多边形的内角和与外角和 ppt课件

合集下载

多边形的内角和与外角和课件北师大版数学八年级下册

多边形的内角和与外角和课件北师大版数学八年级下册

4 一个多边形的内角和比其外角和的2倍多180°,则该多边形
的对角线的条数是( )
A.12
B.13
C.14
D.15
5 已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分 ∠ABC,DF平分∠ADC.BE与DF有怎样的位置关系?为什么?
谢谢大家!
多边形的外角和等于360°
随堂训练
1 五边形的外角和等于( A.180° C.540°
) B.360° D.720°
2 已知一个正多边形的每个外角等于60°,则这个正多边
形是( )
A.正五边形
B.正六边形
C.正七边形
D.正八边形
3 已知一个多边形的内角和等于它的外角和,则这个多边形的
边数为( )
∠2+∠ABC=180°, ∠3+∠BCD=180°, ∠4+∠CDE=180°, ∠5+∠DEA=180°,
想一 想 如果广场的形状是四边形、三角形,那么结果会怎样?
1 多边形内角的一边与另一边的反向延长线所组成的角叫做 这个多边形的外角. 2 在每个顶点处取这个多边形的一个外角,它们的和叫做这 个多边形的外角和.
第六章 平行四边形
6.4 多边形的内角和与外角和
1 情景导入
三角形的内角和是多少?
在平面内,由若干不在同一直线上的线段首尾顺次连接组成的
封闭图形叫做多边形.

. 对角线
内角
.
.
顶点
.
外角
.
2 课堂活动 知识点一 多边形的内角和 某小区健身广场中心的边缘是一个五边形(如图),你能求出它 的五个内角的和吗?
再沿直线前进10 m,又向左转30°……照这样走下去,小亮第
一次回到出ቤተ መጻሕፍቲ ባይዱ地A点时,他一共走了_1__2_0__m__.

北师大版数学八年级下册多边形的内角和与外角和课件

北师大版数学八年级下册多边形的内角和与外角和课件

归纳总结
多边形的外角与外角和
多边形内角的一边与另一边的反向延长线所组 成的角叫做这个多边形的外角.
在多边形每个顶点处各取一个外角,它们的和 叫做这个多边形的外角和.
想一想 如果广场的形状是六边形、八边形,那么结果
会怎样 ? 6×180°- (6-2)×180° = 360° 8×180°-(8-2)×180° = 360°
Байду номын сангаас
典例精析
例1 在四边形 ABCD 中,∠A +∠C = 180°,那么 ∠B 与
∠D 有什么关系?
B
解:∵∠A +∠B +∠C +∠D
= (4 - 2)×180° = 360°,
C
A
∴∠B +∠D
= 360°-(∠A +∠C) = 180°.
D
如果一个四边形的一组对角互补,那么另一组对角互补.
想一想 正三角形 (等边三角形) 、正四边形 (正方形) 、正 五边形、正六边形、正八边形的内角分别是多少度?
多边形内角和
0
1
1×180°=180°
1
2
2×180°=360°
2
3 ··· n-3
3
4 ··· n-2
3×180°=540° 4×180°=720°
······ (n - 2)×180°
总结归纳 多边形的内角和公式 定理 n 边形的内角和等于 (n - 2)×180° ( n 是大于或等于 3 的自然数). 按照 问题2 的方法二再试一试?
(2)他每跑完一圈,跑步方向改变的角一共有几个? 它们的和是多少? 小刚是这样思考的, 跑步方向改变的角分别是 ∠1 、∠2 、∠3 、∠4、 ∠5.

