此题得解. 【解答】解:24÷2=12(m 3).设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3, 依题意得:+=30.故选:A .11、(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km 和10km 的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min 到达基地,求甲、乙的速度.设甲的速度为3xkm /h ,则依题意可列方程为( )A .x x 4103136=+ B .x x 4102036=+ C .3141036=−x xD .2041036=−xx【分析】根据甲、乙的速度比是3:4,可以设出甲和乙的速度,然后根据甲比乙提前20min 到达基地,可以列出相应的方程.【解答】解:由题意可知,甲的速度为3xkm /h ,则乙的速度为4xkm /h ,+=,即+=,故选:A.12、(2022•鞍山)某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为.【分析】根据两车间工作效率间的关系,可得出乙车间每天加工1.5x件产品,再根据甲车间加工4000件比乙车间加工4200件多用3天,即可得出关于x的分式方程,此题得解.【解答】解:∵甲车间每天加工x件产品,乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,∴乙车间每天加工1.5x件产品,又∵甲车间加工4000件比乙车间加工4200件多用3天,∴﹣=3.故答案为:﹣=3.13、(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.【分析】根据等量关系:原来参加3000米比赛时间﹣经过一段时间训练后参加3000米比赛时间=3分钟,依此列出方程即可求解.【解答】解:依题意有:﹣=3.故答案为:﹣=3.14、(2022•黑龙江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为.【分析】根据甲车间生产500个玩具所用的时间=乙车间生产400个玩具所用的时间,列出方程即可解答.【解答】解:设乙车间每天生产x个,则甲车间每天生产(x+10)个,由题意得:=,故答案为:=.15、(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解答】解:设甲每小时采样x人,则乙每小时采样(x﹣10)人,根据题意得:=.故答案为:=.。

分式方程及其应用(含答案)

分式方程及其应用(含答案)

分式方程及其应用【分类解析】 例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得x x x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:3143428932874145--++-=--++-x x x x即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。

1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--==例4. 解方程:61244444402222y y y y y y yy +++---++-=2分析:此题若用一般解法,则计算量较大。

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析1.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【答案】(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)至少应安排甲队工作10天.【解析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.试题解析:(1)设乙工程队每天能完成绿化的面积是x (m2),根据题意得:解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作y天,根据题意得:解得:y≥10,答:至少应安排甲队工作10天.【考点】1. 分式方程的应用;2.一元一次不等式的应用2.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【答案】(1)购买一个台灯需要25元,购买一个手电筒需要5元;(2)荣庆公司最多可购买21个该品牌的台灯.【解析】(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.试题解析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得 25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.【考点】1、分式方程的应用;2、一元一次不等式的应用.3.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【答案】80米/分.【解析】方程的应用解题关键是设出未知数,找出等量关系,列出方程求解.本题设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依据等量关系:马小虎走600米的时间=爸爸走1600米的时间+10分钟.试题解析:解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得,解得 x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.【考点】分式方程的应用(行程问题).4.⑴解方程:(1); (2)解不等式组并求该不等式组的整数解。

中考数学《分式及分式方程》计算题(附答案)

中考数学《分式及分式方程》计算题(附答案)

