应用数理统计大作业1——逐步回归法分析终教学提纲
北航数理统计大作业(逐步回归)
北京航空航天大事BEIHANG UNIVERSITY应用数理统计第一次大作业学号:______姓名:______________班级: __________20 15年12月民航客运量得多元线性回归分析摘要:本文为建立以民航客运量为因变量得多元线性回归模型,选取了199 6年至2013年得统计数据,包含国民生产总值,民航航线里程,过夜入境旅游人数,城镇居民可支配收入等因素,利用统计•软件SPSS对各因素进行了筛选分析,采用逐步回归法得到最优多元线性回归模型,并对模型得回归显著性、拟合度以及随机误差得正态性进行了检验,并采用201 4年得数据进行检验,得到得结果达到预期,证明该模型建立就是较为成功得.关键词:多元线性回归,逐步回归法,民航客运量0、符号说明变量符号民用航空客运量Y国民生产总值X,民航航线里程X3城镇居民人均可支配收入X51、引言随着社会得进步,人民生活水平得提高,如何获得更快捷方便得交通成为人们日益关注得问题•因为航空得安全性,快速且价格水平越来越倾向大众,越来越多得人们选择航空这种交通方式。
近年来,我国得航空客运量已经进入世界前列,为掌握航空客运得动态,合理安排班机数量•科学地对我国民航客运量得影响因素得分析,并得出其回归方程,进而能够估计航空客运量就是非常有必要得。
本文收集整理了与我国航空客运量相关得历年数据,运用SPSS软件对数据进行分析,研究199 6年起至20 13年我国民航客运量y(万人)与国民生产总值Xi(亿元)、铁路客运量X2(万人)、民航航线里程X3 (万公里)、入境过夜旅游人数X4 (万人)、城镇居民人均可支配 收入X5 (元)得关系。
采用逐步回归法建立线 性模型,选出较优得线性回归模型。
2、数据得统计与分析本文在进行统计时,查阅《中国统计摘要》,《中国统计年鉴2 0 14》以及中国 知网数据查询中得数据,收集了 19 96年至201 3年各个自变量因素得数据,分析它们 之间得联系。
第一讲 逐步回归分析讲解
2 1 4 2
A(0)
1
1.5
3
4
4
3
10
5
0.5 0.5 2 1
A(1)
0.5
1
1 3
2
1 2 1
1.5-1×0.5=1 3-1×2=1 4-1×1=3
0.5-0.5×(-0.5)=0.75 2-0.5×1=1.5 1-0.5×3=2.5
SS
1b1
SP12 b2
SP13b3
SP1y
SP21b1 SS 2b2 SP23b3 SP2 y
SP31b1 SP32b2 SS 3b3 SP3y
2b1 1b2 4b3 2 1b1 1.5b2 3b3 4 4b1 3b2 10b3 5
x5
y,%
68.6
70.9
62.2
66.7
57.3
60.5
56.7
60.5
58.0
58.9
x
17.2
13.3
10.3
64.4
62.5
63.4
s
4.1
3.8
4.4
7.0
5.6
3.8
一、计算相关系数阵
1、计算各变量的平均数(为表1—1) 设自变量x1,x2,…,xm与依变量y存在线性关系,m元线性回归 方程为:
由x估测y的估计值 yˆ 的直线回归方程: yˆ =a+bx
第一节 逐步回归分析的基本方法
逐步回归分析的基本方法可以通过一个实例介绍其分析步骤。 例1 为考察舍内干球温度(x1)、湿球温度(x2)、露点温度(x3)、相对湿 度(x4)及舒适度指数(x5)对罗曼蛋鸡产蛋率(y)的影响。随机抽测12个位点 各64只鸡在56—67周令的平均周产蛋率如表1—1。
数理统计第一次大作业——回归分析
北京市农业经济总产值的逐步回归分析姓名:学号:摘要:农业生产和农村经济是国民经济的基础,影响农村经济总产值的因素有多种,主要包括农林牧渔业。
本文以北京市农业生产和农村经济总产值为对象,首先分析了各种因素的线性相关性,建立回归模型,再利用逐步回归法进行回归分析,得到最符合实际情况的回归模型。
以SPSS 17.0为分析工具,给出了实验结果,并用预测值验证了结论的正确性。
关键词:农业生产和农村经济,线性回归模型,逐步回归分析,SPSS1.引言农林牧渔业统计范围包括辖区内全部农林牧渔业生产单位、非农行业单位附属的农林牧渔业生产活动单位以及农户的农业生产活动。
军委系统的农林牧渔业生产(除军马外)也应包括在内,但不包括农业科学试验机构进行的农业生产。
在近几年中国经济快速增长的带动下,各地区农林牧渔业也得到了突飞猛进的发展。
以北京地区为例,2005年的农业总产值为1993年的6倍。
因此用统计方法研究分析农业总产值对指导国民经济生产,合理有效的进行产业布局,提高生产力等有着重要意义。
表1 北京市农业经济产值及各产品产量统计数据本文以北京市农生产为对象,分析了农业经济总产值与粮食产量、棉花产量、油料产量、蔬菜产量、干鲜果品产量、猪牛羊肉产量、禽蛋产量、水产品产量的关系,并建立农业经济总产值的回归模型。
表1中列出了1999年至2008年间的统计数据(数据来源于北京统计信息网)。
