(完整版)人教版七年级数学上册期末试卷及答案精选模拟

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(完整版)人教版七年级数学上册期末试卷及答案精选模拟
一、选择题
1.在数3,﹣3,
13,13-中,最小的数为( ) A .﹣3 B .13 C .1
3- D .3
2.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元
3.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a - 4.在223,2,
7-四个数中,属于无理数的是( ) A .0.23 B 3 C .2- D .227
5.下列说法中正确的有( )
A .连接两点的线段叫做两点间的距离
B .过一点有且只有一条直线与已知直线垂直
C .对顶角相等
D .线段AB 的延长线与射线BA 是同一条射线
6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )
A .7cm
B .3cm
C .3cm 或 7cm
D .7cm 或 9cm
7.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( )
A .2
B .8
C .6
D .0
8.方程3x +2=8的解是( )
A .3
B .103
C .2
D .12
9.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )
A .8cm
B .2cm
C .8cm 或2cm
D .以上答案不对 10.方程312x -=的解是( )
A .1x =
B .1x =-
C .1
3x =- D .13
x = 11.下列等式的变形中,正确的有( )
①由5 x =3,得x = 53
;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n
=1. A .1个
B .2个
C .3个
D .4个 12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD
∠的度数为( )
A .100
B .120
C .135
D .150
二、填空题
13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
14.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.
15.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.
16.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.
17.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.
18.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.
19.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.
20.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.
21.计算7a 2b ﹣5ba 2=_____.
22.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.
23.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ,它的第n 个单项式是______.
24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.
三、压轴题
25.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为t (t>0)秒.
(1)长方形的边AD 长为 单位长度;
(2)当三角形ADP 面积为3时,求P 点在数轴上表示的数是多少;
(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P
点出发时间相同。

那么当三角形BDQ ,三角形BPC 两者面积之差为
12
时,直接写出运动时间t 的值. 26.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .
(1)分别求a ,b ,c 的值;
(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.
i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.
ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.
27.(1)探究:哪些特殊的角可以用一副三角板画出?
在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)
(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.
①当OB 平分EOD ∠时,求旋转角度α;
②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.
28.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒.
(1)求OC 的长;
(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;
(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达
A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.
29.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.
(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;
(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果).
30.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.
(1)求AC ,BC ;
(2)当t 为何值时,AP PQ =;
(3)当t 为何值时,P 与Q 第一次相遇;
(4)当t 为何值时,1cm PQ =.
31.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;
(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).
(4)直接写出点B为AC中点时的t的值.
32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:∵3>1
3

1
3
->﹣3,
∴在数3,﹣3,1
3

1
3
-中,最小的数为﹣3.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.D
解析:D
【解析】
【分析】
根据题意知:花了10a元,剩下(b﹣10a)元.
【详解】
购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.
故选D.
本题考查了列代数式,能读懂题意是解答此题的关键.
3.B
解析:B
【解析】
【分析】
根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.
【详解】
解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,
点A 表示的数是a ,所以B 表示的数为-a ,
又因为BC AB =,所以点C 表示的数为3a -.
故选B.
【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
4.B
解析:B
【解析】
【分析】
根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.
【详解】
0.23是有限小数,是有理数,不符合题意,
是开方开不尽的数,是无理数,符合题意,
-2是整数,是有理数,不符合题意,
227
是分数,是有理数,不符合题意, 故选:B.
【点睛】
本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.
5.C
解析:C
【解析】
【分析】
分别利用直线的性质以及射线的定义和垂线定义分析得出即可.
【详解】
A .连接两点的线段的长度叫做两点间的距离,错误;
B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;
C .对顶角相等,正确;
D .线段AB 的延长线与射线BA 不是同一条射线,错误.
【点睛】
本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.
6.C
解析:C
【解析】
【分析】
应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.
【详解】
①如图1所示,当点C在点A与B之间时,
∵线段AB=10cm,BC=4cm,
∴AC=10-4=6cm.
∵M是线段AC的中点,
∴AM=1
2
AC=3cm,
②如图2,当点C在点B的右侧时,∵BC=4cm,
∴AC=14cm
M是线段AC的中点,
∴AM=1
2
AC=7cm.
综上所述,线段AM的长为3cm或7cm.
故选C.
【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.B
解析:B
【解析】
【分析】
由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.
【详解】
∵2018÷4=504…2,
∴32018﹣1的个位数字是8,
故选B.
本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.8.C
解析:C
【解析】
【分析】
移项、合并后,化系数为1,即可解方程.
【详解】
x=,
解:移项、合并得,36
x=,
化系数为1得:2
故选:C.
【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.
9.C
解析:C
【解析】
【分析】
根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.
【详解】
解:当点C在线段AB上时,如图,
∵AC=AB−BC,
又∵AB=5,BC=3,
∴AC=5−3=2;
②当点C在线段AB的延长线上时,如图,
∵AC=AB+BC,
又∵AB=5,BC=3,
∴AC=5+3=8.
综上可得:AC=2或8.
故选C.
【点睛】
本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.10.A
解析:A
【解析】
试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.
考点:解一元一次方程.11.B
解析:B
【解析】
①若5x=3,则x=3
5