人教版数学八年级上册1多边形的内角和与外角和课件

人教版数学八年级上册1多边形的内角和与外角和课件
(1)小明每从一条街道转到下一条街道 时,身体转过的角是哪个角?在图中 标出它们.
1A
5
B
E
2
4
C
D
3
多边形的外角和
(2)他每跑完一圈,身体转过的角度之和是多少? 360°
(3)在上图中,你能求出1+∠2+∠3+∠4+∠5的大小吗?
你是怎样得到的?
360°
B
在多边形的每个顶点处取这个多
2
边形的一个外角,它们的和叫做
11.3.2 多边形的内角和 与外角和
八年级上册
学习目标
1、了解多边形内角和与外角和的探究过程。 2、掌握多边形内角和与外角和定理。 3、提高学生运用数学的能力和了解转化的数学思想。
学习重难点
重点 理解多边形内角含义,多边形内角和公式。
难点 多边形内角和公式的探索过程;利用多边形内角和公式解决
实际问题。
2
2
∴∠ABC+∠ACB=2(∠DBC+∠DCB)=100°.
∴∠A=180°-(∠ABC+∠ACB)=80°.
应用拓展
(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).
解:∠BDC=90°+ 1 ∠A 2
应用拓展
3.探究与发现:如图①,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE,DF恰好分别经过点B,C.请写出∠BDC与∠A+∠ABD+ ∠ACD之间的数量关系,并说明理由.
应用拓展
7.如图,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB, AC上,将△ABC沿着DE所在直线折叠压平,使点A与点N重合. (1)若∠B=35°,∠C=60°,求∠A的度数;

多边形的外角和与内角和PPT教学课件

多边形的外角和与内角和PPT教学课件
舟遥遥以轻扬,风飘飘而吹衣。问征夫以前路,恨晨光之熹微。
乃瞻衡宇,载欣载奔。僮仆欢迎,稚子候门。三径就荒,松菊犹 存。携幼入室,有酒盈樽。引壶觞以自酌,眄庭柯以怡颜。倚南 窗以寄傲,审容膝之易安。园日涉以成趣,门虽设而常关。策扶 老以流憩,时矫首而遐观。
云无心以出岫,鸟倦飞而知还。景翳翳以将入,抚孤松而盘桓。 归去来兮,请息交以绝游。世与我而相违,复驾言兮焉求?悦
陶渊明的诗歌,以歌咏田园生活的居多,后世称他为田园诗人。陶渊明的 田园诗主要见于他的组诗《饮酒》、《归园田居》、《拟古》、《和郭主簿》。 他的五言诗成就最高,诗歌的意境下平和、静穆、深远,在中国诗歌史上有着 重要的地位。他那种淡泊明志的人生态度,对读书人的影响很深。
通过虚构(
)一
个和平、美好、没有剥…削、没有压迫、人
文章线索 抒情
自责自悔
自安自乐
乐天安命
Hale Waihona Puke 叙事 辞官 归途 家中生活 纵情山水 抒发情怀
全文主旨
《归去来兮辞》 是陶渊明辞官归隐之际与上流社 会公开决裂的政治宣言。文章以 绝大篇幅写了他脱离官场的无限 喜悦,想家归隐田园的无限乐趣, 表现了作者对大自然和隐居生活
的向往和热爱。
少无适俗韵,性本爱丘山。误落尘网中,一去三十年。 羁鸟恋旧林,池鱼思故渊。开荒南野际,守拙归园田。 方宅十余亩,草屋八九间。榆柳荫后檐,桃李罗堂前。 暧暧远人村,依依墟里烟。狗吠深巷中,鸡鸣桑树颠。 户庭无尘杂,虚室有余闲。久在樊笼里,复得反自然。
赞曰:黔娄之妻有言:“不戚戚于贫贱, 不汲汲于富贵。”其言兹若人之俦乎?衔 觞赋诗,以乐其志。无怀氏之民欤?葛天 氏之民欤?
五柳先生传(译文)
五柳先生不知道是什么地方的人,也不知道他的姓名和表字,由 于他的住宅旁边有五棵柳树,因此用它做了自己的号。他悠闲安静, 沉默寡言,不羡慕荣华利禄。喜欢读书,只求领会要旨,不在一字 一句的理解上过分下功夫;每当对书中的意旨有独到的体会,便高 兴得忘了吃饭。(他)生性特别喜好喝酒,但却因家里贫穷,不能 常常有酒喝。亲戚朋友知道他这种境况,有时就准备好酒邀请他去 喝;他一去就要喝个尽兴, 愿望就是一定要喝醉。 醉了便离去, 并不装模作样, 说来就来, 想走就走。 简陋的居室里冷冷清清, 遮不住风和阳光;粗布短衣上打了补钉,盛饭的竹筒、水瓢经常是 空的,但他却安然自若。他经常写文章来消遣时光,也颇能表达自 己的心态。他从不把得失放在心上,他愿意这样度过自己的一生。