2.线性回归模型的建立2.1 线性回归模型的假设为了研究农业经济总产值与各种农生产量的关系,必须要建立二者之间的数学模型。
数学模型可以有多种形式,比如线性模型,二次模型,指数模型,对数模型等等。
而实际生活中,影响农业经济总产值的因素很多,并且这些因素的影响不能简单的用某一种模型来描述,所以要建立农业经济总产值的数学模型往往是很难的。
但是为了便于研究,我们可以先假定一些前提条件,然后在这些条件下得到简化后的近似模型。
以下我们假定两个前提条件:1) 农产品的价格是不变的。
逐步回归分析教材
第6节逐步回归分析逐步回归分析实质上就是建立最优的多元线性回归方程,显然既实用而应用又最广泛。
6.1逐步回归分析概述1 概念逐步回归模型是以已知地理数据序列为基础,根据多元回归分析法和求解求逆紧凑变换法及双检验法而建立的能够反映地理要素之间变化关系的最优回归模型。
逐步回归分析是指在多元线性回归分析中,利用求解求逆紧奏变换法和双检验法,来研究和建立最优回归方程的并用于地理分析和地理决策的多元线性回归分析。
它实质上就是多元线性回归分析的基础上派生出一种研究和建立最优多元线性回归方程的算法技巧。
主要含义如下:1)逐步回归分析的理论基础是多元线性回归分析法;2)逐步回归分析的算法技巧是求解求逆紧奏变换法;3)逐步回归分析的方法技巧是双检验法,即引进和剔除检验法;4)逐步回归分析的核心任务是建立最优回归方程;5)逐步回归分析的主要作用是降维。
主要用途:主要用于因果关系分析、聚类分析、区域规划、综合评价等等。
2 最优回归模型1)概念最优回归模型是指仅包含对因变量有显著影响的自变量的回归方程。
逐步回归分析就是解决如何建立最优回归方程的问题。
2)最优回归模型的含义 最优回归模型的含义有两点: (1)自变量个数自变量个数要尽可能多,因为通过筛选自变量的办法,选取自变量的个数越多,回归平方和越大,剩余平方和越小,则回归分析效果就越好,这也是提高回归模型分析效果的重要条件。
(2)自变量显著性自变量对因变量y 有显著影响,建立最优回归模型的目的主要是用于预测和分析,自然要求自变量个数尽可能少,且对因变量y 有显著影响。
若自变量个数越多,一方面预测计算量大,另一方面因n 固定,所以Q S k n Q→--1增大,即造成剩余标准差增大,故要求自变量个数要适中。
且引入和剔除自变量时都要进行显著性检验,使之达到最优化状态,所以此回归方程又称为优化模型。
3 最优回归模型的选择方法最优回归模型的选择方法是一种经验性发展方法,主要有以下四种:(1)组合优选法组合优选法是指从变量组合而建立的所有回归方程中选取最优着。
经典推荐逐步回归分析法及其应用
经典推荐逐步回归分析法及其应用导读:逐步回归分析是多元回归分析中的一种方法,在经济研究建模中发挥着重要的作用。
文章系统介绍了逐步回归分析,并分析了逐步回归分析在经济研究(建模与预测)中的应用步骤与需要注意的问题。
来源 | 统计与决策作者丨游士兵,严研,武汉大学经济与管理学院原文有删减01引言逐步回归分析是多元回归分析中的一种方法。
回归分析是用于研究多个变量之间相互依赖的关系,而逐步回归分析往往用于建立最优或合适的回归模型,从而更加深入地研究变量之间的依赖关系。
目前,逐步回归分析被广泛应用于各个学科领域,如医学、气象学、人文科学、经济学等。
经济现象纷繁复杂并多变,经济问题往往需要研究一个(或多个)变量(如一国的产出)与其他变量(如资本、劳动力、人口、技术等)相互间的关系,从而揭示经济现象背后的经济规律,用于解决现实中的经济问题,制定经济政策等。
因此,多元回归分析在现代经济学,尤其是其分支学科计量经济学中常常得到应用。
随着统计学与计量经济学软件的开发与应用,经济研究者在经济学的实证分析过程中越来越多的采用逐步回归分析的方法来建立多元回归模型。
因此,研究逐步回归分析及其在经济学研究中的应用具有理论与实践意义。
目前,国内外对于逐步回归分析的研究主要停留在理论叙述,不少学者提出了修正逐步回归法的新方法,如类逐步回归法、基于单元步的逐步回归法、“宜取回归方程”的逐步回归法等。
赵希男(1994)提出并在理论上证明可将逐步回归算法从静态系统拓广到其他系统(动态系统、分布参数等系统)。
传统的逐步回归法通常用于静态系统,即自变量为非随机变量时。
当自变量为分布型变量时,基于传统的逐步回归法,由于统计量的分布非常复杂,基于统计量的算法难以实现。
该文运用泛函分析,按照传统逐步回归法一致思想和相似的步骤,加以拓广,以有效性(剩余相关系数)为标准剔除或是引入变量,从而使得逐步回归法应用范围更广。
张华嘉、舒元(1998)提出单元步的概念来修正传统逐步回归法,并以实例证明这种方法的优势。
《应用回归分析》教学大纲
《应用回归分析》课程教学大纲课程代码: 090541030课程英文名称:Applied Regression Analysis课程总学时:32 讲课:24 实验:8 上机:0适用专业:应用统计学大纲编写(修订)时间:2017.6一、大纲使用说明(一)课程的地位及教学目标回归分析是应用统计学中一个重要的分支,在自然科学、管理科学和社会经济等领域应用十分广泛。