故本选项错误;
②若a=b,则-a=-b,故本选项正确;
③-x-3=0,则-x=3,故本选项正确;
④若m=n≠0时,则n
m
=1,
故本选项错误.
故选B.
12.C
解析:C
【解析】
【分析】
首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.
【详解】
解:∵OB平分∠COD,
∴∠COB=∠BOD=45°,
∵∠AOB=90°,
∴∠AOC=45°,
∴∠AOD=135°.
故选:C.
【点睛】
本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.
二、填空题
13.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 14.5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-5
解析:5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-50%-40%)=5(人),
故答案为:5.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.
15.-5
【解析】
【分析】
根据题意确定出a 的最大值,b 的最小值,即可求出所求.
【详解】
解:,

,,
则原式,
故答案为
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
解析:-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
<<,
解:459
∴<<,
253
=,
a2
∴=,b3
=-=-,
则原式495
-
故答案为5
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
16.100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案
解析:100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.
故答案为100.
【点睛】
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
17.16
【解析】
【分析】
本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.
【详解】
设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,
a+b+c+
解析:16
【解析】
【分析】
本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.
【详解】
设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,
a+b+c+d=37①;2a=b+2=c-3=2
d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,
∴这四堆苹果中个数最多的一堆为16.
故答案为16.
【点睛】
本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 18.26,5,
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.
【详解】
若经过一次输入结果得131,则5x +1=131,解得x =26;

解析:26,5,
45
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.
【详解】
若经过一次输入结果得131,则5x +1=131,解得x =26;
若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;
若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=4
5;
若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−1
25
(负数,
舍去);
故满足条件的正数x值为:
26,5,4
5.
【点睛】
本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.
19.2020
【解析】
【分析】
把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.
【详解】
代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),
由已知
解析:2020
【解析】
【分析】
把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.
【详解】
代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),
由已知,a-b=-7,c+d=2013,
∴原式=7+2013=2020,
故答案为:2020.
【点睛】
本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.
20.40°
【解析】
解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.
解析:40°
【解析】
解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:
∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.
21.2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
故答案为:
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.
解析:2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
()
2222
﹣﹣.
7a b5ba=75a b=2a b
2a b
故答案为:2
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.22.72
【解析】
【分析】
用360度乘以C等级的百分比即可得.
【详解】
观察可知C等级所占的百分比为20%,
所以C等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
解析:72
【解析】
【分析】
用360度乘以C等级的百分比即可得.
【详解】
观察可知C等级所占的百分比为20%,
所以C等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键.
23.【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第个单项式的系数是;

