初三数学圆与相似的专项培优易错试卷练习题(含答案)附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学圆与相似的专项培优易错试卷练习题(含答案)附详细答案
一、相似
1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a,b的值;
(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.
【答案】(1)解:由题意得:,解得:a= ,b=
(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),
∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,
∴△ABC为直角三角形,且∠ACB=90°.
∵AE=2t,AF= t,∴ .
又∵∠EAF=∠CAB,
∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,
∴△AEF沿EF翻折后,点A落在x轴上点D处;
由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.
假设△DCF为直角三角形,当点F在线段AC上时:
ⅰ)若C为直角顶点,则点D与点B重合,如图2,
∴AE= AB= t= ÷2= ;
ⅱ)若D为直角顶点,如图3.
∵∠CDF=90°,∴∠ODC+∠EDF=90°.
∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,
∴∠ODC=∠OBC,∴BC=DC.
∵OC⊥BD,
∴OD=OB=1,
∴AD=3,
∴AE= ,
∴t= ;
当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.
综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .
②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;
ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,
过点G作GH⊥BE于H,
设GH=m,则BH= ,DH=2m,∴DB= .
∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),
∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;
ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.
∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),
∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.
综上所述:.
【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。
(2)①由x=0及y=0时,求出点A、B、C三点的坐标,以及线段OA、OB、OC的长,利用勾股定理的逆定理证明△ABC是直角三角形,用含t的代数式表示出线段AD、AE、AF (即DF)的长,则根据AE、EF、OA、OC的长以及公共角∠OAC能判定△AEF、△AOC相似,可证得△AEF也是一个直角三角形,及∠AEF是直角;若△DCF是直角三角形,可分成三种情况讨论:
i)点C为直角顶点,由于△ABC恰好是直角三角形,且以点C为直角顶点,所以此时点B、D重合,由此得到AD的长,进而求出t的值;
ii)点D为直角顶点,此时∠CDB与∠CBD恰好是等角的余角,由此可证得OB=OD,再得到AD的长后可求出t的值;
iii)、点F为直角顶点,当点F在线段AC上时,∠DFC是锐角,而点F在射线AC的延长线上时,∠DFC又是钝角,所以这种情况不符合题意.
②此题需要分三种情况讨论:
i)当点E在点A与线段AB中点之间时,即当0<t≤,两个三角形的重叠部分是整个△DEF;
ii)当点E在线段AB中点与点O之间时,即<t≤2时,重叠部分是个不规则四边形,根据S=S△DEF﹣S△DBG可求解。
iii)当点E在线段OB上时,即2<t≤时,重叠部分是个小直角三角形,根据三角形的面积公式,即可求解。
2.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为,sinA= ,求BH的长.
【答案】(1)证明:如图,
∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切线
(2)证明:连接AC,如图2所示:
∵OF⊥BC,
∴,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴,
∴CE2=EH•EA
(3)解:连接BE,如图3所示:
∵AB是⊙O的直径,
∴∠AEB=90°,
∵⊙O的半径为,sin∠BAE= ,∴AB=5,BE=AB•sin∠BAE=5× =3,
∴EA= =4,
∵,
∴BE=CE=3,
∵CE2=EH•EA,
∴EH= ,
∴在Rt△BEH中,BH= .
【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。
由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°;
(2)连接AC,要证CE2=EH•EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解;
(3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。
3.如图,抛物线经过A(-3,0),C(5,0)两点,点B为抛物线顶点,抛物线的对称轴与x轴交于点D.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t,过点P作PM⊥BD,交BC于点M,以PM为正方形的一边,向上作正方形PMNQ,边QN交BC于点R,延长NM交AC于点E.
①当t为何值时,点N落在抛物线上;
②在点P运动过程中,是否存在某一时刻,使得四边形ECRQ为平行四边形?若存在,求出此时刻的t值;若不存在,请说明理由.