应用回归分析是针对统计学专业开设的一门专业基础课,是学生掌握统计学的基本思想、理论和方法的主要课程,是培养学生熟练应用计算机软件处理统计数据的能力的基础课程。
通过本课程的学习,使学生掌握应用统计的一些基本理论与方法,初步掌握利用回归分析解决实际问题的能力。
(二)知识、能力及技能方面的基本要求1.基本知识:在掌握一元和多元线性回归知识的前提下,对违背回归模型基本假设的情况进行诊断与处理、逐步回归法、多重共线性情况的处理、岭回归估计法、主成分回归与偏最小二乘法、含定性变量的回归模型等。
2.基本理论和方法:结合SPSS软件,对回归分析中各种方法:违背回归模型基本假设情况的诊断与处理、逐步回归法、多重共线性情况的处理、岭回归估计法、主成分回归与偏最小二乘法、含定性变量的回归模型等的适用条件进行比较,正确解释分析结果,进而对变量间关系作出评价,对问题结果进行预测。
3.基本技能: 初步掌握利用回归分析解决实际问题的能力。
(三)实施说明1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力和创新能力。
2.教学手段:在教学中采用多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。
(四)对先修课的要求本课程的教学必须在完成先修课程之后进行。
本课程主要的先修课程为概率论与数理统计,同时掌握SPSS软件的简单使用。
数理统计大作业
数理统计大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII应用数理统计(论文)国家财政收入的逐步回归分析指导教师院系名称学号学生姓名2012年11月18日摘要财政收入是国民经济基础,是实现国家职能的财力保证。
本文采用SPSS统计软件中的逐步回归分析方法,得出影响我国财政收入的显著性变量,建立国家财政收入回归模型,并将所得的模型给予合理的经济解释。
关键字:国家财政收入,逐步回归,SPSS1 引言财政收入是指国家财政参与社会产品分配所取得到的收入,是实现国家职能的财力保证。
影响财政收入的因素有很多,包括工业总产值、农业总产值、建筑业总产值、社会商品零售总额、人口数、受灾面积等等。
在经济模型的建立中,其中有些自变量对问题的研究可能并不重要,有些自变量数据的质量可能很差,有些变量可能和其它变量有很大程度的重叠。
如果用回归模型把这些变量都包含进来不但会使模型计算复杂,而且往往会扩大估计方差,降低模型精度,直接影响到回归方程的应用。
另外,选进太多的自变量又会造成共线性的存在。
因此,本文采用线性回归中的逐步回归方法,利用SPSS多元统计软件得出影响我国财政收入的显著性变量,剔除了不显著的变量,并且克服了变量间的多重共线性,得出了一个较合理的财政回归模型。
2初始模型的建立及数据分析2.1 自变量与因变量的提出本模型是研究1997年至2011年国家财政收入与主要影响因素之间的定量关系。
本文选取财政收入Y(亿元)为因变量,自变量选取如下:第一产业国内生产总值X1(亿元),第二产业国内生产总值X2(亿元,第三产业国内生产总值X3(亿元),社会消费品零售总额X4(亿元),人口数X5(万人),受灾面积X6(万公顷)。
根据《中国统计年鉴》获取1997-2011年共十五年的统计数据,见表1。
表11997-2011年财政收入与部分项目的统计数据财政收入(亿元)第一产业国内生产总值(亿元)第二产业国内生产总值(亿元)第三产业国内生产总值(亿元)社会商品零售总额(亿元)人口总数(万人)受灾面积(万公顷)1997 8651.14 14441.89 37543.00 26988.15 31252.90 123626.00 5342.70 1998 9875.95 14817.63 39004.19 30580.47 33378.10 124761.00 5014.50 1999 11444.08 14770.03 41033.58 33873.44 35647.90 125786.00 4998.00 2000 13395.23 14944.72 45555.88 38713.95 39105.70 126743.00 5468.80 2001 16386.04 15781.27 49512.29 44361.61 43055.40 127627.00 5221.50 2002 18903.64 16537.02 53896.77 49898.90 48135.90 128453.00 4694.60 2003 21715.25 17381.72 62436.31 56004.73 52516.30 129227.00 5450.60 2004 26396.47 21412.73 73904.31 64561.29 59501.00 129988.00 3710.60 2005 31649.29 22420.00 87598.09 74919.28 67176.60 130756.00 