MATLAB-空间计量模型详细步骤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I. excel 与 MATLAB 链接:
Excel :
选项一一加载项一一COM 加载项一一转到一一没有勾选项
2. MATLAB^装目录中寻找 toolbox —— exlink ——点击,启
用宏
E:\MATLAB\toolbox\exli nk
▼惰EX 口朗 ^SS.
■* 匚omterts
2013/12/28 2:14 MATLAB Cede 1 KB SKellink 2013/10/5 33:48 Microsoft Excel … 108 KB 0 exdlink2(X)3 2013/10/9 23:40 Microsoft Excel “ 305 KB 囲 ExliSamp 2009/11/5 19:58 Microsoft Excel 72 KB "cetfunctionhelp
2010/12/4 2:17 MATLAB 匚ode 2 KB 永 getfunctionlkt
2010/12/4 2rl7 MATLAB Cede 3 KB *' cetfunrti3n5igna :ure 2OL2/5/4 2:59 MATLAB Cede 4 KB 圉 info 2007/7/24 0:22
XML 文桔
1 KB
然后,ExceI 中就出现MATLAB 工具
工 十匚
口 ffi
插入
膺TLAB 工真
(注意Excel 中的数据:)
第荐式
l~TZL_
COM 如载项
空
* * rm ■ ■ r a fni ■ ■ ■ i ■ ・ ■ ・ ■ ■■ ■■ ■ ■
H ■
n ■■ ■ ■■ ■■ i
zy 4U 4 UUfJJJ U U.1UU 如 4 swobJ1014 11^14.&
2941 4 3402420 1801810.158519 4 775762579.2452.1
2942 4 &839810.118179-0.0326 4.8S48996354.14965.1
2943 4.3966830.3505260.17S408 4.8564635162.23950.2
2944 4 5B49670120077-0 032645&65B&1062 11455 4
2945 4 56&J290 2295330 240806 4 7582615017 3^853 3
2946 4 7077270 1002670.131391 4 711692433 3360 5
女量数扌臂权重数据
曲怕wl I Sheet3
3. 启动matlab
(1) 点击start MATLAB
(2) senddata to matlab ,并对变量矩阵变量进行命名(注意:选取变量为数值,不包括
各变量)
(data表中数据进行命名)
(空间权重进行命名)
(3) 导入MATLAB中的两个矩阵变量就可以看见El
冒血■ ■El J JM J-.
H H!■=.™
U ft
2 ] 1 I 4 54^2]
IfetJlJ
出跑科
ME
~a盯泗汕WM J:2?]l £
4g] 4 12511■i] i Tffi!⑷畑7
j■歡妙41W3■Q址%1W嘲w e Q§5 Mil]?-i讪4-仍别片
a1 5 11;叩■1讪■4畑丄即囚If SIM.
0?冷旳硼 1 714:占*1伽魁1
q i■ S2.r^i-fl 1614J■U "的 1 WW珈布
Q1■d w M沖1;iJlM
IJL li-i-u iubi}4- uBSJt4411 '0n1婶“■勾吨氛奶i hij t-!]12-0Z2H2-a zien4-27Tm Sfll F
fl U*也盛-fl乐朗iMi r
!]144H1M]H]-a TTIM:+ 231M^1MI 4
ij ia a 4™』ZZMJ1191N3121MM ?
甲it 4 rwm-Q4VH7-a tail 4 0CI3l2f MW glM
Q v■is-wiai■fl f M■fl £3<fl1J- Tirw m ?
g ii 1 M,T42-dWIQI-a ?H3i4- iPMa r汕
g u■ <mi-azMi 1 dOEZd,"3HS 1
Q H4刪叩4GM[F吓14晒!1 T-
a Zl<773W24CM«-a QW Z3U2
d ll 4 ^tVll 4 HU J3FWD<•聊f
!]Z]■4WHM2-a r7«]-a EJTH-i raiai3Mi f
JI .WAJT JI d :用加i #.