【答案】(1)解:∵y=ax2+bx+ 经过A(﹣3,0),C(5,0)两点,
∴,
解得:,
∴抛物线的解析式为
(2)解:∵ =﹣(x2﹣2x+1)+ =﹣(x﹣1)2+8,∴点B的坐标为(1,8).
设直线BC的解析式为y=kx+m,
则,
解得:,
所以直线BC的解析式为y=﹣2x+10.
∵抛物线的对称轴与x轴交于点D,
∴BD=8,CD=5﹣1=4.
∵PM⊥BD,
∴PM∥CD,
∴△BPM∽△BDC,
∴,
即,
解得:PM= t,
∴OE=1+ t.
∴ME=-2(1+ t)+10=8-t..
∵四边形PMNQ为正方形,
∴NE=NM+ME=8﹣t+ t=8﹣ t.
①点N的坐标为(1+ t,8﹣ t),
若点N在抛物线上,
则﹣(1+ t﹣1)2+8=8﹣ t,
整理得,t(t﹣4)=0,
解得t1=0(舍去),t2=4,
所以,当t=4秒时,点N落在抛物线上;
②存在.理由如下:
∵PM= t,四边形PMNQ为正方形,
∴QD=NE=8﹣ t.
∵直线BC的解析式为y=﹣2x+10,
∴﹣2x+10=8﹣ t,
解得:x= t+1,
∴QR= t+1﹣1= t.
又∵EC=CD﹣DE=4﹣ t,
根据平行四边形的对边平行且相等可得QR=EC,
即 t=4﹣ t,
解得:t= ,
此时点P在BD上
所以,当t= 时,四边形ECRQ为平行四边形
【解析】【分析】(1)用待定系数法,将A,C两点的坐标分别代入y=ax2+bx+ ,得出一个关于a,b的二元一次方程组,求解得出a,b的值,从而得出抛物线的解析式;
(2)首先求出抛物线的顶点B的坐标,然后用待定系数法求出直线BC的解析式为y=﹣2x+10.根据点到坐标轴的距离得出BD,CD的长度,根据垂直于同一直线的两条直线互相平行得出PM∥CD,根据平行于三角形一边的直线,截,其它两边,所截的三角形与原三角形相似得出△BPM∽△BDC,根据相似三角形对应边成比例得出B P ∶B D = P M ∶C D ,进而得出关于t的方程,求解得出PM,进而得出OE,ME,根据正方形的性质由NE=NM+ME得出NE的长,进而表示出N点的坐标,若点N在抛物线上,根据抛物线上的点的特点,得出关于t的方程,求解得出t的值,所以,当t=4秒时,点N落在抛物线上;②存在.理由如下:根据PM的长及正方形的性质从而表示出QD=NE的长度,进而得出方程,求出x的值,进而表示出QR根据线段的和差及平行四边形的对边平行且相等可得QR=EC,从而得
出关于t的方程,求解得出答案。
4.如图,已知在△ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC 于点G.
(1)求证:△EFG∽△AEG;
(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;
(3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.
【答案】(1)证明:∵ ED=BD,
∴∠B=∠BED.
∵∠ACB=90°,
∴∠B+∠A=90°.
∵ EF⊥AB,
∴∠BEF=90°.
∴∠BED+∠GEF=90°.
∴∠A=∠GEF.
∵∠G是公共角,
∴△EFG∽△AEG
(2)解:作EH⊥AF于点H.
∵在Rt△ABC中,∠ACB=90°,BC=2,AC=4,∴tanA= = ,
∴在Rt△AEF中,∠AEF=90°,tanA= = ,
∵△EFG∽△AEG,
∴ ,
∵ FG=x,
∴ EG=2x,AG=4x.
∴ AF=3x.
∵ EH⊥AF,
∴∠AHE=∠EHF=90°.
∴∠EFA+∠FEH=90°.