3881.80 2006 38760.20 24040.00 103719.54 88554.88 76410.00 131448.00 4109.10 2007 51321.78 28627.00 125831.36 111351.95 89210.00 132129.00 4899.20 2008 61330.35 33702.00 149003.44 131339.99 114830.10 132802.00 3999.00 2009 68518.30 35226.00 157638.78 148038.04 132678.40 133450.00 4721.40 2010 83101.51 40533.60 187383.21 173595.98 156998.40 134091.00 3742.60 2011 103874.43 47486.20 220412.80 204982.50 183918.60 134735.00 3247.10 2.2 做散点图,设定理论模型作数据散点图,并进行线性拟合,观察因变量与自变量之间关系是否有线性特点。
logistic回归 逐步法
logistic回归逐步法摘要:1.引言2.Logistic 回归的概念和原理3.逐步法的概念和原理4.Logistic 回归与逐步法的关系5.Logistic 回归在实际应用中的案例6.结论正文:1.引言Logistic 回归是一种用于分类问题的统计分析方法,其应用广泛,包括了生物学、社会科学、医疗健康等领域。
在解决实际问题时,我们通常需要通过建立模型来分析和预测数据,这就需要选择合适的变量。
而逐步法作为一种逐步筛选变量的方法,可以帮助我们找到影响分类结果的关键变量。
本文将从Logistic 回归和逐步法的概念、原理以及在实际应用中的关系进行探讨。
2.Logistic 回归的概念和原理Logistic 回归是一种用于解决分类问题的线性模型,其基本原理是利用sigmoid 函数将线性模型的输出映射到0 到1 之间,表示为某一类的概率。
Logistic 回归模型主要包括两个部分:一部分是线性部分,另一部分是sigmoid 函数部分。
其数学表达式为:P(Y=1|X=x) = 1 / (1 + e^(-z)),其中,z = β0 + β1x1 + β2x2 +...+ βn*xn。
3.逐步法的概念和原理逐步法是一种逐步筛选变量的方法,其基本思想是在每一步中,通过比较当前模型和去掉一个变量后的模型的预测效果,决定是否保留该变量。
逐步法主要有两种:一种是向前逐步法,也称为加法法;另一种是向后逐步法,也称为减法法。
向前逐步法是从一个没有变量的模型开始,每步加入一个变量,直到不再加入变量为止;向后逐步法则是从一个包含所有变量的模型开始,每步去掉一个变量,直到不再去掉变量为止。
4.Logistic 回归与逐步法的关系在实际应用中,我们通常需要通过建立Logistic 回归模型来分析和预测数据。
而在建立模型时,我们面临的一个重要问题是如何选择变量。
这时,逐步法就派上用场了。
通过逐步法,我们可以筛选出对分类结果影响较大的变量,从而提高模型的预测准确性。
逐步回归分析法及其应用
逐步回归分析法及其应用逐步回归分析法是一种广泛应用于统计学和数据分析领域的统计技术,它被用来探索变量之间的关系,以及预测和解释数据的模式。
逐步回归分析法通过逐步添加变量和移除变量,找到最优的变量组合来解释因变量,同时使模型的复杂性最小化。
本文将介绍逐步回归分析法的基本原理、应用场景、案例分析以及需要注意的事项。
逐步回归分析法的基本原理逐步回归分析法基于最小二乘回归,通过向前逐步添加变量和向后逐步移除变量来建立最优的回归模型。
它通过构造一个评价函数,如AIC (Akaike Information Criterion)或BIC (Bayesian Information Criterion),来评估模型的复杂度和拟合度。
逐步回归分析法的目标是找到一个既能解释因变量又能使模型复杂性最小的最优模型。
应用场景逐步回归分析法适用于多种数据分析和统计学应用场景,例如:因果分析:通过逐步回归分析法,可以找出哪些自变量对因变量有显著影响,以及它们的影响程度。
特征选择:在处理高维数据时,逐步回归分析法可以用来选择最重要的特征,以便构建更有效的模型。
时间序列预测:通过逐步回归分析法,可以建立时间序列预测模型,预测未来的趋势和变化。
案例分析以一个实际的例子来说明逐步回归分析法的应用。
假设我们有一个数据集包含了汽车的各项性能指标(如马力、油耗、车重等)和汽车的销售价格。
我们想知道哪些性能指标最能影响汽车的销售价格。
我们使用逐步回归分析法建立一个价格预测模型。
通过向前逐步添加变量和向后逐步移除变量,我们最终找到了一个最优模型,该模型仅包含两个变量:马力(Horsepower)和车重(Weight)。
这个模型告诉我们,汽车的马力越大、车重越轻,销售价格就越高。
接下来,我们使用残差和斜率进一步分析这个模型。