多边形的内角和 (优质课)获奖课件

多边形的内角和 (优质课)获奖课件

四、练习与小结 练习:教材练习. 教师布置练习,学生举手回答. 小结:谈谈你对三角形外角的认识. 教师引导学生谈谈对三角形外角的认识.主要从定义和 性质两个方面入手. 五、布置作业 习题11.2第5,6,8题,选做题:第11题.
通过三角形的内角和回顾引入,然后通过学生的预习,在 他们的理解基础上,去学习三角形的外角的定义,这样能 够加深他们对外角定义的理解,在探索三角形外角定理的 时候,我也是采取了学生去探索的思想,让他们自己大胆 猜想,然后同学们在老师的引导下去证明自己的猜想,这 样以后才能运用自如.
(二)五边形的内角和 问题1:你知道任意一个五边形的内角和是多少度吗?
问题2:你知道任意一个n边形的内角和是多少度吗? (n-2)×180° 180°n-360° 180°(n-1)-180° 板书: 多边形内角和公式:n边形的内角和等于(n-2)×180°
补充例题:求十五边形内角和的度数. 1.教师提出问题,学生思考后分组活动. 2.教师深入小组,参与小组活动,及时了解学生探索的 情况. 3.让学生归纳借助辅助线将五边形分割成三角形的不同 分法. 4.探究五边形的边数与所分割的三角形个数间的关系, 进而得出五边形内角和与边数的关系. 5.根据以上分割三角形的方法,引导学生归纳n边形内 角和公式及不同公式间的联系,指明为了书写整齐,便 于记忆,我们选择(n-2)×180°这个公式. 6.通过计算,让学生巩固并掌握n边形内角和公式.
三、练习应用 1.教材练习. 补充: 2.问题:一个多边形的内角和与外角和相等,它是几边 形? 四、小结与作业 问题:谈谈本节课你有哪些收获? 1.学生反思学习和解决问题的过程. 2.鼓励学生大胆表达,并对学生的进步给予肯定,树立 学生学好数学的自信心. 作业:习题11.3第2,4,5,6,7,8题,选做题:第9,10 题.

多边形的内角和外角

多边形的内角和外角

实例二:五边形的内角和与外角和
总结词
五边形可以被划分为3个三角形,因此其内 角和为540度,外角和也为360度。
详细描述
五边形可以被划分为3个三角形,每个三角 形的内角和为180度。因此,五边形的内角 和为3 * 180度 = 540度。同时,由于多边 形的外角和总是等于360度,所以五边形的 外角和也为360度。
了解多边形的内角和 外角在几何学中的应 用。
掌握多边形的内角和 外角的计算方法。
02 多边形的内角和外角的基 本概念
内角和外角的定义
内角
多边形内部相邻两边的夹角。
外角
多边形外部与一个内角相邻的两边的夹角。
内角和外角的关系
01
02
03
外角和内角互补
一个内角与相邻的外角的 和为180度。
外角和的性质
06 总结与回顾
本章重点回顾
1 2
多边形的内角和外角的概念
多边形的内角是指多边形内部的角,而外角则是 与内角相对的,位于多边形外部的角。
内角和外角的性质
多边形的内角和等于其边数减2的乘积再乘以 180度,而外角和则等于360度。
3
内角和外角的应用
内角和外角的性质在几何学中有着广泛的应用, 例如在计算多边形的面积、判断多边形的类型等 方面。
总结词
计算多边形内角和的公式是(n-2) *180度,其中n是多边形的边数。
详细描述
这个公式是计算多边形内角和的关键。 通过将多边形的边数代入公式,即可 得到多边形的内角和。例如,一个五 边形的内角和为(5-2)*180度=540 度。
04 多边形的外角和性质
外角的定义和性质
总结词
外角的定义是指多边形各边延长线所形成的角。每个外角的大小与相邻的内角互补,即它们的角度之 和为180度。