∵∠AEF=90°,
∴∠A+∠EFA=90°,
∴∠A=∠FEH,
∴ tanA =tan∠FEH,
∴在Rt△EHF中,∠EHF=90°,tan∠FEH= = ,∴ EH=2HF,
∵在Rt△AEH中,∠AHE=90°,tanA= = ,∴ AH=2EH,
∴ AH=4HF,
∴ AF=5HF,
∴ HF= ,
∴EH= ,
∴y= FG·EH= x· = 定义域:(0<x≤ )
(3)解:当△EFD为等腰三角形时,
①当ED=EF时,则有∠EDF=∠EFD,
∵∠BED=∠EFH,
∴∠BEH=∠AHG,
∵∠ACB=∠AEH=90°,
∴∠CEF=∠HEF,即EF为∠GEH的平分线,
则ED=EF=x,DG=8−x,
∵anA= ,
∴x=3,即BE=3;
②若FE=FD, 此时FG的长度是 ;
③若DE=DF, 此时FG的长度是 .
【解析】【分析】(1)因为ED=BD,所以∠B=∠BED.根据等角的补角相等可得∠A=∠GEF,而∠G是公共角,所以由相似三角形的判定可得△EFG∽△AEG;
(2)作EH⊥AF于点H.∠AEF=∠ACB=90°,∠A是公共角,所以可得AEF ACB,所以可得比例式,,由(1)得△EFG∽△AEG,所以可得比例式,,因为FG=x,所以EG=2x,AG=4x.则AF=3x,由同角的余角相等可得∠A=∠FEH,所以tanA =tan∠FEH,在Rt△EHF中,∠EHF=90°,tan∠FEH=,所以EH=2HF,在Rt△AEH中,同理可得AH=2EH,所以AH=4HF,AF=5HF,HF=x ,则EH= x ,△EFG
的面积y= FG·EH=x· x=,自变量的取值范围是0<x≤ ;
(3)当△EFD为等腰三角形时,分三种情况讨论:
①当ED=EF时,则有∠EDF=∠EFD,易得FG=3;
②若FE=FD, 易得FG=;
③若DE=DF, 易得FG=.
5.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点C出发,以2cm/s 的速度沿折线C→A→B向点B运动,同时点E从点B出发,以1cm/s的速度沿BC边向点C运动,设点E运动的时间为t(单位:s)(0<t<8).
(1)当△BDE 是直角三角形时,求t的值;
(2)若四边形CDEF是以CD、DE为一组邻边的平行四边形,①设它的面积为S,求S关于t的函数关系式;②是否存在某个时刻t,使平行四边形CDEF为菱形?若存在,求出t 的值;若不存在,请说明理由.
【答案】(1)解:如图1,当∠BED=90°时,△BDE是直角三角形,
则BE=t,AC+AD=2t,
∴BD=6+10-2t=16-2t,
∵∠BED=∠C=90°,
∴DE∥AC,
∴,
∴,
∴DE= ,
∵sinB= ,
∴,
t= ;
如图2,当∠EDB=90°时,△BDE是直角三角形,
则BE=t,BD=16-2t,
cosB= ,
∴,
∴t= ;
答:当△BDE是直角三角形时,t的值为或
(2)解:①如图3,当0<t≤3时,BE=t,CD=2t,CE=8-t,
∴S▱CDEF=2S△CDE=2× ×2t×(8-t)=-2t2+16t,
如图4,当3<t<8时,BE=t,CE=8-t,过D作DH⊥BC,垂足为H,
∴DH∥AC,
∴,
∴,
∴DH= ,
∴S▱CDEF=2S△CDE=2× ×CE×DH=CE×DH=(8-t)× = t2− t+ ;
∴S于t的函数关系式为:当0<t≤3时,S=-2t2+16t,
当3<t<8时,S= t2− t+ ;
②存在,如图5,当▱CDEF为菱形时,DH⊥CE,
由CD=DE得:CH=HE,
BH= ,BE=t,EH= ,
∴BH=BE+EH,
∴ =t+ ,
∴t= ,
即当t= 时,▱CDEF为菱形.