残差是实际值与模型预测值之间的差异,斜率是因变量对自变量的变化率。
通过观察残差和斜率,我们可以得出以下马力对价格的影响比车重更大,因为马力的斜率大于车重的斜率。
(完整word版)北航数理统计大作业1-线性回归分析
应用数理统计作业一学号:姓名:电话:二〇一四年十二月国内生产总值的多元线性回归模型摘要:本文首先选取了选取我国自1978至2012年间的国内生产总值为因变量,并选取了7个主要影响因素,进一步利用统计软件SPSS对以上数据进行了多元逐步线性回归。
从而找到了能反映国内生产总值与各因素之间关系的“最优”回归方程.然后利用多重线性的诊断找出存在共线性的自变量,剔除缺失值较多的因子.再次进行主成份线性回归分析,找出最优回归方程。
所得结论与我国当前形势相印证。
关键词:多元线性回归,逐步回归法,多重共线性诊断,主成份分析目录0符号说明 (1)1 介绍 (2)2 统计分析步骤 (3)2。
1 数据的采集和整理 (3)2。
2采用多重逐步回归分析 (7)2.3进行共线性诊断 (17)2。
4进行主成分分析确定所需主成份 (24)2。
5进行主成分逐步回归分析 (27)3 结论 (30)参考文献 (31)致谢 (32)0符号说明1 介绍文中主要应用逐步回归的主成份分析方法,对数据进行分析处理,最终得出能够反映各个因素对国内生产总值影响的最“优”模型及线性回归方程.国内生产总值是指在一定时期内(一个季度或一年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标.它不但可反映一个国家的经济表现,还可以反映一国的国力与财富。
2012年1月,国家统计局公布2011年重要经济数据,其中GDP增长9.2%,基本符合预期。
2012年10月18日,统计显示,2012年前三季度国内生产总值353480亿元,同比增长7.7%;其中,一季度增长8.1%,二季度增长7。
6%,三季度增长7.4%,三季度增幅创下2009年二季度以来14个季度新低。
中国的GDP核算历史不长,上世纪90年代之前通常用“社会总产值”来衡量经济发展情况。
上世纪80年代初中国开始研究联合国国民经济核算体系的国内生产总值(GDP)指标。
北航数理统计回归分析大作业
北航数理统计回归分析大作业(总17页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除数理统计(课程大作业1) 逐步回归分析学院:机械工程学院专业:材料加工工程日期:2014年12月7日摘要:本文介绍多元线性回归分析方法以及逐步回归法,然后结合实际,以我国1995-2012年的财政收入为因变量,选取了8个可能的影响因素,选用逐步回归法对各影响因素进行了筛选分析,最终确定了其“最优”回归方程。
关键字:多元线性回归 逐步回归法 财政收入 SPSS1 引言自然界中任何事物都是普遍联系的,客观事物之间往往都存在着某种程度的关联关系。
为了研究变量之间的相关关系,人们常用回归分析的方法,而回归分析是数理统计中一种常用方法。
数理统计作为一种实用有效的工具,广泛应用于国民经济的各个方面,在解决实际问题中发挥了巨大的作用,是一种理论联系实践、指导实践的科学方法。
财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。
财政收入表现为政府部门在一定时期内(一般为一个财政年度)所取得的货币收入。
财政收入是衡量一国政府财力的重要指标,政府在社会经济活动中提供公共物品和服务的范围和数量,在很大程度上决定于财政收入的充裕状况。
本文将以回归分析为方法,运用数理统计工具探求财政收入与各种统计指标之间的关系,总结主要影响因素,并对其作用、前景进行分析和展望。
2 多元线性回归2.1 多元线性回归简介在实际问题中,某一因素的变化往往受到许多因素的影响,多元回归分析的任务就是要找出这些因素之间的某种联系。
由于许多非线性的情形都可以通过变换转化为线性回归来处理,因此,一般的实际问题都是基于多元线性回归问题进行处理的。
对多元线性回归模型简要介绍如下:如果随机变量y 与m )2(≥m 个普通变量m x x x 21,有关,且满足关系式:εββββ++++=m m x x x y 22110 2,0σεε==D E(2.1)其中,2210,,,σββββm 是与m x x x 21,无关的未知参数,ε是不可观测的随机变量,),0(~2N I N σε。
应用回归分析教学大纲共12页word资料
遵义师范学院课程教学大纲应用回归分析教学大纲(试行)课程编号:280020 适用专业:统计学学时数:48 学分数: 2执笔人:黄建文审核人:系别:数学教研室:应用数学教研室编印日期:二〇一五年七月课程名称:应用回归分析课程编码:学分:2总学时:48课堂教学学时:16实践学时:32适用专业:统计学先修课程:高等数学、线性代数、概率论、数理统计一、课程的性质与目标:(一)该课程的性质《应用回归分析》课程是师范院校数学系统计学专业基础课程。
它是在学生掌握了一定的数学专业理论知识的基础上开设的。