4 —,Til T B
1 d p
0Ii i• a1
in H
H
d Q
0 a 1
i
9
4l»
a
4
t
4
4 4 4 44
幡亠\
Ex j
4. 将elhorst 和jplv7两个程序文件夹复制到 MATLAB 安装目 录的toolbox 文件夹
el horst
2017/1/14 19;0S
文脱
a
计了
2017/1/15 0:46
5•设置路径:
r
4得丈比夷;动溼瞬
€
nSOjcg 如显 46x46 double
g* J jgg
鈿•新建文件夹归▼ 17酣* 鴻4愣改H甲
IS轴jpl*? 2 0L 7/1^ 16 12^19
品迅雪下叢.local2017/lylJ 9 J4丈
9 he?P17/1/1^ 甘盃丈件来
■-常¥2D17/1/1J1 9 23
rnaftlab2017/1/14 9^47
M^tlab prngram?{MI3-?0142017/1/15 2^9□* VWI inatlabx)2017/1/14 923文料央
rnbc J0L7/1H4 9:25
二C)
,m pc2017/1/14 9^24
1. *.nnft 2 017,114 9J5丈輯夷
L - m(E:)B. opc2O17?l/14 9J5文14夫
...孙旧L octi rm2OL7/U14 925
-'rn玉■彌口八
文ft末:jplvl
I 站文倏—I 飯當
6.输入程序,得出结果
»1=30;
N=40;
W=no rjiiv (Wl):
y=A(:j 3);
[4, 6]);
xcons-t ant=arLe E 1):
心[nobs E]=siz&(x);
T=30;
N=46;
W=n orm(W1);
y=A(:,3);
x=A(:,[4,6]);
xcon sta nt=on es(N*T,1);
[n obs K]=size(x);
results=ols(y,[xc on sta nt x]);
vn ames=strvcat(logcit',' in tercept','logp','logy');
prt_reg(results,v names,1);
sige=results.sige*(( nobs-K)/nobs);
loglikols二-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid % The (robust)LM tests developed by Elhorst
LMsarsem_pa nel(results,W,y,[xco nsta nt x]); % (Robust) LM
tests
解释
每一行分别表示:该面板数据的时期数为30 (T=30 ), 该面板数据有30个地区(N=30 ), 将空间权重矩阵标准化(W=normw(w1)),将名为A (以矩阵形式出现在MATLABA中)的变量的第3列数据定义为被解释变量
y,
将名为A的变量的第4、5、6列数据定义为解释变量矩阵X,
定义一个有N*T行,1列的全1矩阵,该矩阵名为:xconstant,(ones即为全1矩阵)说明解释变量矩阵x的大小:有nobs行,K列。
(size为描述矩阵的大小)。
附录:
静态面板空间计量经济学
一、O L S静态面板编程
1、普通面板编程
T=30;
N=46;
W=n ormw(W1);
y=A(:,3);
x=A(:,[4,6]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
results=ols(y,[xconstant x]);
vnames=strvcat( 'logcit' ,'intercept' ,'logp' ,'logy' );
prt_reg(results,vnames,1);
sige=results.sige*((nobs-K)/nobs); loglikols=-nobs/2*log(2*pi*sige)-
1/(2*sige)*results.resid'*results.resid % The (robust)LM tests developed by Elhorst LMsarsem_panel(results,W,y,[xconstant x]); % (Robust) LM tests
2、空间固定OLS (spatial-fixed effects )
T=30;
N=46;
W=normw(W1);
y=A(:,3);
x=A(:,[4,6]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
model=1;
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model ); results=ols(ywith,xwith);
vnames=strvcat('logcit','logp','logy'); % should be changed if x is changed
prt_reg(results,vnames);
sfe=meanny-meannx*results.beta; % including the constant term yme = y - mean(y);
et=ones(T,1);
error=y-kron(et,sfe)-x*results.beta;
rsqr1 = error'*error;
rsqr2 = yme'*yme;
FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effects
sige=results.sige*((nobs-K)/nobs);
logliksfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
3、时期固定OLS( time-period fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,3);
x=A(:,[4,6]);
xconstant=ones(N*T,1);
[nobs K]=size(x);
model=2;
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model ); results=ols(ywith,xwith);
vnames=strvcat('logcit','logp','logy'); % should be changed if x is
changed
prt_reg(results,vnames);
tfe=meanty-meantx*results.beta; % including the constant term yme = y - mean(y);
en=ones(N,1);
error=y-kron(tfe,en)-x*results.beta;
rsqr1 = error'*error;
rsqr2 = yme'*yme;
FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effects
sige=results.sige*((nobs-K)/nobs);
logliktfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
4、空间与时间双固定模型
T=30;
N=46;
W=n ormw(W1);
y=A(:,3);
x=A(:,[4,6]);
xcon sta nt=on es(N*T,1);
[n obs K]=size(x);
model=3;