【解析】【分析】(1)因为△BDE 是直角三角形有两种情况:
①当∠BED=90°时,可得DE∥AC,根据平行于三角形一边的直线和其它两边(或其延长线)相交,所构成的三角形与原三角形相似可得,于是可得比例式将DE
用含t的代数式表示,再根据sinB=可得关于t的方程,解方程即可求解;
② 当∠EDB=90°时,同理可求解;
(2)①当0<t≤3时,S▱CDEF=2S△CDE可得s与t的关系式;当3<t<8时,过D作DH⊥BC,垂足为H,根据平行于三角形一边的直线和其它两边(或其延长线)相交,所构成的三角形与原三角形相似可得,于是可得比例式将DH用含t的代数式表示,则S▱CDEF=2S△CDE可得s与t的关系式;当3<t<8时,同上;
②存在,当▱CDEF为菱形时,DH⊥CE,根据BH=BE+EH可得关于t的方程,解方程即可求解。
6.在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N 在射线MB上,且AE是AM和AN的比例中项.
(1)如图1,求证:∠ANE=∠DCE;
(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长. 【答案】(1)解:∵AE是AM和AN的比例中项
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE
(2)解:∵AC与NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=
(3)解:∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
当△AEC与以点E、M、N为顶点所组成的三角形相似时
①∠ENM=∠EAC,如图2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如图3,
过点E作EH⊥AC,垂足为点H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
设DE=3x,则HE=3x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+3x=8,
解得x=1,
∴DE=3x=3,
综上所述,DE的长分别为或3
【解析】【分析】(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得
∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据
此知,求得AM=,由求得 MN=;(3)分∠ENM=∠EAC和∠ENM =∠ECA两种情况分别求解可得.
7.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图①,当∠ABC=45°时,求证:AD=DE;理由;
(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;
(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)【答案】(1)解:如图1,过点D作DF⊥BC,交AB于点F,
则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠FBD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,
∵∠EBD=∠AFD,BD=DF,∠BDF=∠ADF,∴△BDE≌△FDA(ASA),∴AD=DE
(2)解:DE= AD,理由:
如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,
∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴,在Rt△BDG中,
=tan30°= ,∴DE= AD
(3)解:AD=DE•tanα;理由:
如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,
∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴,在
Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.
【解析】【分析】(1)如图1,过点D作DF⊥BC,交AB于点F,根据同角的余角相等得出∠BDE=∠ADF,根据等腰直角三角形的性质得出∠C=45°,∠BFD=45°,BD=DF,进而根据平行线的性质邻补角的定义得出∠EBD=180°﹣∠C=135°,∠AFD=135°,从而利用ASA判断出△BDE≌△FDA,根据全等三角形的对应边相等得出AD=DE;
(2)DE= AD,理由:如图2,过点D作DG⊥BC,交AB于点G,根据等角的余角相等得出∠BDE=∠ADG,根据三角形的内角和得出∠C=60°,∠BGD=60°,根据二直线平行同旁内角互补得出∠EBD=120°,根据邻补角的定义得出∠AGD=120°,故∠EBD=∠AGD,根据两个角对应相等的两个三角形相似得出△BDE∽△GDA,利用相似三角形对应边成比例得出
AD∶DE=DG∶BD,根据正切函数的定义及特殊锐角三角函数值得出DG∶BD=tan30°= ,从而得出答案;
(3)AD=DE•tanα;理由:如图2过点D作DG⊥BC,交AB于点G,根据等角的余角相等得出∠BDE=∠ADG,根据三角形的内角和得出根据二直线平行同旁内角互补得出∠EBD=90°+α,三角形的外角定理得出∠AGD=90°+α,故∠EBD=∠AGD,根据两个角对应相等的两个三角形相似得出△BDE∽△GDA,利用相似三角形对应边成比例得出AD∶DE=DG∶BD,根据正切函数的定义DG∶BD=tanα从而得出答案。
8.如图1,图形ABCD是由两个二次函数与的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接写出这两个二次函数的表达式;
(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C 与点E是对应顶点)的点E的坐标.