解析:()21n
n x - 【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;
单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;
第n 个单项式是()21n
n x -; 故答案为()21n
n x -. 【点睛】
此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.
24.-17
【解析】
【分析】
根据题中的新定义将所求式子化为算式-2-3+2×(-2)×
3,计算即可得到结果. 【详解】
∵a ※b =a ﹣b+2ab ,
∴(﹣2)※3
=﹣2﹣3+2×(﹣2)×
3 =﹣
解析:-17
【解析】
【分析】
根据题中的新定义将所求式子化为算式-2-3+2×(-2)×
3,计算即可得到结果. 【详解】
∵a ※b =a ﹣b+2ab ,
∴(﹣2)※3
=﹣2﹣3+2×(﹣2)×3
=﹣2﹣3﹣12
=﹣17.
故答案为:﹣17.
【点睛】
此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.
三、压轴题
25.(1)4;(2)-3.5或-0.5;(3)t 的值为
1116、1316、138或118. 【解析】
【分析】
(1)先求出AB 的长,由长方形ABCD 的面积为12,即可求出AD 的长;
(2)由三角形ADP 面积为3,求出AP 的长,然后分两种情况讨论:①点P 在点A 的左边;②点P 在点A 的右边.
(3) 分两种情况讨论:①若Q 在B 的左边,则BQ = 3-3t .由|S △BDQ -S △BPC |=
12,解方程即可;②若Q 在B 的右边,则BQ = 3t -3.由|S △BDQ -S △BPC |=
12,解方程即可. 【详解】
(1)AB =1-(-2)=3.
∵长方形ABCD 的面积为12,∴AB ×AD =12,∴AD =12÷3=4.
故答案为:4.
(2)三角形ADP 面积为:
12AP •AD =12AP ×4=3, 解得:AP =1.5,
点P 在点A 的左边:-2-1.5=-3.5,P 点在数轴上表示-3.5;
点P 在点A 的右边:-2+1.5=-0.5,P 点在数轴上表示-0.5.
综上所述:P 点在数轴上表示-3.5或-0.5.
(3)分两种情况讨论:①若Q 在B 的左边,则BQ =AB -AQ =3-3t .
S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142
t ⨯=2t , 1(66)22
t t --=,680.5t -=±,解得:t =1316或1116; ②若Q 在B 的右边,则BQ =AQ -AB =3t -3.
S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142
t ⨯=2t ,
1(66)22
t t --=,460.5t -=±,解得:t =138或118. 综上所述:t 的值为1116、1316、138或118
. 【点睛】
本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离公式.
26.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s
【解析】
【分析】
(1)根据非负数的性质求得a 、b 、c 的值即可;
(2)i )根据3BC-k•AB 求得k 的值即可;
ii )当AC=
13AB 时,满足条件. 【详解】
(1)∵a 、b 满足(a-1)2+|ab+3|=0,
∴a-1=0且ab+3=0.
解得a=1,b=-3.
∴c=-2a+b=-5.
故a ,b ,c 的值分别为1,-3,-5.
(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.
则依题意得:AB=5+t ,2BC=4+6t .
所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,
解得m=6,
所以存在常数m ,m=6这个不变化的值为26.
ii )AC=13
AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=
13
(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
27.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.
【解析】
【分析】
(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;
(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12
×120°=60°,于是得到结论;
②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.
【详解】
解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,
∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;
故选④;
(2)①因为COD 60∠=,
所以EOD 180COD 18060120∠∠=-=-=.
因为OB 平分EOD ∠, 所以11EOB EOD 1206022
∠∠==⨯=. 因为AOB 45∠=,
所以αEOB AOB 604515∠∠=-=-=.
②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.
因为BOC 2AOD ∠∠=,
所以()135α2120α-=-.
解得α105=.
当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.
因为BOC 2AOD ∠∠=,
所以()135α2α120
-=-. 解得α125=.
综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.
【点睛】
本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.
28.(1)20;(2)t =15s 或17s (3)
43s. 【解析】
【分析】
(1)设P 、Q 速度分别为3m 、2m ,根据12秒后,动点P 到达原点O 列方程,求出P 、Q 的速度,由此即可得到结论.
(2)分两种情况讨论:①当A 、B 在相遇前且相距5个单位长度时;②当A 、B 在相遇后且相距5个单位长度时;列方程,求解即可.
(3)算出P 运动到B 再到原点时,所用的时间,再算出Q 从B 到A 所需的时间,比较即可得出结论.
【详解】
(1)设P 、Q 速度分别为3m 、2m ,根据题意得:12×3m =36,解得:m =1,∴P 、Q 速度分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20.
(2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15
(s);
当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.
(3)P运动到原点时,t=364444
3
++
=
124
3
s,此时QB=2×
124
3
=
248
3
>44+38=80,∴Q
点已到达A点,∴Q点已到达A点的时间为:364480
40
22
+
==(s),故提前的时间
为:124
3
-40=
4
3
(s).
【点睛】
本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.
29.(1)90°;(2)30°;(3)12秒或48秒.
【解析】
【分析】
(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;
(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-
∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;
(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.
【详解】
(1)由旋转的定义可知:旋转角=∠NOB=90°.
故答案为:90°
(2)∠AOM﹣∠NOC=30°.
理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,
∴∠AOC=60°.
∴∠NOC=60°﹣∠AON.
∵∠NOM=90°,
∴∠AOM=90°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
(3)如图1所示:当OM为∠BOC的平分线时,
∵OM为∠BOC的平分线,
∴∠BOM=∠BOC=60°,
∴t=60°÷5°=12秒.
如图2所示:当OM 的反向延长为∠BOC 的平分线时,
∵ON 为为∠BOC 的平分线,
∴∠BON =60°.
∴旋转的角度=60°+180°=240°.
∴t =240°÷5°=48秒.
故答案为:12秒或48秒.
【点睛】
本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.
30.(1)AC=4cm, BC=8cm ;(2)当45
t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)3519
1cm.224t PQ =当为,,时, 【解析】
【分析】
(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;
(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;
(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.
【详解】
(1)AC=4cm, BC=8cm.
(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+, 即3t 43t t =-+,解得4t 5=
. 所以当4t 5
=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.
所以当t 2=时,P 与Q 第一次相遇.
(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,
35t t 22
解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,
193t 4t 1122,t 4
+++=⨯=则解得, 3519t PQ 1cm.224
所以当为,,时,= 【点睛】
此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.
31.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.
【解析】
【分析】
(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;
(2)先求出对称点,即可得出结果;
(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;
(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.
【详解】
(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.
∵b 是最小的正整数,∴b =1.
故答案为﹣2,1,7.
(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.
故答案为4.
(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.
故答案为3t +3,5t +9,2t +6.
(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.
【点睛】
本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.
32.(1)x=1;(2) x =-3或x =5;(3) 30.
【解析】
【分析】
(1)根据题意可得4-x =x -(-2),解出x 的值;
(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;
(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可.
【详解】
(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:
x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x =-3,则x =-3或x =5.(3)设经过x 分钟点A 与点B 重合,根据题意得:
2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.
【点睛】
本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。

相关文档
最新文档