[ywith,xwith,mea nn y,mea nn x,mea nty,mea ntx]二demea
n( y,x,N,T,model
);
results=ols(ywith,xwith);
vnames二strvcat('logcit','logp','logy'); % should be changed if x is changed
prt_reg(results,v names)
en=on es(N,1);
et=on es(T,1);
in tercept=mea n(y)-mea n( x)*results.beta;
sfe=mea nn y-mea nn x*results.beta-kro n(en ,i ntercept);
tfe=mea nty-mea ntx*results.beta-kro n(et,i ntercept);
yme = y - mean( y);
en t=o nes(N*T,1);
error=y-kro n(tfe,e n)-kro n( et,sfe)-x*results.beta-kro n(e nt,i ntercept); rsqrl = error'*error;
rsqr2 = yme'*yme;
FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effects
sige=results.sige*((nobs-K)/nobs);
loglikstfe=-nobs/2*log(2*pi*sige)- 1/(2*sige)*results.resid'*results.resid LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
、静态面板SAR 模型
1、无固定效应( No fixed effects )
T=30;
N=46;
W=normw(W1);
y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N;
wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0;
info.model=0;
info.fe=0;
results=sar_panel_FE(y,[xconstant x],W,T,info);
vnames=strvcat( 'logcit' , 'intercept' , 'logp' , 'logy' ); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=0; direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sar(results,vnames,W);
2、空间固定效应( Spatial fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; info.model=1;
info.fe=0;
results=sar_panel_FE(y,x,W,T,info); vnames=strvcat( 'logcit' , 'logp' , 'logy' ); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
3、时点固定效应( Time period fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end
xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; % required for exact results
info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
results=sar_panel_FE(y,x,W,T,info); vnames=strvcat( 'logcit' , 'logp' , 'logy' ); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
4、双固定效应( Spatial and time period fixed effects ) T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; % required for exact results
info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
results=sar_panel_FE(y,x,W,T,info); vnames=strvcat( 'logcit' , 'logp' , 'logy' ); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
三、静态面板SDM 模型
1、无固定效应( No fixed effects )
T=30;
N=46;
W=normw(W1);
y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N;
wx(t1:t2,:)=W*x(t1:t2,:);
end
xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0;
info.model=0;
info.fe=0; results=sar_panel_FE(y,[xconstant x wx],W,T,info);
vnames=strvcat( 'logcit' , 'intercept' , 'logp' , 'logy' , 'W*logp' prt_spnew(results,vnames,1)
, 'W*logy' ); % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W);
2、空间固定效应( Spatial fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; % required for exact results
info.model=1;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
results=sar_panel_FE(y,[x wx],W,T,info);
vnames=strvcat( 'logcit' , 'logp' , 'logy' , 'W*logp' , 'W*logy' ); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W);
3、时点固定效应( Time period fixed effects )
T=30;
N=46;
W=norm(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; % required for exact results
info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
% New routines to calculate effects estimates results=sar_panel_FE(y,[x wx],W,T,info); vnames=strvcat( 'logcit' , 'logp' , 'logy' , 'W*logp' , % Print out coefficient estimates prt_spnew(results,vnames,1) % Print out effects estimates
