六枝特区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六枝特区第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数
,函数
,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )
A .
B .
C .
D .
2. 已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )
A .﹣2
B .5
C .6
D .7
3. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )
A .0
B .1
C .2
D .3 4. 已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为
2
π
,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2
π
D .23π
5. 设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}
B .{﹣1,4}
C .{﹣1,2}
D .{2,4}
6. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )
A .112
B .114
C .116
D .120
7.定义运算,例如.若已知,则
=()
A.B.C.D.
8.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()
A.B.C.D.
9.已知两点M(1,),N(﹣4,﹣),给出下列曲线方程:
①4x+2y﹣1=0;
②x2+y2=3;
③+y2=1;
④﹣y2=1.
在曲线上存在点P满足|MP|=|NP|的所有曲线方程是()
A.①③ B.②④ C.①②③D.②③④
10.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有()
A.34种B.35种C.120种D.140种
11.从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为()
A.B.C.D.
12.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是()
A.α∥β,l⊂α,n⊂β⇒l∥n B.α∥β,l⊂α⇒l⊥β
C.l⊥n,m⊥n⇒l∥m D.l⊥α,l∥β⇒α⊥β
二、填空题
13.对于|q|<1(q为公比)的无穷等比数列{a n}(即项数是无穷项),我们定义S n(其中S n是数列{a n}
的前n项的和)为它的各项的和,记为S,即S=S n=,则循环小数0.的分数形式是.
14.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0
≤x ≤1)的图象与x 轴围成的图形的面积为 .
15.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .
16.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .
17.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564
的线性回归方程为
附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.
18.【泰州中学2018届高三10月月考】设二次函数()2
f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',
对任意x R ∈,不等式()()f x f x ≥'恒成立,则2
22
b a
c +的最大值为__________.
三、解答题
19.设函数f (x )=ae x (x+1)(其中e=2.71828…),g (x )=x 2+bx+2,已知它们在x=0处有相同的切线. (Ⅰ)求函数f (x ),g (x )的解析式;
(Ⅱ)求函数f (x )在[t ,t+1](t >﹣3)上的最小值;
(Ⅲ)若对∀x ≥﹣2,kf (x )≥g (x )恒成立,求实数k 的取值范围.
20.(本小题满分10分)求经过点()1,2P 的直线,且使()()2,3,0,5A B -到它的距离相等的直线 方程.
21.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明;
(2)已知函数g (x )=log ,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.
22.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).
(Ⅰ)求矩阵M 的逆矩阵M ﹣1

(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.
23.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)
(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.
24.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯
(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.
(3)为了研究心肺疾病是否与性别有关,请计算出统计量2
K ,判断心肺疾病与性别是否有关?
(参考公式:)
)()()(()(2
d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)
六枝特区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:∵g(x)=﹣f(2﹣x),
∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),
由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,
设h(x)=f(x)+f(2﹣x),
若x≤0,则﹣x≥0,2﹣x≥2,
则h(x)=f(x)+f(2﹣x)=2+x+x2,
若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,
则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,
若x>2,﹣x<﹣2,2﹣x<0,
则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.
作出函数h(x)的图象如图:
当x≤0时,h(x)=2+x+x2=(x+)2+≥,
当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,
故当=时,h(x)=,有两个交点,
当=2时,h(x)=,有无数个交点,
由图象知要使函数y=f(x)﹣g(x)恰有4个零点,
即h(x)=恰有4个根,
则满足<<2,解得:b∈(,4),
故选:D.
【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.2.【答案】A
【解析】解:如图作出阴影部分即为满足约束条件的可行域,
由得A(3,5),
当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,
即当x=3,y=5时,z=x﹣y取最小值为﹣2.
故选A.
3.【答案】B
【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.
考点:几何体的结构特征.
4.【答案】A
【解析】
考点:三角函数的图象性质.
5.【答案】A
【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.
故选:A.
【点评】本题考查交集的运算法则的应用,是基础题.
6.【答案】B
【解析】解:根据频率分布直方图,得;
该班级数学成绩的平均分是
=80×0.005×20+100×0.015×20
+120×0.02×20+140×0.01×20
=114.
故选:B.
【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.
7.【答案】D
【解析】解:由新定义可得,
====.
故选:D.
【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.
8.【答案】A
【解析】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,
所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,
所以φ=.
故选A.
【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.
9.【答案】D
【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交.
MN的中点坐标为(﹣,0),MN斜率为=
∴MN的垂直平分线为y=﹣2(x+),
∵①4x+2y﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.
②x2+y2=3与y=﹣2(x+),联立,消去y得5x2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN的垂直平分线有交点,
③中的方程与y=﹣2(x+),联立,消去y得9x2﹣24x﹣16=0,△>0可知③中的曲线与MN的垂直平分线有交点,
④中的方程与y=﹣2(x+),联立,消去y得7x2﹣24x+20=0,△>0可知④中的曲线与MN的垂直平分线有
交点,
故选D
10.【答案】A
【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.
故选:A.
【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题
11.【答案】C
【解析】解:从1,2,3,4中任取两个数,有(1,2),(1,3),
(1,4),(2,3),(2,4),(3,4)共6种情况,
其中一个数是另一个数两倍的为(1,2),(2,4)共2个,
故所求概率为P==
故选:C
【点评】本题考查列举法计算基本事件数及事件发生的概率,属基础题.
12.【答案】D
【解析】解:对于A,α∥β,l⊂α,n⊂β,l,n平行或异面,所以错误;
对于B,α∥β,l⊂α,l 与β可能相交可能平行,所以错误;
对于C,l⊥n,m⊥n,在空间,l与m还可能异面或相交,所以错误.
故选D.
二、填空题
13.【答案】.
【解析】解:0.=++…+==,
故答案为:.
【点评】本题考查数列的极限,考查学生的计算能力,比较基础.
14.【答案】.
【解析】解:依题意,当0≤x≤时,f(x)=2x,当<x≤1时,f(x)=﹣2x+2
∴f(x)=
∴y=xf(x)=
y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S=+=x3+(﹣
+x2)=+=
故答案为:
15.【答案】存在x∈R,x3﹣x2+1>0.
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.
故答案为:存在x∈R,x3﹣x2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
16.【答案】异面.
【解析】解:把展开图还原原正方体如图,
在原正方体中直线AB与CD的位置关系是异面.
故答案为:异面.
17.【答案】y=﹣1.7t+68.7
【解析】解:=,==63.6.
=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.
∴=﹣=﹣1.7.=63.6+1.7×3=68.7.
∴y关于t的线性回归方程为y=﹣1.7t+68.7.
故答案为y=﹣1.7t+68.7.
【点评】本题考查了线性回归方程的解法,属于基础题.
18.【答案】2
【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()2
20ax b a x c b +-+-≥在R
上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:22
2
222241441c b ac a a a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫
+ ⎪⎝⎭