《多边形的内角和》PPT教学课文课件

《多边形的内角和》PPT教学课文课件
150
4. 如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7 的度数.
8 9
5.一个同学在进行多边形的内角和计算时,求得内
角和为 1125°,当他发现错了以后,重新检查,发
现少算了一个内角,问这个内角是多少度?他求的
是几边形的内角和?
6.已知一个多边形的每个内角与相邻外角的比都是
7∶2,求这个多边形的边数.
名称
图形
从多边形的一顶点 分割出的三
多边形内角和
引出的对角线条数 角形个数
三角形
0
1
1×180°=180°
四边形
1
2
2×180°=360°
五边形
2
3
3×180°=540°
六边形
3
4
4×180°=720°
···
···
···
n-3
n-2
( n - 2 )·180°
···
n 边形
总结
多边形的内角和公式
人教版数学八年级上册
第十一章 三角形
多边形的内角和
教学目标
1.
1. 能通过不同方法探索多边形的内角和与外角和公式;
(重点)
2. 学会运用多边形的内角和与外角和公式解决问题.
(难点)
1.三角形的内角和是多少?
180°
2.四边形的内角和是多少?
360
°
3.你能证明它吗?
他们的概念是什么?
又该如何去做呢?
和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+
∠2等于(
).
A
A.140°
B.40°
C.260°
D.不能确定
3. 如图所示,小华从点 A 出发,沿直线前进 10 米后左转 24°,

多边形的内角和 (PPT20张)

多边形的内角和 (PPT20张)
(1)√ (2)×(3) √ (4)×
练习2:填空. (1)一个多边形的内角和为1260°,则它的边 数为 9 .
(2)五边形的内角和为 540°,. (3)一个多边形的每一个外角都等于30°,则 这个多边形为 十二 边形.
(4)一个多边形的每个内角都等于135°,则这 个多边形为 八 边形.
练习3:选择.
D
A
解:如图,在四边形ABCD中,
∠A+∠C=180°
∵ ∠A+∠B+∠C+∠D=(4-2) ×180 °
B
C
= 360 °
∴ ∠B+∠D = 360°-(∠A+∠C)
= 360 °-180°
=180°
这就是说: 如果四边形一组对角互补,那么另一组对角也互补.
练习1:判断. (1)当多边形边数增加时,它的内角和也随着增加. (2)当多边形边数增加时,它的外角和也随着增加. (3)三角形的外角和与八边形的外角和相等. (4)从n边形一个顶点出发,可以引出(n-2)条对角 线,得到(n-2)个三角形.
问题4:回想正多边形的性质,你
知道正多边形的每个内角是多少度
吗?每个外角呢?为什么?
正n边形的每个内角= (n - 2) 180
正n边形的每个外角=360 n
n
正n边形的每个内角=180°—
360
n
如果一个四边形的一组对角互补,那么另一组对角有什么关系?
例1
已知:四边形ABCD中∠A+∠C=180° 求:∠B与∠D的关系.
(1)多边形的每个外角与它相邻内角的关系
A.互为余角 B.互为邻补角
C.两个角相等 D.外角大于内角 (B)
(2)多边形的内角和为它的外角和的4倍,这

探索多边形的内角和与外角和PPT教学课件

探索多边形的内角和与外角和PPT教学课件

D. 凋亡相关基因是机体固有的,在动物生长发育过程中发挥 重要作用
答案:C 解析:细胞凋亡是在基因控制下的程序性死亡,是细胞主动死 亡的过程。凋亡是在动物生长发育过程中某些固有基因选择 性表达的结果。
互动探究2-1:下列关于细胞分裂、分化、衰老和死亡的 叙述,正确的是( ) A. 细胞分化使各种细胞的遗传物质有所差异,导致细 胞的形态和功能各不相同 B. 个体发育中细胞的分裂、分化和死亡对于生物体都 是有积极意义的
5.一个多边形的每一个外角都等于 36°,则该多边形的内
角和等于__1_4_4_0_°__.