[键入文字]中考《分式及分式方程》计算题、答案一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)(1)解方程:(2)解不等式组.16.(2011•大连)解方程:.17.(2011•常州)①解分式方程;②解不等式组.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=127.(2009•南昌)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想",把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)一、选择题(每题4分,共20分)1.解分式方程2x -1+x +21-x =3时,去分母后变形为(D) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)2.[2015·天津]分式方程2x -3=3x 的解为(D) A .x =0 B .x =5C .x =3D .x =9【解析】 去分母得2x =3x -9,解得x =9,经检验x =9是分式方程的解.3.[2015·常德]分式方程2x -2+3x2-x =1的解为(A)A .x =1B .x =2C .x =13D .x =0【解析】 去分母得2-3x =x -2,解得x =1,经检验x =1是分式方程的解.4.[2015·遵义]若x =3是分式方程a -2x -1x -2=0的根,则a 的值是(A)A .5B .-5C .3D .-3【解析】 ∵x =3是分式方程a -2x -1x -2=0的根,∴a -23-13-2=0,∴a -23=1,∴a -2=3,∴a =5.5.[2014·福州]某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是(A)A.600x +50=450x B.600x -50=450x C.600x =450x +50 D.600x =450x -50 【解析】 根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器所需时间=原计划生产450台所需时间.二、填空题(每题4分,共20分)6.[2015·淮安]方程1x -3=0的解是__x =13__.7.[2015·巴中]分式方程3x +2=2x的解x =__4__. 8.[2015·江西样卷]小明周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为__10x =12x +2+0.5__. 9.[2015·河南模拟]若关于未知数x 的分式方程a x -2+3=x +12-x有增根,则a 的值为__-3__.【解析】 分式方程去分母,得a +3x -6=-x -1,解得x =-a +54,∵分式方程有增根,∴x =2,∴-a +54=2,解得a =-3.10.[2015·黄冈中学自主招生]若关于x 的方程ax +1x -1-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.【解析】 解方程得x =21-a ,即21-a>0,解得a <1, 当x -1=0时,x =1,代入得a =-1,此为增根,∴a ≠-1,∴a <1且a ≠-1.三、解答题(共26分)11.(10分)(1)[2014·黔西南]解方程:1x -2=4x 2-4; (2)[2014·滨州]解方程:2-2x +13=1+x 2.解:(1)x +2=4,x =2,把x =2代入x 2-4,x 2-4=0,所以方程无解;(2)去分母,得12-2(2x +1)=3(1+x ),去括号,得12-4x -2=3+3x ,移项、合并同类项,得-7x =-7,系数化为1,得x =1.12.(8分)[2015·济南]济南与北京两地相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.解:设普通快车的速度为x km/h ,由题意得480x -4803x =4,解得x =80,经检验,x =80是原分式方程的解,3x =3×80=240.答:高铁列车的平均行驶速度是240 km/h.13.(8分)[2015·扬州]扬州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)x ,由题意得1 200x - 1 200(1+20%)x=2, 解得x =100,经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.14.(10分)[2015·连云港]在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.解:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元,根据题意,得6 000x =4 800x -80,解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y ,根据题意,得400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.15.(12分)[2015·泰安]某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有7 8001.5x +30=6 400x ,解得x =40,经检验,x =40是原分式方程的解,且符合题意,1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6 40040=160,160-30=130(元),130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2) =4 680+1 920-640=5 960(元).答:售完这批T 恤衫商店共获利5 960元.16.(12分)[2015·宁波]宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解析】 (1)首先设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得等量关系:种植A ,B 两种花木共6 600棵,根据等量关系列出方程;(2)首先设安排a 人种植A 花木,由题意得等量关系:a 人种植A 花木所用时间=(26-a )人种植B 花木所用时间,根据等量关系列出方程.解:(1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得 x +2x -600=6 600,解得x =2 400,2x -600=4 200,答:B 花木数量为2 400棵,则A 花木数量是4 200棵;(2)设安排a 人种植A 花木,由题意得4 20060a = 2 40040(26-a ),解得a =14,经检验,a =14是原分式方程的解,26-a=26-14=12,答:安排14人种植A花木,12人种植B花木.。

2022年中考数学真题分类汇编:分式方程(含答案)

2022年中考数学真题分类汇编:分式方程(含答案)