【答案】(1)解:
(2)解:存在,
理由:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y轴时,设M(x,-x2+1)为第一象限内的图形ABCD上一点,M'(x,3x2-3)为第四象限内的图形上一点,∴MM'=(1-x2)-3(3x2-3)=4-4x2,由抛物线的对称性知,若有内接正方形,则2x=4-
4x2,即2x2+x-2=0,x= 或(舍),
∵0< ,∴存在内接正方形,此时其边长为
(3)解:解:在Rt△AOD中,OA=1,OD=3,∴AD= ,同理CD= .在Rt△BOC中,OB=OC=1,∴BC= .
①如图(1)
当△DBC~△DAE时,因∠CDB=∠ADO,∴在y轴上存在一点E,由得
,得DE= ,因D(0,-3),∴E();
由对称性知在直线DA右侧还存在一点E'使得△DBC~△DAE',连接EE'交DA于F点,作E'M⊥OD,垂足为M,连接E'D,
∵E、E'关于DA对称,∴DF垂直平分EE',∴△DEF~△DAO,
∴,有,∴, .
因,∴,
又,在Rt△DE'M中,DM= ,
∴OM=1,得
∴,使得△DBC~△DAE的点E的坐标为(0, ,)或;
如图(2)
当△DBC~△ADE时,有∠BDC=∠DAE,,
即,得AE= .
当E在直线DA左侧时,设AE交y轴于P点,作EQ⊥AC,垂足为Q.
由∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=x,则PO=3-x,PA=x,
在Rt△AOP中,由得,解得,则有PA= ,PO= ,
因AE= ,∴PE= ,
在△AEQ中,OP∥EQ,
∴,得,又,
∴QE=2,∴E(),
当E'在直线DA右侧时,
因∠DAE'=∠BDC,又∠BDC=∠BDA,∴∠BDA=∠DAE',
则AE'∥OD,∴E'(1,),
则使得△DBC~△ADE的点E的坐标为或 .
综上,使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标有4个,
即(0, ,)或或或
【解析】【解答】(1)∵二次函数经过点A(1,0),B(0,1)代入得
解得∴二次函数;
∵二次函数经过点A(1,0),D(0,-3)代入得
解得∴二次函数 .
【分析】(1)由A(1,0),B(0,1)代入二次函数解出k,m的值可得二次函数y1的表达式;由A(1,0),D(0,-3)代入二次函数解出k,m的值可得二次函数y1的表达式;(2)判断是否存在,可以列举出一种特殊情况:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y 轴时,则可设点M(x,-x2+1)在y1图象上,则该正方形存在另一点M'(x,3x2-3)在y2图象上,由邻边相等构造方程解答即可;(3)对于△BDC与△ADE相似,且C于D对应,那么就存在两种情况:①当点B对应点A,即△DBC~△DAE,此时点E的位置有两处,一处在y轴上,另一处在线段AD的右侧;②当点B对应点DA时,即△DBC~△ADE,些时点E 有两处,分别处于线段AD的左右两侧;结果两种情况所有的条件解出答案即可.
二、圆的综合
9.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.
(1)如图1,求证:∠DAC=∠PAC;
(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»
BF FA
,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;
(3)在(2)的条件下,如图3,若AE=2
3
DG,PO=5,求EF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)2.