令1,(0)c t t a =->
,24422222t y t t t t
==≤=++++,故22
2b a c +
的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用
三、解答题
19.【答案】
【解析】解:(Ⅰ) f'(x )=ae x
(x+2),g'(x )=2x+b ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣ 由题意,两函数在x=0处有相同的切线. ∴f'(0)=2a ,g'(0)=b ,
∴2a=b ,f (0)=a=g (0)=2,∴a=2,b=4,
∴f (x )=2e x (x+1),g (x )=x 2
+4x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(Ⅱ) f'(x )=2e x
(x+2),由f'(x )>0得x >﹣2,由f'(x )<0得x <﹣2,
∴f (x )在(﹣2,+∞)单调递增,在(﹣∞,﹣2)单调递减.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∵t >﹣3,∴t+1>﹣2
①当﹣3<t <﹣2时,f (x )在[t ,﹣2]单调递减,[﹣2,t+1]单调递增,

.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
②当t ≥﹣2时,f (x )在[t ,t+1]单调递增,
∴;
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

(Ⅲ)令F (x )=kf (x )﹣g (x )=2ke x
(x+1)﹣x 2
﹣4x ﹣2,
由题意当x ≥﹣2,F (x )min ≥0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∵∀x ≥﹣2,kf (x )≥g (x )恒成立,∴F (0)=2k ﹣2≥0,∴k ≥1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
F'(x )=2ke x (x+1)+2ke x ﹣2x ﹣4=2(x+2)(ke x ﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣ ∵x ≥﹣2,由F'(x )>0



;由F'(x )<0

∴F (x )在单调递减,在单调递增﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣﹣﹣
①当
,即k >e 2
时,F (x )在[﹣2,+∞)单调递增,
,不满足F (x )min ≥0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣﹣﹣﹣﹣
②当,即k=e 2时,由①知,
,满足F (x )min ≥0.﹣﹣
﹣﹣﹣﹣﹣
③当
,即1≤k <e 2
时,F (x )在
单调递减,在
单调递增
,满足F (x )min ≥0.
综上所述,满足题意的k 的取值范围为[1,e 2
].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
【点评】本题考查导数的几何意义,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
20.【答案】420x y --=或1x =. 【解析】
21.【答案】
【解析】解:(1)f (x )=log 3(1+x )﹣log 3(1﹣x )为奇函数. 理由:1+x >0且1﹣x >0,得定义域为(﹣1,1),(2分) 又f (﹣x )=log 3(1﹣x )﹣log 3(1+x )=﹣f (x ), 则f (x )是奇函数. (2)g (x )=log
=2log 3
,(5分)
又﹣1<x <1,k >0,(6分)
由f(x)≥g(x)得log3≥log3,
即≥,(8分)
即k2≥1﹣x2,(9分)
x∈[,]时,1﹣x2最小值为,(10分)
则k2≥,(11分)
又k>0,则k≥,
即k的取值范围是(﹣∞,].
【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.
22.【答案】
【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),
则即=,
∴M=.
又det(M)=﹣3,
∴M﹣1=;
(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),
则=M﹣1=,
即,
∴代入4x+y﹣1=0,得,
即变换后的曲线方程为x+2y+1=0.
【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.
23.【答案】
【解析】(1)解:赞成率为,
被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43
(2)解:由题意知ξ的可能取值为0,1,2,3,




∴ξ的分布列为:
∴.
【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.
24.【答案】
【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.。

相关文档
最新文档