2022年年年年年年年年年年年年年一、选择题1.(2022·江苏省无锡市)分式方程2x−3=1x的解是( )A. x=1B. x=−1C. x=3D. x=−32.(2022·海南省)分式方程2x−1−1=0的解是( )A. x=1B. x=−2C. x=3D. x=−33.(2022·黑龙江省哈尔滨市)方程2x−3=3x的解为( )A. x=3B. x=−9C. x=9D. x=−34.(2022·贵州省毕节市)小明解分式方程1x+1=2x3x+3−1的过程如下.5.解:去分母,得3=2x−(3x+3).①6.去括号,得3=2x−3x+3.②7.移项、合并同类项,得−x=6.③8.化系数为1,得x=−6.④9.以上步骤中,开始出错的一步是( )A. ①B. ②C. ③D. ④10.(2022·四川省德阳市)如果关于x的方程2x+mx−1=1的解是正数,那么m的取值范围是( )A. m>−1B. m>−1且m≠0C. m<−1D. m<−1且m≠−211.(2022·重庆市)关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A. 13B. 15C. 18D. 2012.(2022·黑龙江省鹤岗市)已知关于x的分式方程2x−mx−1−31−x=1的解是正数,则m的取值范围是( )A. m>4B. m<4C. m>4且m≠5D. m<4且m≠113.(2022·浙江省丽水市)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x =4000x−30,则方程中x表示( )A. 足球的单价B. 篮球的单价C. 足球的数量D. 篮球的数量14.(2022·重庆市)若关于x的一元一次不等式组{x−1≥4x−1 3,5x−1<a的解集为x≤−2,且关于y的分式方程y−1y+1=ay+1−2的解是负整数,则所有满足条件的整数a的值之和是( )A. −26B. −24C. −15D. −1315.(2022·辽宁省铁岭市)小明和小强两人在公路上匀速骑行,小强骑行28km所用时间与小明骑行24km所用时间相等,已知小强每小时比小明多骑行2km,小强每小时骑行多少千米?设小强每小时骑行xkm,所列方程正确的是( )A. 28x =24x+2B. 28x+2=24xC. 28x−2=24xD. 28x=24x−216.(2022·云南省)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是( )A. 400x−50=300xB. 300x−50=400xC. 400x+50=300xD. 300x+50=400x17.(2022·湖北省恩施土家族苗族自治州)一艘轮船在静水中的速度为30km/ℎ,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为v km/ℎ,则符合题意的方程是( )A. 14430+v =9630−vB. 14430−v=96vC. 14430−v =9630+vD. 144v=9630+v18.(2022·四川省宜宾市)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B. 540x+2−540x=3B.C. 540x −540x+2=3 D. 540x−540x−2=319.(2022·四川省广元市)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是( )A. 9600x−10=1600xB. 9600x+10=1600xC. 9600x =1600x−10D. 9600x=1600x+1020.(2022·黑龙江省绥化市)有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是( )A. 12x +124x=30 B. 15x+154x=24 C. 30x+302x=24 D. 12x+122x=30二、填空题21.(2022·湖南省永州市)解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是______.22.(2022·湖南省常德市)方程2x +1x(x−2)=52x的解为______.23.(2022·湖南省岳阳市)分式方程3xx+1=2的解为x=______.24.(2022·浙江省宁波市)定义一种新运算:对于任意的非零实数a,b,a⊗b=1a +1b.若(x+1)⊗x=2x+1x,则x的值为______.25.(2022·四川省内江市)对于非零实数a,b,规定a⊕b=1a −1b.若(2x−1)⊕2=1,则x的值为______.26.(2022·浙江省金华市)若分式2x−3的值为2,则x的值是______.27.(2022·四川省成都市)分式方程3−xx−4+14−x=1的解为______.28.(2022·江西省)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为______.三、解答题29.(2022·湖北省随州市)解分式方程:1x =4x+3.30.(2022·江苏省苏州市)解方程:xx+1+3x=1.31.(2022·广西壮族自治区梧州市)解方程:1−23−x =4x−3.32.(2022·广西壮族自治区柳州市)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.33.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?34.(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?35.(2022·吉林省长春市)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?36.(2022·山东省烟台市)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?37.(2022·山东省聊城市)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.38.