【解析】
【分析】
(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;
(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;
(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出
EH∥DG,求出OM=1
2
AE,设OM=a,则HM=a,AE=2a,AE=
2
3
DG,DG=3a,
求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=
1
2
MO
BM
=,tanP=
1
2
CO
PO
=,设
OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】
(1)证明:连接OC,
∵PC为⊙O的切线,
∴OC⊥PC,
∵AD⊥PC,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OC=OA,
∴∠PAC=∠OCA,
∴∠DAC=∠PAC;
(2)证明:连接BE交GF于H,连接OH,
∵FG∥AD,
∴∠FGD+∠D=180°,
∵∠D=90°,
∴∠FGD=90°,
∵AB为⊙O的直径,
∴∠BEA=90°,
∴∠BED=90°,
∴∠D=∠HGD=∠BED=90°,
∴四边形HGDE是矩形,
∴DE=GH,DG=HE,∠GHE=90°,
∵»»BF AF
=,
∴∠HEF=∠FEA=1
2
∠BEA=190
2
o
⨯=45°,
∴∠HFE=90°﹣∠HEF=45°,
∴∠HEF=∠HFE,
∴FH=EH,
∴FG=FH+GH=DE+DG;
(3)解:设OC交HE于M,连接OE、OF,
∵EH=HF,OE=OF,HO=HO,
∴△FHO≌△EHO,
∴∠FHO=∠EHO=45°,
∵四边形GHED是矩形,
∴EH∥DG,
∴∠OMH=∠OCP=90°,
∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,
∴∠HOM=∠OHM,
∴HM=MO,
∵OM⊥BE,
∴BM=ME,
∴OM=1
2 AE,
设OM=a,则HM=a,AE=2a,AE=2
3
DG,DG=3a,
∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,
∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,
∴ME=CD=2a,BM=2a,
在Rt△BOM中,tan∠MBO=
1
22 MO a
BM a
==,
∵EH∥DP,
∴∠P=∠MBO,
tanP=
1
2 CO
PO
=,
设OC=k ,则PC=2k , 在Rt △POC 中,OP=5k=5, 解得:k=5,OE=OC=5,
在Rt △OME 中,OM 2+ME 2=OE 2,5a 2=5, a=1, ∴HE=3a=3,
在Rt △HFE 中,∠HEF=45°, ∴EF=2HE=32. 【点睛】
考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.
10.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F . (1)求证:OE ∥BD ;
(2)当⊙O 的半径为5,2
sin 5
DBA ∠=
时,求EF 的长.
【答案】(1)证明见解析;(2)EF 的长为212
【解析】
试题分析:(1)连接OB ,利用已知条件和切线的性质证明; (2)根据锐角三角函数和相似三角形的性质,直接求解即可.
试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠. ∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD . (2)由(1)可得sin ∠C = ∠DBA=
25,在Rt △OBE 中, sin ∠C =
2
5
BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒
∵E C ∠=∠,∴△CBD ∽△EBO .
∴
BD CD
BO EO
=
∴252
EO =
. ∵OE ∥BD ,CO =OD , ∴CF =FB . ∴1
22
OF BD =
=. ∴212
EF OE OF =-=
11.如图,⊙O 是△ABC 的外接圆,AC 为直径,BD =BA ,BE ⊥DC 交DC 的延长线于点E (1) 求证:BE 是⊙O 的切线 (2) 若EC =1,CD =3,求cos ∠DBA
【答案】(1)证明见解析;(2)∠DBA 35
= 【解析】
分析:(1)连接OB ,OD ,根据线段垂直平分线的判定,证得BF 为线段AD 的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF 是矩形,即∠EBF=90°,可得出结论.
(2)根据中点的性质求出OF 的长,进而得到BF 、DE 、OB 、OD 的长,然后根据等角的三角函数求解即可.
详解:证明:(1) 连接BO 并延长交AD 于F ,连接OD ∵BD =BA ,OA =OD ∴BF 为线段AD 的垂直平分线 ∵AC 为⊙O 的直径 ∴∠ADC =90° ∵BE ⊥DC
∴四边形BEDF 为矩形 ∴∠EBF =90° ∴BE 是⊙O 的切线
(2) ∵O、F分别为AC、AD的中点
∴OF=1
2CD=
3
2
∵BF
=DE=1+3=4
∴OB=OD=35
4
22
-=
∴cos∠DBA=cos∠DOF=
3
3
2
55
2
OF
OD
==
点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.
12.如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为_____cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.
(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.
【答案】(1)t﹣1;(2)S=﹣
3
8
t2+3t+3(1<t<4);(3)t=
10
3
s.