本课程是学生掌握统计学的基本思想、理论和方法的主要课程,是培养学生熟练应用计算机软件处理统计数据的能力的基础课程.通过本课程的学习,了解统计知识在相关领域(如社会经济、生物、医学、信息管理、保险金融等)的应用,使学生成为具有综合应用能力的应用型人才。
(二)该课程的教学目标(1)从生活中的需要出发,并根据回归分析的内容和知识结构,把回归分析的一些基本问题分别组成若干专题,在内容上适当延伸和充实,在理论、观点和方法上予以提高。
(2)对各专题的教学,都要着重基本思维方法的培养和基本技能技巧的训练。
(3)结合学生生活实践,利用生活中的案例进行分析,培养学生的辩证唯物主义观点。
二、教学进程安排课外学习时数原则上按课堂教学时数1:1安排。
三、教学内容与要求第一章统计学基础【教学目标】教学重点:几种概率分布,参数估计,假设检验教学难点:参数估计,假设检验【教学内容和要求】分布;t分布;F分布;理解参数估计的方法及评了解常见统计量;掌握2价标准;掌握假设检验的思想和步骤。
【课外阅读资料】1. 周纪芗编著《回归分析》,华东师范大学出版社,2019.2. [美]S.Weisberg著,王静龙等译《应用线性回归》,中国统计出版社,201 9.3. 谢龙汉尚涛编著《SPSS统计分析与数据挖掘》,电子工业出版社,2019.【作业】无第二章回归分析概述【教学目标】教学重点:建立实际问题回归模型的过程教学难点:建立实际问题回归模型的过程【教学内容和要求】本章内容:回归分析的研究内容及建模过程;回归分析的应用及发展历史。
北航数理统计大作业任务(逐步回归)
应用数理统计第一次大作业学号:姓名:班级:B11班2015年12月民航客运量的多元线性回归分析摘要:本文为建立以民航客运量为因变量的多元线性回归模型,选取了1996年至2013年的统计数据,包含国民生产总值,民航航线里程,过夜入境旅游人数,城镇居民可支配收入等因素,利用统计软件SPSS对各因素进行了筛选分析,采用逐步回归法得到最优多元线性回归模型,并对模型的回归显著性、拟合度以及随机误差的正态性进行了检验,并采用2014年的数据进行检验,得到的结果达到预期,证明该模型建立是较为成功的。
关键词:多元线性回归,逐步回归法,民航客运量0.符号说明变量符号国民生产总值X1铁路客运量X2民航航线里程X3入境过夜旅游人数X4城镇居民人均可支配收入X51.引言随着社会的进步,人民生活水平的提高,如何获得更快捷方便的交通成为人们日益关注的问题。
因为航空的安全性,快速且价格水平越来越倾向大众,越来越多的人们选择航空这种交通方式。
近年来,我国的航空客运量已经进入世界前列,为掌握航空客运的动态,合理安排班机数量。
科学地对我国民航客运量的影响因素的分析,并得出其回归方程,进而能够估计航空客运量是非常有必要的。
本文收集整理了与我国航空客运量相关的历年数据,运用SPSS软件对数据进行分析,研究1996年起至2013年我国民航客运量y(万人)与国民生产总值X1(亿元)、铁路客运量X2(万人)、民航航线里程X3(万公里)、入境过夜旅游人数X4(万人)、城镇居民人均可支配收入X5(元)的关系。
采用逐步回归法建立线性模型,选出较优的线性回归模型。
2.数据的统计与分析本文在进行统计时,查阅《中国统计摘要》,《中国统计年鉴2014》以及中国知网数据查询中的数据,收集了1996年至2013年各个自变量因素的数据,分析它们之间的联系。
整理如表1所示。
表1:2.1模型的建立以民航客运量y为因变量,以上5种影响因素为自变量X i,构建回归方程:y=β0+βi X i+ε其中β0为常数项,ε为误差项。
《数理统计》教案——回归分析
(
)
(
)
(
)
《数理统计》 数理统计》授课教案——李正耀
ˆ分别是a, b的无偏估计,从而E (Y ˆ ) = a + bx。 ˆ, b 性质3:a
−1 ˆ 证明:因为b = lxy /lxx = lxx ∑ ( xi − x )Yi , i
ˆ) = l −1 ( x − x )E (Y ) = l −1 ( x − x )(a + bx ) E (b xx ∑ i i xx ∑ i i
(6) Y的观察值的点预测和区间预测。
(1)回归系数a,b的最小二乘估计(LSE)
Q ( a , b ) = ∑ ( yi − a − bxi )
ˆ, ˆ, b 求估计a
i =1 n 2
ˆ ˆ + bx y=a
ˆ = min Q ( a , b )。 ˆ, b 使Q a
a ,b
n ∂Q = − 2 ∑ ( yi − a − bxi ) = 0, ∂a i =1
将每对观察值( xi , yi )在直角坐标系中描出它相应的点 (称为散点图),可以粗略看出µ ( x)的形式。
假设µ ( x)为线性函数:µ ( x) = a + bx, 此时估计µ ( x)的 问题称为求一元线性回归问题。
Y = a + bx + ε ε 是随机误差,不可控制, 基本假设: 2 E ( ) = 0, D ( ) = , ε ε σ 2 σ a , b ( 回归系数) , 未知.