(1)求实际施工时,每天改造管网的长度;39.(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?40.(2022·贵州省贵阳市)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?41.(2022·贵州省铜仁市)科学规范戴口罩是阻断遵守病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?42.(2022·吉林省)刘芳和李婷进行跳绳比赛.已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等.求李婷每分钟跳绳的个数.43.(2022·黑龙江省大庆市)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?44.(2022·内蒙古自治区呼和浩特市)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.45.(1)问去年每吨土豆的平均价格是多少元?46.(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的2,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?3参考答案1.D2.C3.C4.B5.D6.D7.C8.D9.D10.D11.B12.A13.C14.B15.A16.x(x+1)17.x=418.219.−1220.5621.422.x=323.160x =140x−1024.解:1x =4x+3左右两边同时乘以(x+3)x得x+3=4x,3=3x,x=1.检验:把x=1代入原方程得11=41+3,等式成立,所以x=1是原方程的解.故答案为:x=1.25.解:方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−32,经检验,x=−32是原方程的解,∴原方程的解为x=−32.26.解:去分母得:x−3+2=4,解得:x=5,当x=5时,x−3≠0,∴x=5是分式方程的根.27.解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,依题意得:15x+1=10x,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.(2)设购买m件甲种农机具,则购买(20−m)件乙种农机具,依题意得:3m+2(20−m)≤46,解得:m≤6.答:甲种农机具最多能购买6件.28.解:设乙班平均每小时挖x千克土豆,根据题意,得1500x+100=1200x,解得x=400,经检验,x=400是原方程的根,且符合题意;答:乙班平均每小时挖400千克土豆.29.解:设每个A型扫地机器人的进价为x元,则每个B型扫地机器人的进价为(2x−400)元,依题意得:96000x =1680002x−400,解得:x=1600,经检验,x=1600是原方程的解,且符合题意,∴2x −400=2×1600−400=2800.答:每个A 型扫地机器人的进价为1600元,每个B 型扫地机器人的进价为2800元.30.解:(1)设原计划每天改造管网x 米,则实际施工时每天改造管网(1+20%)x 米,由题意得:3600x−3600(1+20%)x =10,解得:x =60,经检验,x =60是原方程的解,且符合题意. 此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加m 米,由题意得:(40−20)(72+m)≥3600−72×20, 解得:m ≥36.答:以后每天改造管网至少还要增加36米.31.解:设每辆小货车的货运量是x 吨,则每辆大货车的货运量是(x +4)吨,依题意得:80x+4=60x,解得:x =12,经检验,x =12是原方程的解,且符合题意, ∴x +4=12+4=16.答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.32.解:设该厂家更换设备前每天生产口罩x 万个,则该厂家更换设备后每天生产口罩(1+40%)x 万个, 依题意得:280x−280(1+40%)x =2,解得:x =40,经检验,x =40是原方程的解,且符合题意, ∴(1+40%)x =(1+40%)×40=56.答:该厂家更换设备前每天生产口罩40万个,更换设备后每天生产口罩56万个.33.解:设李婷每分钟跳绳x 个,则刘芳每分钟跳绳x +20个,根据题意列方程,得135x+20=120x,即135x =120(x +20), 解得x =160,经检验x =160是原方程的解,答:李婷每分钟跳绳160个.34.解:设现在平均每天生产x 个零件,根据题意得:800x=600x−20,解得x =80,经检验,x =80是原方程的解,且符合题意, ∴x =80,答:现在平均每天生产80个零件.35.解:(1)设去年每吨土豆的平均价格是x 元,则今年第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x −200)元, 由题意得:300000x+200×2=500000x−200,解得:x =2200,经检验,x =2200是原分式方程的解,且符合题意, 答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:3000002200+200×3=375(吨), 设应将m 吨土豆加工成薯片,则应将(375−m)吨加工成淀粉, 由题意得:{m ≥23(375−m)m 5+375−m 8≤60,解得:150≤m ≤175, 设总利润为y 元,则y =700m +400(375−m)=300m +150000, ∵300>0,∴y 随m 的增大而增大,∴当m =175时,y 的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.。