spat_model=1; direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W)
4、双固定效应( Spatial and time period fixed effects
T=30; N=46;
W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.bc=0; info.lflag=0; % required for exact results
info.model=3; info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
results=sar_panel_FE(y,[x wx],W,T,info); vnames=strvcat( 'logcit' , 'logp' , 'logy' , 'W*logp' , prt_spnew(results,vnames,1) % Print out effects estimates
spat_model=1; direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W)
wald test spatial lag
% Wald test for spatial Durbin model against spatial lag model btemp=results.parm; varcov=results.cov; Rafg=zeros(K,2*K+2); for k=1:K Rafg(k,K+k)=1; % R(1,3)=0 and R(2,4)=0;
end Wald_spatial_lag=(Rafg*btemp)'*inv(Rafg*varcov*Rafg')*Rafg*btemp prob_spatial_lag=1-chis_cdf
(Wald_spatial_lag, K)
'W*logy' );
'W*logy' );
wald test spatial error
% Wald test spatial Durbin model against spatial error model R=zeros(K,1);
for k=1:K
R(k)=btemp(2*K+1)*btemp(k)+btemp(K+k); % k changed in 1,
7/12/2010
% R(1)=btemp(5)*btemp(1)+btemp(3);
% R(2)=btemp(5)*btemp(2)+btemp(4);
end Rafg=zeros(K,2*K+2);
for k=1:K
Rafg(k,k) =btemp(2*K+1); % k changed in 1, 7/12/2010
Rafg(k,K+k) =1;
Rafg(k,2*K+1)=btemp(k);
% Rafg(1,1)=btemp(5);Rafg(1,3)=1;Rafg(1,5)=btemp(1);
% Rafg(2,2)=btemp(5);Rafg(2,4)=1;Rafg(2,5)=btemp(2); end
Wald_spatial_error=R'*inv(Rafg*varcov*Rafg')*R prob_spatial_error=1-chis_cdf (Wald_spatial_error,K)
LR test spatial lag
resultssar=sar_panel_FE(y,x,W,T,info);
LR_spatial_lag=-2*(resultssar.lik-results.lik) prob_spatial_lag=1-chis_cdf (LR_spatial_lag,K)
LR test spatial error
resultssem=sem_panel_FE(y,x,W,T,info);
LR_spatial_error=-2*(resultssem.lik-results.lik) prob_spatial_error=1-chis_cdf (LR_spatial_error,K) 5、空间随机效应与时点固定效应模型
T=30;
N=46;
W=normw(W1);
y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N;
wx(t1:t2,:)=W*x(t1:t2,:);
end
xconstant=ones(N*T,1);
[nobs K]=size(x);
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,[x wx],N,T,2); %
2=time dummies
info.model=1;
results=sar_panel_RE(ywith,xwith,W,T,info);
prt_spnew(results,vnames,1)
spat_model=1; direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sdm(results,vnames,W)
wald test spatial lag
btemp=results.parm(1:2*K+2); varcov=results.cov(1:2*K+2,1:2*K+2);
Rafg=zeros(K,2*K+2);
for k=1:K
Rafg(k,K+k)=1; % R(1,3)=0 and R(2,4)=0; end
Wald_spatial_lag=(Rafg*btemp)'*inv(Rafg*varcov*Rafg')*Rafg*btemp prob_spatial_lag= 1-chis_cdf (Wald_spatial_lag, K)
wald test spatial error
R=zeros(K,1);
for k=1:K
R(k)=btemp(2*K+1)*btemp(k)+btemp(K+k);
% k changed in 1,
7/12/2010
% R(1)=btemp(5)*btemp(1)+btemp(3);
% R(2)=btemp(5)*btemp(2)+btemp(4); end
Rafg=zeros(K,2*K+2);
for k=1:K
Rafg(k,k) =btemp(2*K+1); % k changed in 1, 7/12/2010
Rafg(k,K+k) =1;
Rafg(k,2*K+1)=btemp(k);
% Rafg(1,1)=btemp(5);Rafg(1,3)=1;Rafg(1,5)=btemp(1);
% Rafg(2,2)=btemp(5);Rafg(2,4)=1;Rafg(2,5)=btemp(2); end
Wald_spatial_error=R'*inv(Rafg*varcov*Rafg')*R prob_spatial_error= 1-chis_cdf (Wald_spatial_error,K)
LR test spatial lag
resultssar=sar_panel_RE(ywith,xwith(:,1:K),W,T,info);
LR_spatial_lag=-2*(resultssar.lik-results.lik)
prob_spatial_lag=1-chis_cdf (LR_spatial_lag,K)
LR test spatial error