360° 36°
= 10 , 内 角 和 为 (10 -
2)×180°=1 440°.
6.各角相等的多边形中,一个外角等于一个内角的25,这 个多边形是____七____边形.
点拨:设这个多边形的一个内角为 x°,则一个外角等于25x°, ∵x+25x=180,∴x=9070,∴25x=25×9070=3760.∴一个外角为 3760°,边数 360÷3760=7.∴这个多边形的边数为 7.
(2)类型 干细胞分为3类:全能干细胞、多能干细胞和专能干细胞。下 面以干细胞分化成红细胞的过程为例,说明它们之间的关 系:
红细胞 ┈ 终端分化细胞 ↑
专能骨髓造血干细胞┈ 能分化成红细胞 ↑
多能骨髓造血干细胞┈能分化成各种血细胞 ↑
全能胚胎干细胞 ┈能分化成各种体细胞
(3)应用 医学上,干细胞的研究为器官移植提供了新的思路,为癌症、 癫痫、糖尿病等疾病的根治带来了希望。
解析:本题材料新颖,主要考查细胞的分裂、分化及干细胞等 相关的知识。干细胞具有有丝分裂和分化成多种组织细胞的 能力。有丝分裂产生的子细胞基因与亲代相同。在细胞分化 过程中,因基因的选择性表达而在不同的细胞中产生不同的 mRNA和蛋白质,从而使细胞在形态和功能上发生永久性、不 可恢复的变化——分化。由此可知:细胞分化的过程中,没有 基因的丢失而有基因的选择性表达,故B与D选项错误。细胞 分化是细胞形态功能上的变化,故C选项错误。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