中考数学专题复习(有答案)分式方程的解法及应用

中考数学专题复习(有答案)分式方程的解法及应用

第3节 分式方程的解法及应用A 组1.(2020徐州)方程9x =8x -1的解为 x =9 . 2.若分式x 2-1x +1的值等于0,则x 的值为( D ) A .±1B .0C .-1D .13.(2020宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15 000元购买科普类图书的本数与用12 000元购买文学类图书的本数相等.设文学类图书平均每本x 元,则列方程正确的是( B )A.15 000x -8=12 000x B .15 000x +8=12 000x C .15 000x =12 000xD .15 000x =12 000x+8 4.解分式方程:(1)(2020大庆)2x x -1-1=4x -1; 解:去分母,得2x -(x -1)=4.解得x =3.检验:当x =3时,x -1=2≠0.∴x =3是分式方程的解.(2)(2020陕西)x -2x -3x -2=1. 解:去分母,得x 2-4x +4-3x =x 2-2x .解得x =45. 检验:当x =45时,x (x -2)≠0. ∴x =45是分式方程的解. B 组5.深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲、乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合作4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A ,B 两种清洁剂共100瓶,其中A 种清洁剂6元/瓶,B 种清洁剂9元/瓶.要使购买总费用不多于780元,则A 种清洁剂最少应购买多少瓶?解:(1)设甲工程队单独完成此工程需要x 天,则乙工程队单独完成此工程需要(x +6)天.依题意,得4x +x x +6=1.解得x =12. 经检验,x =12是原方程的解,且符合题意.答:甲工程队单独完成此工程需要12天.(2)设A 种清洁剂应购买a 瓶,则B 种清洁剂应购买(100-a )瓶.依题意,得6a +9(100-a )≤780.解得a ≥40.答:A 种清洁剂最少应购买40瓶.C 组6.(北师八下P128习题5.8T3改编)某市为治理污水,需要铺设一段全长为300 m 的污水排放管道,铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,每天的工效比原计划增加20%,结果共用30天完成这一任务.(1)求原计划每天铺设管道的长度;(2)若市政部门原来每天支付工人工资为600元,提高工效后每天支付给工人的工资增长了30%,完成整个工程市政部门应该支付工人工资多少?解:(1)设原计划每天铺设x m 管道,则后来每天铺设(1+20%)x m.根据题意,得120x +300-120(1+20%)x=30. 解得x =9.经检验,x =9是原分式方程的解,且符合题意.答:原计划每天铺设管道的长度为9 m.(2)实际每天铺设管道的长度为(1+20%)x =1.2×9=10.8,支付工人的工资为120÷9×600+(300-120)÷10.8×600×(1+30%)=21 000(元).答:完成整个工程市政部门应该支付工人工资21 000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1. )遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均亩产量为1.5x 万千克.根据题意列方程为( ).A .36369201.5xx+-=B .3636201.5xx-=C .36936201.5xx -=+D .36369201.5xx++=【答案】A . 【解析】相等关系:原计划种植亩数-实际种植亩数=20.由题意可得方程36369201.5xx+-=.注意 此类题并不难,同学们出错最多的地方就是审题不清,而误选其它答案.这样可以少出错:一是要明白x 的含义,而是要区分是谁与谁的差,这样不容易不错. 2. )方程211xx -+=0的解是 ······································································· ( )A .1或-1B .-1C .0D .1【答案】D 3. 方程xx 332=-的解是( )A.x=0B.x=3C.x=5D.x=9【答案】D4. (2015年山东省济宁市)解分式方程22311x x x++=--时,去分母后变形正确的为( )A. 2+(x +2)=3(x -1)B. 2-x +2=3(x -1)C. 2-(x +2)=3D. 2-(x +2)=3(x -1) 【答案】D5. x =3是分式方程2102a xx --=-的根,则a 的值是 ( )A .5B .-5C .3D .-3 【答案】A【解析】解:根据方程根的意义,将x =3代入分式方程得:2103a --=,即转换成关于a的一元一次方程,解得a =5,故选A . 6.式方程23122x x x+=--的解为( )A. 1B. 2C. 13D. 0【答案】A1. 分)分式方程322x x=+的解x = .【答案】 4.2. 分)方程x x -1-2x=1的解为x = . 【答案】23. 分)分式方程572xx =-的解为________.【答案】5x =- 【解析】4. 4分)分式方程233x x=-的解是 .【答案】9x =【解析】解:方程两边乘(3)x x -,得239x x =-;移项,合并得9x=,故答案为9x=.5.)分式方程2313-1--=-xx x 的解为 .【答案】x =4.【解析】方程两边同乘以(x -3),得1-x = -1-2(x -3).解得x =4.经检验,x =4是原方程的解.6.分)方程231x x =+的根是________.【答案】x=2 7. 程031=-x的解是 。