《数理统计》 数理统计》授课教案——李正耀
正规方程系数行列式
n
∑x
i =1 n i =1
n
i
∑ xi
i =1
数理统计回归分析大作业
《应用数理统计》第一次大作业回归分析姓名:学号:班级:2014-12-20国家财政收入的多元线性回归模型摘 要:本文以多元线性回归为出发点,选取我国自1990至2009年连续20年的财政收入为因变量,初步选取了7个影响因素,并利用统计软件PASW Statistics 17.0对各影响因素进行了筛选,最终确定了能反映财政收入与各因素之间关系的回归方程:43806.0044.0357.817y x x ++=从而得出了结论,最后我们用2010年的数据进行了验证,得出的结果(86482.00)在误差范围内,表明这个模型可以正确反映影响财政收入的各因素的情况。
关键词:多元线性回归,逐步回归法,财政收入,SPSS0符号说明变 量 符号 财政收入 Y 工 业 X 1 农 业 X 2 进出口总额 X 3 建 筑 业 X 4 人 口 X 5 商品销售额 X 6 国内生产总值X 71 引言定义:所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。
回归分析法预测是利用回归分析方法,根据一个或一组自变量的变动情况预测与其有相关关系的某随机变量的未来值。
进行回归分析需要建立描述变量间相关关系的回归方程。
根据自变量的个数,可以是一元回归,也可以是多元回归。
根据所研究问题的性质,可以是线性回归,也可以是非线性回归。
本文应用逐步回归的方法进行分析。
中国作为世界第一大发展中国家,要实现中华民族的伟大复兴,必须把发展放在第一位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用数理统计大作业1——逐步回归法分析终应用数理统计多元线性回归分析(第一次作业)学院:机械工程及自动化学院姓名:学号:2014年12月逐步回归法在AMHS物流仿真结果中的应用摘要:本文针对自动化物料搬运系统 (Automatic Material Handling System,AMHS)的仿真结果,根据逐步回归法,使用软件IBM SPSS Statistics 20,对仿真数据进行分析处理,得到多元线性回归方程,建立了工件年产量箱数与EMS 数量、周转箱交换周期以及AGC物料交换服务水平之间的数学模型,并对影响年产量箱数的显著性因素进行了分析,介绍了基本假设检验的情况。
关键词:逐步回归;残差;SPSS;AMHS;物流仿真目录1、引言 (1)2、逐步回归法原理 (4)3、模型建立 (6)3.1确定自变量和因变量 (6)3.2分析数据准备 (6)3.3逐步回归分析 (7)4、结果输出及分析 (9)4.1输入/移去的变量 (9)4.2模型汇总 (10)4.3方差分析 (10)4.4回归系数 (11)4.5已排除的变量 (12)4.6残差统计量 (13)4.7残差分布直方图和观测量累计概率P-P图 (14)5、异常情况说明 (15)5.1异方差检验 (15)5.2残差的独立性检验 (17)5.3多重共线性检验 (17)6、结论 (18)参考文献 (20)1、引言回归被用于研究可以测量的变量之间的关系,线性回归则被用于研究一类特殊的关系,即可用直线或多维的直线描述的关系。
这一技术被用于几乎所有的研究领域,包括社会科学、物理、生物、科技、经济和人文科学。
逐步回归是在剔除自变量间相互作用、相互影响的前提下,计算各个自变量x与因变量y之间的相关性,并在此基础上建立对因变量y有最大影响的变量子集的回归方程。
SPSS(Statistical Package for the Social Science社会科学统计软件包)是世界著名的统计软件之一,目前SPSS公司已将它的英文名称更改为Statistical Product and Service Solution,意为“统计产品与服务解决方案”。
SPSS软件不仅具有包括数据管理、统计分析、图表分析、输出管理等在内的基本统计功能,而且用它处理正交试验设计中的数据程序简单,分析结果明了。
基于以上优点,SPSS已经广泛应用于自然科学、社会科学中,其中涉及的领域包括工程技术、应用数学、经济学、商业、金融等等。
本文研究内容主要来源于“庆安集团基于物联网技术的航空柔性精益制造系统”,在庆安集团新建的320厂房建立自动化物料搬运系统(AMHS),使用生产仿真软件EM-Plant对该系统建模并仿真,设计实验因子及各水平如表1-1,则共有3*4*6=72组实验结果,如表所示。
为方便描述,将各因子定义为:X1表示AGC物料交换服务水平,X2表示周转箱交换周期,X3表示EMS数量,Y表示因变量年产量箱数。
本文目的就是建立年产量箱数与AGC物料交换服务水平、周转箱交换周期和EMS数量之间的关系。
表1-1 三因子多水平实验方案表1-2 实验结果2、逐步回归法原理回归分析是研究因变量和自变量之间变动比例关系的一种方法,最终结果一般是建立某种经验性的回归方程。
回归分析因变量的多少有一元回归和多元回归之分,本文中的回归模型因有3个因变量故为多元回归。
在实际研究中,影响因变量Y的因素有很多,而这些因素之间可能存在多重共线性,特别是在各个解释变量之间有高度的相互依赖性,如温度和雨量、雨量与雨日之间的关系密切,这就给回归系数的估计带来不合理的解释。
为了得到一个可靠的回归模型,需要一种方法能有效地从众多影响Y的因素中挑选出对Y贡献大的变量,在它们和Y的观测数据基础上建立“最优”的回归方程。
逐步回归分析法就是一种自动地从大量可供选择的变量中选择那些对建立回归方程比较重要的变量的方法,它是在多元线性回归基础上派生出来的一种算法技巧。
逐步回归分析法在筛选变量方面较为理想,故目前多采用该方法来组建回归模型。
该方法也是从一个自变量开始,视自变量对Y作用的显著程度,从大到小地依次逐个引入回归方程。
但当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉。
引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步。