【解析】
分析:(1)根据勾股定理求出AB ,根据D 为AB 中点,求出AD ,根据点P 在AD 上的速度,即可求出点P 在AD 段的运动时间,再求出点P 在DP 段的运动时间,最后根据DE 段运动速度为1c m/s ,即可求出DP ;
(2)由正方形PQMN 与△ABC 重叠部分图形为五边形,可知点P 在DE 上,求出DP =t ﹣1,PQ =3,根据MN ∥BC ,求出FN 的长,从而得到FM 的长,再根据S =S 梯形FMHD +S 矩形
DHQP ,列出
S 与t 的函数关系式即可;
(3)当圆与边PQ 相切时,可求得r =PE =5﹣t ,然后由r 以0.2c m/s 的速度不断增大,r =1+0.2t ,然后列方程求解即可;当圆与MN 相切时,r =CM =8﹣t =1+0.2t ,从而可求得t 的值.
详解:(1)由勾股定理可知:AB =22AC BC +=10.
∵D 、E 分别为AB 和BC 的中点, ∴DE =
12AC =4,AD =1
2
AB =5, ∴点P 在AD 上的运动时间=5
5
=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s .
∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm . 故答案为t ﹣1.
(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.
当正方形的边长大于DP 时,重叠部分为五边形, ∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0, 解得:t >1,∴1<t <4.
∵△DFN ∽△ABC ,∴DN FN =AC BC =86=4
3
. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t ,
∴
4t FN -=43,∴FN =344
t -()
, ∴FM =3﹣344t -()=34
t
, S =S 梯形FMHD +S 矩形DHQP ,
∴S =
12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣3
8
t 2+3t +3(1<t <4).
(3)①当圆与边PQ相切时,如图:
当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,
∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm.
∵r以0.2c m/s的速度不断增大,∴r=1+0.2t,
∴1+0.2t=5﹣t,解得:t=10
3
s.
②当圆与MN相切时,r=CM.
由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,
∴1+0.2t=8﹣t,解得:t=35
6
s.
∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=35
6
s(舍).
综上所述:当t=10
3
s时,⊙O与正方形PQMN的边所在直线相切.
点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.
13.矩形ABCD中,点C(3,8),E、F为AB、CD边上的中点,如图1,点A在原点处,点B在y轴正半轴上,点C在第一象限,若点A从原点出发,沿x轴向右以每秒1个单位长度的速度运动,点B随之沿y轴下滑,并带动矩形ABCD在平面内滑动,如图2,设运动时间表示为t秒,当点B到达原点时停止运动.
(1)当t=0时,点F的坐标为;
(2)当t =4时,求OE 的长及点B 下滑的距离; (3)求运动过程中,点F 到点O 的最大距离;
(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.
【答案】(1)F (3,4);(2)8-43;(3)7;(4)t 的值为245
或325. 【解析】
试题分析:(1)先确定出DF ,进而得出点F 的坐标; (2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;
(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论; (4)分两种情况,利用相似三角形的性质建立方程求解即可.
试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°, ∴∠ABO =30°,点E 是AB 的中点,OE =
1
2
AB =4,BO =43,∴点B 下滑的距离为843-.
(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.
(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF 22FD AD +,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴
AB AO FA FE =,∴1853
t
=,
∴t1=24
5,②设AO=t2时,⊙F与y轴相切,B为切点,同理可得,t2=
32
5
.
综上所述:当以点F为圆心,FA为半径的圆与坐标轴相切时,t的值为24
5
或
32
5
.
点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO=30°,解(3)的关键是判断出当O、E、F三点共线时,点F到点O的距离最大,解(4)的关键是判断出Rt△FAE∽Rt△ABD,是一道中等难度的中考常考题.
14.如图,AB,BC分别是⊙O的直径和弦,点D为»BC上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O 于点M,连接MD,ME.
求证:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
分析:(1)连接OC,根据等边对等角和切线的性质,证明∠BFG=∠OCH=90°即可;(2)连接BE,根据垂径定理和圆内接四边形的性质,得出∠HMD=∠BME,再根据三角形的外角的性质证明∠HMD=∠DEB=∠EMB即可.