【答案】31x =【解析】因为031=-x,所以31=x,所以31x =故答案为31x =8. 若分式210,1x x -+的值则x =__________.【答案】19.(2015年湖南衡阳,16,3分)方程1x=32x -的解为 .【答案】x =-1【解析】解:方程两边同乘以x (x -2),得x -2=3x ,-2x =2,x =-1.故答案为x =-1.1. 分)某厂制作甲、乙两种环保包装盒.已知同样用6m 材料制成甲盒的个数比制成乙盒的个数少2个,且制作一个甲盒比制作一个乙盒需要多用20%的材料. (1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍.那么请写出所需材料的总长度l(m )与甲盒数量n (个)之间的函数关系式,并求出最少需要多少米材料? 【答案】解:(1)设制作每个甲盒用x 米材料,制作每个乙盒用y 米材料,由题意得662(120%)x y x y⎧=-⎪⎨⎪=+⎩,解得3512x y ⎧=⎪⎪⎨⎪=⎪⎩. 答:制作每个甲盒用35米材料,制作每个乙盒用12米材料.(2)∵甲盒数量是n 个, ∴乙盒数量是(3000-n )个. ∴311(3000)15005210l n n n =+-=+.∵甲盒的数量不少于乙盒数量的2倍, ∴n ≥2(3000-n ), ∴n ≥2000.∴当n=2000时,所需材料最少,最少为:120001500170010⨯+=(m ).2. )(本小题10分)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.【答案】 【解析】解:(1)设原计划每天生产零件x 个,由题意得240002400030030xx +=+,解得x =2400,经检验,x =2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天. (2)原计划安排的工人人数为y 人,由题意得2400[520(120%)2400](102)24000y⨯⨯+⨯+⨯-=,解得y =480.经检验,y =480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.3. 分)在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空,根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花,已知第二批所购鲜花的盒数是第一批所购鲜花盒数的21,且每盒鲜花的进价比第一批的进价少10元。