对于每一步都要进行F值检验,以确保每次引入新的显著性变量前回归方程中只包含对Y作用显著的变量。
这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。
本文运用IBM SPSS Statistics 20软件的有关功能模块根据上述原理精选出一些配合较好和方差贡献大的自变量,组建回归方程。
当F引 =F剔=0时,则所有的变量全部被引入,逐步回归分析结果就和一般的多元线性回归分析结果相同。
当F取值比较大时,理论和实践都表明,在相同的F水平上,用逐步回归筛选出的显著变量个数往往比先引入全部变量后再剔除的办法要少一些。
为了从挑选因子中筛选出尽可能多的因子建立回归预测模型,本系统可以自己给出F 临界值,计算机默认的F引为0.05,F剔为0.1,如果入选的自变量因子数目不多,可通过人为降低F临界值的水平而筛选出更多的因子。
如此时入选的因子太多,可人为提高F临界值的水平而筛选出有代表性因子来组建回归预测模型。
如最后建立的回归预测模型的复相关系数不大,回归模型的拟合精度不太高,可根据这些入选因子来组建多元非线性回归预测模型。
3、模型建立3.1 确定自变量和因变量根据表1-1可知,本文目标是确定年产量箱数与AGC物料交换服务水平、周转箱交换周期和EMS数量之间的关系,其中AGC物料交换服务水平分为水平1、水平2和水平3,分别表示自动交换、人工交换(积极)和人工交换(消极),周转箱交换周期分为2、4、6和8小时,EMS数量有2、4、6、8、10和12辆。
3.2 分析数据准备打开SPSS软件,在变量视图中定义变量:自变量X1、X2和X3分别表示AGC物料交换服务水平、周转箱交换周期和EMS数量,因变量Y表示年产量箱数,如图3-1所示。
图3-1 定义变量将表1-2中的仿真结果输入到SPSS的数据视图中,如图3-2所示。
图3-2 仿真数据输入3.3 逐步回归分析单击SPSS工具栏中的分析,选择回归→线性,如图3-3所示,打开如图3-4所示的线性回归对话框。
图3-3 线性回归分析图3-4 线性回归对话框在该对话框中选择相应的自变量和因变量,方法中选择逐步,在绘制中选中直方图、正态概率图和产生所有部分图。
图3-5 绘制单击继续后回到线性回归对话框,再单击确定进行回归计算。
4、结果输出及分析逐步回归分析得到的结果为6张表和2幅图,分别为变量引入/剔除方式信息表、模型汇总表、方差分析表、模型回归系数表、被剔除的变量信息表、残差统计表、残差分布直方图和观测量累计概率P-P图。
4.1 输入/移去的变量表4-1 输入/移去的变量a模型输入的变量移去的变量方法1 周转箱交换周期.步进(准则: F-to-enter 的概率 <= .050,F-to-remove 的概率 >= .100)。
2 EMS数量. 步进(准则: F-to-enter 的概率 <= .050,F-to-remove 的概率 >= .100)。
3 AGC服务水平.步进(准则: F-to-enter 的概率 <= .050,F-to-remove 的概率 >= .100)。
a.因变量:年产量箱数表4-1显示变量的引入和剔除,以及引入或剔除的标准。
系统在进行逐步回归过程中产生了3个模型,模型1是按照F检验的标准概率值,先将与Y (年产量箱数)最密切的自变量X2(周转箱交换周期)引入模型,建立Y与X2之间的一元线性回归模型,然后再把X3(EMS数量)引入模型,建立了Y 与X2,X3之间的二元线性模型,最后把X1(AGC服务水平)引入模型,建立了它们与Y之间的三元线性模型。
4.2 模型汇总表4-2 模型汇总d模型R R 方调整 R 方标准估计的误差Durbin-Watson1 .632a .399 .390 11757.832152 .727b .529 .515 10486.436253 .776c .602 .584 9710.99811 .845a. 预测变量: (常量),周转箱交换周期。
b. 预测变量: (常量),周转箱交换周期, EMS数量。
c. 预测变量: (常量),周转箱交换周期,EMS数量, AGC服务水平。
d. 因变量: 年产量箱数表4-2中显示了各模型的拟合情况,回归模型概述表中给出了各模型的相关系数R,用来对生成的模型进行评估,R值越接近于1说明估计的模型对观测值的拟合越好。
从表中可以看出,从模型1到模型3,随着预测变量的增多,相关系数(0.390<0.515<0.584)不断增大,说明模型3是比较好的拟合模型。
4.3 方差分析表4-3显示各模型的方差分析结果,对模型1:F等于46.449,显著性概率Sig. <0.001;对模型2:F等于38.699,显著性概率Sig. <0.001;对模型3:F等于34.237,显著性概率Sig. <0.001,可以认为Y(年产量箱数)与X2(周转箱交换周期)、X3(EMS数量)和X1(AGC物料服务水平)存在高度显著的线性关系。
4.4 回归系数表4-4 系数aa. 因变量: 年产量箱数表4-4中显示各模型的偏回归系数,标准化偏回归系数及其对应的检验值。
根据表中数据非标准化系数B的数值可知,逐步回归过程中先后建立的三个模型分别是:模型1:Y = 54823.917-4223.408X2模型2:Y = 43783.242-4223.408X2+1577.239X3模型3:Y = 53678.408-4223.408X2+1577.239X3-4947.583X1t值表示对回归系数的显著性检验,其概率值Sig小于0.05时才可以认为有意义,即自变量对因变量有显著性影响。
在模型中,系数均小于0.05,可认为回归是显著的。
模型 3中各因子95%的知置信区间为:常亮——[44486.618,62870.198],周转箱交换周期——[-5244.718,-3202.098],EMS数量——[908.635,2245.844],AGC服务水平——[-7744.556,-2150.611]。
4.5 已排除的变量表4-5中显示逐步回归过程所建立的三个模型中剔除掉的变量信息,包括各变量的Beta值、t统计量值、双尾显著性概率、偏相关系数以及多重共线性统计(Collinearity Statistics)的容差。