详解:证明:(1)连接OC,
∵HC=HG,
∴∠HCG=∠HGC;
∵HC切⊙O于C点,
∴∠OCB+∠HCG=90°;
∵OB=OC,
∴∠OCB=∠OBC,
∵∠HGC=∠BGF,
∴∠OBC+∠BGF=90°,
∴∠BFG=90°,即DE⊥AB;
(2)连接BE,
由(1)知DE⊥AB,
∵AB是⊙O的直径,
∴,
∴∠BED=∠BME;
∵四边形BMDE内接于⊙O,
∴∠HMD=∠BED,
∴∠HMD=∠BME;
∵∠BME是△HEM的外角,
∴∠BME=∠MHE+∠MEH,
∴∠HMD=∠MHE+∠MEH.
点睛:此题综合性较强,主要考查了切线的性质、三角形的内角和外角的性质、等腰三角形的性质、内接四边形的性质.
15.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.
(1)当BC=23
时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;
(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.
【答案】(1)直线FD与以AB为直径的⊙O相切,理由见解析;(2)22 .
【解析】
试题分析:(1)根据已知及切线的判定证明得,直线FD与以AB为直径的⊙O相切;(2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC的长.
试题解析:
(1)判断:直线FD与以AB为直径的⊙O相切.
证明:如图,
作以AB为直径的⊙O;
∵△ADB是将△ACB沿AB边所在的直线翻折得到的,∴△ADB≌△ACB,
∴∠ADB=∠ACB=90°.
∵O为AB的中点,连接DO,
∴OD=OB=AB,
∴点D在⊙O上.
在Rt△ACB中,BC=,AC=2;
∴tan∠CAB==,
∴∠CAB=∠BAD=30°,
∴∠ABC=∠ABD=60°,
∴△BOD是等边三角形.
∴∠BOD=60°.
∴∠ABC=∠BOD,
∴FC∥DO.
∵DF⊥CG,
∴∠ODF=∠BFD=90°,
∴OD⊥FD,
∴FD为⊙O的切线.
(2)延长AD交CG于点E,
同(1)中的方法,可证点C在⊙O上;
∴四边形ADBC是圆内接四边形.
∴∠FBD=∠1+∠2.
同理∠FDB=∠2+∠3.
∵∠1=∠2=∠3,
∴∠FBD=∠FDB,
又∠DFB=90°.
∴EC=AC=2.
设BC=x,则BD=BC=x,
∵∠EDB=90°,
∴EB=x.
∵EB+BC=EC,
∴x+x=2,
解得x=2﹣2,
∴BC=2﹣2.
16.结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.
根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=1
2 AC•BC
=1
2
(x+3)(x+4)
=1
2
(x2+7x+12)
=1
2
×(12+12)
=12.
小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.
已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.
可以一般化吗?
(1)若∠C=90°,求证:△ABC的面积等于mn.
倒过来思考呢?
(2)若AC•BC=2mn,求证∠C=90°.
改变一下条件……
(3)若∠C=60°,用m、n表示△ABC的面积.
【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;
【解析】
【分析】
(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.
【详解】
设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,
根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,
(1)如图1,
在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,
整理,得:x2+(m+n)x=mn,
所以S△ABC=AC•BC
=(x+m)(x+n)
=[x2+(m+n)x+mn]
=(mn+mn)
=mn;
(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,
整理,得:x2+(m+n)x=mn,
∴AC2+BC2=(x+m)2+(x+n)2
=2[x2+(m+n)x]+m2+n2
=2mn+m2+n2
=(m+n)2
=AB2,
根据勾股定理逆定理可得∠C=90°;
(3)如图2,过点A作AG⊥BC于点G,
在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),
∴BG=BC﹣CG=(x+n)﹣(x+m),
在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,
整理,得:x2+(m+n)x=3mn,
∴S△ABC=BC•AG
=×(x+n)•(x+m)
=
3
4
[x2+(m+n)x+mn]
=3
(3mn+mn)3.
【点睛】
本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。