问第二批鲜花每盒的进价是多少元? 【答案】150元【解析】解:设第二批鲜花每盒的进价是x 元,则第一批鲜花每盒的进价是(x +10)元 由题意得:1600017500102x x⨯=+,解得:x =150答:第二批鲜花每盒的进价是150元4. 小明解方程121x x x--=的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【答案】步骤①去分母时,没有在等号右边乘以x ;步骤②括号前面是“-”号,去括号时,没有变号;步骤⑥前没有检验;32x =【解析】解:步骤①去分母时,没有在等号右边乘以x ;步骤②括号前面是“-”号,去括号时,没有变号;步骤⑥前没有检验;正确解答过程如下:解:方程两边都乘以x 得 1-(x -2)=x 去括号得 1-x +2=x移项,合并同类项得 -2-x = -3 解得 32x =经检验32x =是原分式方程的根5. 分)解方程233x x=-.【答案】【解析】解:方程两边乘(3)x x -,得23(3)x x =-. 解得9x =.检验:当9x =时,(3)0x x -≠.所以,原方程的解为9x =.6.(2015贵州省安顺市,21,10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元,求第一批盒装花每盒的进价是多少元 .解:解:设第一批盒装花的进价是每盒x 元(每单位扣分)则2⨯3000x=50005x -解得x=30经检验,x=3是方程的解.答:第一批盒装花的进价是每盒3元.7. 6分)解分式方程:(6分) 22142x x x +=--解:22142x x x +=--去分母得:2+x (x+2)=x 2-4, 解得:x=-3,检验:当x=-3时,(x+2)(x-2)≠0, 故x=-3是原方程的根.8. 分)【答案】x =-29.济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通列车的3倍,求高铁列车的平均行驶速度. 【答案】240km/h【解析】解:设普通列车的行驶速度为xkm/h ,则高铁列车的平均行驶速度为3xkm/h.由题意可知48048043xx-=解得x=80 ∴3x=240km/h10. )宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共 6600棵,若A 花木数量是B 花木数量的2倍少600 棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40 棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【答案】解:(1)设B 花木的数量是x 棵,则A 花木的数量是(2x -600)棵, 根据题意得x +(2x -600)=6600,解得x =2400, 2x-600= 4200答:A 花木的数量是4200棵,B 花木的数量是2400棵.(2)设安排y 人种植A 花木,则安排(26-y )人种植B 花木,根据题意得420024006040(26)yy =-,解得y =14,经检验,y=14是原方程的根,且符合题意. 26-y = 12 .答:安排14人种植A 花木,12人种植B 花木,才能确保同时完成各自的任务.11. 6分)(本题共2个小题,每小题8分,共16分) (2)解方程:311221x x =-++ ;【答案】32x =【解析】解:原方程可变形为:311221x x x +-=++,即3221x x x =++可得(22)33x x x +=+ ,整理得2230x x --= . 解得11x =- 或232x =.检验:11x =-时,原方程无意义.∴32x =是原方程的解.12. 2014年12月28日“青烟威荣”城际铁路正式开通.从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时. 已知烟台到北京的普快列车里程约1026千米,高铁平均时速为普快平均时速的2.5倍. (1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至该市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前赶到吗? 解:(1)设普快列车的平均时速为x 千米/时,则高铁列车的平均时速为2.5x 千米/时. 根据题意,得102610268192.5xx--=.解得x =72.经检验x =72是原方程的解. 2.5x =180.答:高铁列车的平均时速为180千米/时. (2)630÷180=3.5(小时),3.5+1.5=5(小时),8:40+5=13:40. ∴可以在14:00之前赶到会议.13. 分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗? 【答案】设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗.根据题意,得60505x x=+.解这个方程,得x =25.经检验,x =25是所列方程的解. ∴x +5=30. 答:甲每小时做30面彩旗,乙每小时做25面彩旗.14. 2分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运 800件帐篷所用车辆相等. (1)求甲、乙两种货车每辆车可装多少件帐篷?(6分)(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?(6 分) 【答案】解:(1)设乙两种货车每辆车可装x 件帐篷100080020x x=+得x=80经检验x=80是原方程的解.∴甲、乙两种货车每辆车可装100,80件帐篷. (2)设甲、乙两种汽车各有a 、b 辆16100(b 1)80501490a b a +=⎧⎨+-+=⎩∴a=12 b=4∴甲、乙两种汽车各有12、8辆.15. 分)解方程:52332x x x+--=4【答案】x =1【解析】解:去分母得:x -5=4(2x -3) 去括号:x -5=8x -12 移项得:-7x =-7 ∴x =1经检验,原分式方程的解为x =116.8 分)某商家预测一种应季衬衫能畅销市场,就用 13200 元购进了一批这种衬衫,面市后果然供不应求. 商家又用 28800 元购进了第二批这种衬衫,所购数量是 第一批购进量的 2 倍,但单价贵了 10 元. (1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下 50 件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于 25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?【答案】:(1)120件;(2)150元。

相关文档
最新文档