那么五边形有几个内角?几条边?几个外角呢? 五边形有5个内角,5条边,10个外角
那么六边形有几个内角?几条边?几个外角呢? 六边形有6个内角,6条边,12个外角
那么n边形有几个内角?几条边?几个外角呢? n边形有n个内角,n条边,2n个外角
请大家细心地填一填,多边形的内角,边,外 角三者的关系表,你能发现什么规律?
3 4 5 67
n
3 4 5 67
n
6
8 10 12 14
2n
三角形如果三条边都相等,三个角也都相等,那么这 样的三角形就叫做正三角形。
正三角形 正四边形 正五边形 (或正三边形) (或正四边形)
正六边形
正八边形
如果多边形各边都相等,各个角也都相等,那么
这样的多边形就叫做正多边形。如正三角形、正四
六边形ABCDEF共有9条对角线。
请问:四边形从一个顶点出发,能引出几1条对角线? 请问:五边形从一个顶点出发,能引出几2 条对角线? 请问:六边形从一个顶点出发,能引出几3 条对角线?
…… 请问:N边形从一个顶点出发,能引出几N-条3 对角线?
我们已经知道一个三角形的内角和等于180°, 那么四边形的内角和等于多少呢?五边形、六边形 呢?由此,n边形的内角和等于多少呢?
目录
1.多边形的定义 2.正多边形的定义 3.多边形的对角线 4.多边形的内角和 5.多边形的外角和
三角形有三个内角、三条边,我们也可以把 三角形称为三边形(但我们习惯称为三角 形).
你能说出三角 形的定义吗?
三角形是由三条不在同一条直线上的线段 首尾顺次连结组成的平面图形
既然我们已经知道什么叫三角形,你能根据三角形 的定义,说出什么叫四边形吗?
11X +100 °= 540° 11X = 440° X = 40° 则这个五边形的内角分别为40, 80°, 120°,
160°, 140°.
2.从边上的一个点出发
请你认真地想一想,你能通过怎样的方法把多边形 转化为三角形?
现在研究的范围内 。
凸多边形
有什么不同?
凹多边形
注意 我们现在研究的是如右图所示的 多边形,也就是所谓的凸多边形
既然三角形有三个内角、三条边,六个外角, 那么四边形有几个内角?几条边?几个外角呢?
图 8.3.2
1.如图8.3.2所示,∠A、∠D、∠C、∠ABC是四 边形ABCD的四个内角 2.AB,BC,CD,DA是四边形ABCD的四条边 3.∠CBE 和 ∠ ABF 都 是 与 ∠ ABC 相 邻 的 外 角 , 两者互为对顶角,四边形有八个外角。
例7.如果一个多边形的边数增加1,则这个多边形的 内角和_增_加__18_0 °
例8. 五边形中,前四个角的比是1:2:3:4,第五个角 比最小角多100 °,则这个五边形的内角分别为 _____
解;设五边形中前四个角的度数分别是 x,2x,3x,4x,则第五个角度数是x+ 100 °.
X+2x+3x+4x+x+ 100 °= (5-2) ×180°
解: 120°n=(n-2)×180° 120°n=n×180°-360 ° 60°n =360 ° n =6
例5.如果一个正多边形的一个内角等于150°,则 这个多边形的边数是__A___
A.12 B.9 C. 8
D.7
例6.如果一个多边形的每一个外角等于30°,则这 个多边形的边数是_____
因为正多边形的每个角相等,所以知道 正多边形的边数,就可以求出每一个内角的度数.
(n-2)×180°/ n
例4.正五边形的每一个内角等于_____,外角等于 ___.
解: (n-2)×180°/ n = (5-2)×180°/5 =540°/5 =108°
例5.如果一个正多边形的一个内角等于120°,则 这个多边形的边数是_____
n边形的内角和为__(n_-_2)__18_0_°_________.
它有什么作用 呢?
1.知道多边形的边数,可以求出多边形的度数.
2.知道多边形的度数,可以求出多边形的边数.
例1.求八边形的内角和的度数.
分析: n边形的内角和公式为(n-2) 180 ° , 现在知道这个多边形的边数是, 代入这个公式既可求出.
解 (n-2)×180° =(8-2)×180° =1 080°
老师,可以用计算器吗?
例2.已知多边形的内角和的度数为900°, 则这个多边形的边数为____7 ____
解 (n-2)×180° = 900°
(n-2)= 900° /180°
(n-2) = 5

n= 5 +2
四边形是由四条不在同一直线上 的线段首尾顺次连结组成的平面
图形,记为四边形ABCD
五边形,它是由五条不在同一直 线上的线段首尾顺次连结组成的 平面图形,记为五边形ABCDE
Hale Waihona Puke 那么多边形的定义呢?一般地,由n条不在同一直线 上的线段首尾顺次连结组成的 平面图形称为n边形,又称为 多边形.
下面所示的图形也是多边形,但不在我们
我们学习数学的 基本思想什么?
化未知为已知
那么我们能不能利 用三角形的内角和,来 求出四边形的内角和, 以及五边形、六边形, n边形的内角和?
1.从一个顶点出发
请你认真地想一想,你能通过怎样的方法把多边形 转化为三角形?
3 45
n-2
540 ° 720 ° 900 ° 180 ° (n-2)
由此,我们就可以得出 :
边形(正方形)、正五边形等等 。
连结多边形不相邻的两个顶点的线段叫做多边 形的对角线.
线段AC是四边形ABCD的一条对角线; 多边形的对角线用虚线表示。
请大家思考:五边形ABCDE共有几条对角线呢? 五边形ABCDE共有5条对角线。
请大家思考:六边形ABCDEF共有几条对角线呢?
有没有什么 规律呢?

n=7
哇!这么简单呀!
例3. 已知在一个十边形中,九个内角的和的度 数是1290°,求这个十边形的另一个内角的度 数.
先求出十边形的内角和 再减去1290°,就可以得出.
解: (10-2)×180° =1440 °
则十边形的另一个内角的度数为

1440 °- 1290° =150 °
那么对于正多边形来说,又遇到怎样的问题呢?
相关文档
最新文档