resultssem=sem_panel_RE(ywith,xwith(:,1:K),W,T,info);
LR_spatial_error=-2*(resultssem.lik-results.lik) prob_spatial_error=1-chis_cdf (LR_spatial_error,K)
四、静态面板SEM 模型
1、无固定效应( No fixed effects )
T=30;
N=46;
W=normw(W1);
y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N;
wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0;
info.model=0;
info.fe=0; results=sem_panel_FE(y,[xconstant x],W,T,info);
vnames=strvcat( 'logcit' , 'intercept' , 'logp' , 'logy' ); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=0; direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
2、空间固定效应( Spatial fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x); info.lflag=0;
info.model=1;
info.fe=0; results=sem_panel_FE(y,x,W,T,info);
vnames=strvcat( 'logcit' , 'logp' , 'logy' ); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=0; direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
3、时点固定效应( Time period fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; % required for exact results
info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
results=sem_panel_FE(y,x,W,T,info); vnames=strvcat( 'logcit' , 'logp' , 'logy' ); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
4、双固定效应( Spatial and time period fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end
xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; % required for exact results
info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
results=sem_panel_FE(y,x,W,T,info); vnames=strvcat( 'logcit' , 'logp' , 'logy' ); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
五、静态面板SDEM 模型
1、无固定效应( No fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x); info.lflag=0;
info.model=0;
info.fe=0; results=sem_panel_FE(y,[xconstant x wx],W,T,info);
vnames=strvcat( 'logcit' , 'intercept' , 'logp' , 'logy' , 'W*logp' prt_spnew(results,vnames,1)
, 'W*logy' ); % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W);
2、空间固定效应( Spatial fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; % required for exact results
info.model=1;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
results=sem_panel_FE(y,[x wx],W,T,info);
vnames=strvcat( 'logcit' , 'logp' , 'logy' , 'W*logp' , 'W*logy' ); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W);
3、时点固定效应( Time period fixed effects )
T=30;
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.lflag=0; % required for exact results
info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
% New routines to calculate effects estimates results=sem_panel_FE(y,[x wx],W,T,info);
vnames=strvcat( 'logcit' , 'logp' , 'logy' , 'W*logp' , % Print out coefficient estimates
prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=1; direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W)
4、双固定效应( Spatial and time period fixed effects T=30;
'W*logy' );
N=46;
W=normw(W1); y=A(:,[3]);
x=A(:,[4,6]);
for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);
end xconstant=ones(N*T,1);
[nobs K]=size(x);
info.bc=0;
info.lflag=0; % required for exact results
info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1
to turn on
results=sem_panel_FE(y,[x wx],W,T,info);
vnames=strvcat( 'logcit' , 'logp' , 'logy' , 'W*logp' ,
prt_spnew(results,vnames,1)
% Print out effects estimates
spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sdm(results,vnames,W)
'W*logy' );。